1
|
Bai H, Wang S, Sha B, Xu X, Yu L. A Study on the Association between Cough Sensitivity and Acute Exacerbations in Patients with Chronic Obstructive Pulmonary Disease. COPD 2024; 21:2425153. [PMID: 39560068 DOI: 10.1080/15412555.2024.2425153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/20/2024]
Abstract
OBJECTIVE To investigate the relationship between cough sensitivity and acute exacerbation in stable chronic obstructive pulmonary disease (COPD) patients. METHODS Stable COPD patients who visited our department from July 2022 to June 2023 were included. They were subjected to cough sensitivity test, spirometry, induced sputum cytology examination, questionnaire assessment such as cough symptom score, etc. They were followed up for 12 months, and were divided into the acute exacerbation (AE) group and the stable group according to whether acute exacerbation occurred during the follow-up period. We compared the differences in cough sensitivity, pulmonary function, and questionnaires between the two groups, analyzed the relationship between cough sensitivity and acute exacerbation, and screened the risk factors for AECOPD. RESULTS A total of 145 patients with stable COPD were included. AE group (n = 94) had lower FEV1/FVC (50.08 ± 11.11 versus 54.28 ± 11.58, p = 0.03) and cough sensitivity lgC5 [-0.01(0.90) versus 0.59(0.90), p < 0.01] than those in the stable group (n = 51) patients, the daytime cough symptom score [2(2) versus 1(2), p = 0.02] and VAS score [50(40) versus 30(50), p < 0.01] were higher than stable group. Multivariate logistic regression analysis showed lgC5 (OR = 0.34, 95% CI = 0.16-0.71, p < 0.01) was an independent risk factor for AECOPD. When lgC5 was used to predict acute exacerbation in stable COPD patients, the AUC was 0.69, the sensitivity was 59.57%, and the specificity was 72.55%. CONCLUSION Although causality is not necessarily demonstrated, baseline cough sensitivity lgC5 in stable COPD patients is an independent risk factor for AECOPD, and it has some predictive value for future acute exacerbations.
Collapse
Affiliation(s)
- Haodong Bai
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shuangxi Wang
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Yingyuan Hospital of Jiading District, Shanghai, China
| | - Bingxian Sha
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xianghuai Xu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li Yu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Xue GZ, Ma HZ, Wuren TN. The role of neutrophils in chronic cough. Hum Cell 2024; 37:1316-1324. [PMID: 38913146 DOI: 10.1007/s13577-024-01089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/18/2024] [Indexed: 06/25/2024]
Abstract
Chronic cough is a common disorder lasting more than 8 weeks and affecting all age groups. The evidence supporting the role of neutrophils in chronic cough pathology is based on many patients with chronic cough developing airway neutrophilia. How neutrophils influence the development of chronic cough is unknown. However, they are likely involved in multiple aspects of cough etiology, including promoting airway inflammation, airway remodeling, hyper-responsiveness, local neurogenic inflammation, and other possible mechanisms. Neutrophilic airway inflammation is also associated with refractory cough, poor control of underlying diseases (e.g., asthma), and insensitivity to cough suppressant therapy. The potential for targeting neutrophils in chronic cough needs exploration, including developing new drugs targeting one or more neutrophil-mediated pathways or altering the neutrophil phenotype to alleviate chronic cough. How the airway microbiome differs, plays a role, and interacts with neutrophils in different cough etiologies is poorly understood. Future studies should focus on understanding the relationship between the airway microbiome and neutrophils.
Collapse
Affiliation(s)
- Guan-Zhen Xue
- School of Medicine, Qinghai University, Research Center for High Altitude Medicine, No.16 Kunlun Road, Xining, Qinghai Province, China
- Key Laboratory for Application for High Altitude Medicine, Qinghai University, Xining, Qinghai Province, China
| | - Hai-Zhen Ma
- Qinghai Provincial People's Hospital, Xining, Qinghai Province, China
| | - Ta-Na Wuren
- School of Medicine, Qinghai University, Research Center for High Altitude Medicine, No.16 Kunlun Road, Xining, Qinghai Province, China.
- Key Laboratory for Application for High Altitude Medicine, Qinghai University, Xining, Qinghai Province, China.
| |
Collapse
|
3
|
Dai X, Xu R, Li N. The Interplay between Airway Cilia and Coronavirus Infection, Implications for Prevention and Control of Airway Viral Infections. Cells 2024; 13:1353. [PMID: 39195243 PMCID: PMC11353096 DOI: 10.3390/cells13161353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Coronaviruses (CoVs) are a class of respiratory viruses with the potential to cause severe respiratory diseases by infecting cells of the upper respiratory tract, bronchial epithelium, and lung. The airway cilia are distributed on the surface of respiratory epithelial cells, forming the first point of contact between the host and the inhaled coronaviruses. The function of the airway cilia is to oscillate and sense, thereby defending against and removing pathogens to maintain the cleanliness and patency of the respiratory tract. Following infection of the respiratory tract, coronaviruses exploit the cilia to invade and replicate in epithelial cells while also damaging the cilia to facilitate the spread and exacerbation of respiratory diseases. It is therefore imperative to investigate the interactions between coronaviruses and respiratory cilia, as well as to elucidate the functional mechanism of respiratory cilia following coronavirus invasion, in order to develop effective strategies for the prevention and treatment of respiratory viral infections. This review commences with an overview of the fundamental characteristics of airway cilia, and then, based on the interplay between airway cilia and coronavirus infection, we propose that ciliary protection and restoration may represent potential therapeutic approaches in emerging and re-emerging coronavirus pandemics.
Collapse
Affiliation(s)
| | - Ruodan Xu
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Ning Li
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| |
Collapse
|
4
|
Lataro RM, Brognara F, Iturriaga R, Paton JFR. Inflammation of some visceral sensory systems and autonomic dysfunction in cardiovascular disease. Auton Neurosci 2024; 251:103137. [PMID: 38104365 DOI: 10.1016/j.autneu.2023.103137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/15/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
The sensitization and hypertonicity of visceral afferents are highly relevant to the development and progression of cardiovascular and respiratory disease states. In this review, we described the evidence that the inflammatory process regulates visceral afferent sensitivity and tonicity, affecting the control of the cardiovascular and respiratory system. Some inflammatory mediators like nitric oxide, angiotensin II, endothelin-1, and arginine vasopressin may inhibit baroreceptor afferents and contribute to the baroreflex impairment observed in cardiovascular diseases. Cytokines may act directly on peripheral afferent terminals that transmit information to the central nervous system (CNS). TLR-4 receptors, which recognize lipopolysaccharide, were identified in the nodose and petrosal ganglion and have been implicated in disrupting the blood-brain barrier, which can potentiate the inflammatory process. For example, cytokines may cross the blood-brain barrier to access the CNS. Additionally, pro-inflammatory cytokines such as IL-1β, IL-6, TNF-α and some of their receptors have been identified in the nodose ganglion and carotid body. These pro-inflammatory cytokines also sensitize the dorsal root ganglion or are released in the nucleus of the solitary tract. In cardiovascular disease, pro-inflammatory mediators increase in the brain, heart, vessels, and plasma and may act locally or systemically to activate/sensitize afferent nervous terminals. Recent evidence demonstrated that the carotid body chemoreceptor cells might sense systemic pro-inflammatory molecules, supporting the novel proposal that the carotid body is part of the afferent pathway in the central anti-inflammatory reflexes. The exact mechanisms of how pro-inflammatory mediators affects visceral afferent signals and contribute to the pathophysiology of cardiovascular diseases awaits future research.
Collapse
Affiliation(s)
- R M Lataro
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| | - F Brognara
- Department of Nursing, General and Specialized, Nursing School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - R Iturriaga
- Facultad de Ciencias Biológicas, Pontificia Universidad Catolica de Chile, Santiago, Chile; Centro de Investigación en Fisiología y Medicina en Altura - FIMEDALT, Universidad de Antofagasta, Antofagasta, Chile
| | - J F R Paton
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, Grafton, Auckland, New Zealand
| |
Collapse
|
5
|
Li Y, Zhao R, Zhang M, Shen K, Hou X, Liu B, Li C, Sun B, Xiang M, Lin J. Xingbei antitussive granules ameliorate cough hypersensitivity in post-infectious cough guinea pigs by regulating tryptase/PAR2/TRPV1 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117243. [PMID: 37777025 DOI: 10.1016/j.jep.2023.117243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xingbei antitussive granules (XB) is a classic Chinese Medicine prescription for treating post-infectious cough(PIC), based on the Sanao Decoction from Formularies of the Bureau of People's Welfare Pharmacies in the Song Dynasty and Jiegeng decoction from Essentials of the Golden Chamber in the Han Dynasty. However, the therapeutic effects and pharmacological mechanisms are still ambiguous. In the present study, we endeavored to elucidate these underlying mechanisms. AIMS OF THE STUDY This study aimed to explore the potential impact and mechanism of XB on PIC, and provide a scientific basis for its clinical application. MATERIALS AND METHODS Cigarette smoking (CS) combined with lipopolysaccharide (LPS) nasal drops were administered to induce the PIC guinea pig with cough hypersensitivity status. Subsequently, the model guinea pigs were treated with XB and the cough frequency was observed by the capsaicin cough provocation test. The pathological changes of lung tissue were assessed by HE staining, and the levels of inflammatory mediators, mast cell degranulating substances, and neuropeptides were detected. The protein and mRNA expression of transient receptor potential vanilloid type 1(TRPV1), proteinase-activated receptor2(PAR2), and protein kinase C (PKC) were measured by Immunohistochemical staining, Western blot, and RT-qPCR. Changes in the abundance and composition of respiratory bacterial microbiota were determined by 16S rRNA sequencing. RESULTS After XB treatment, the model guinea pigs showed a dose-dependent decrease in cough frequency, along with a significant alleviation in inflammatory infiltration of lung tissue and a reduction in inflammatory mediators. In addition, XB high-dose treatment significantly decreased the levels of mast cell Tryptase as well as β-hexosaminidase (β-Hex) and downregulated the expression of TRPV1, PAR2, and p-PKC. Simultaneously, levels of neuropeptides like substance P (SP), calcitonin gene-related peptide (CGRP), neurokinin A (NKA), and nerve growth factor (NGF) were improved. Besides, XB also can modulate the structure of respiratory bacterial microbiota and restore homeostasis. CONCLUSION XB treatment alleviates cough hypersensitivity and inflammatory responses, inhibits the degranulation of mast cells, and ameliorates neurogenic inflammation in PIC guinea pigs whose mechanism may be associated with the inhibition of Tryptase/PAR2/PKC/TRPV1 and the recovery of respiratory bacterial microbiota.
Collapse
Affiliation(s)
- Yun Li
- Graduate School of Beijing University of Chinese Medicine, Beijing, 100-029, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100-029, China.
| | - Ruiheng Zhao
- Graduate School of Beijing University of Chinese Medicine, Beijing, 100-029, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100-029, China.
| | - Mengyuan Zhang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100-730, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100-029, China.
| | - Kunlu Shen
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100-730, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100-029, China.
| | - Xin Hou
- Graduate School of Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100-029, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100-029, China.
| | - Bowen Liu
- Graduate School of Beijing University of Chinese Medicine, Beijing, 100-029, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100-029, China.
| | - Chunxiao Li
- Graduate School of Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100-029, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100-029, China.
| | - Bingqing Sun
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100-730, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100-029, China.
| | - Min Xiang
- Graduate School of Beijing University of Chinese Medicine, Beijing, 100-029, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100-029, China.
| | - Jiangtao Lin
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100-029, China.
| |
Collapse
|
6
|
Yi B, Wang S, Xu X, Yu L. Efficacy of behavioral cough suppression therapy for refractory chronic cough or unexplained chronic cough: a meta-analysis of randomized controlled trials. Ther Adv Respir Dis 2024; 18:17534666241305952. [PMID: 39707881 DOI: 10.1177/17534666241305952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND The efficacy of behavioral cough suppression therapy (BCST) for refractory chronic cough (RCC) and unexplained chronic cough (UCC) remains unclear due to limited evidence from small-scale single-center studies. OBJECTIVE To compile and assess the quality of evidence from randomized controlled trials to evaluate the effectiveness of BCST. DESIGN This study included randomized controlled studies and self-controlled studies related to BCST involving adult patients with RCC or UCC. DATA SOURCES AND METHODS We conducted an extensive search of various English and Chinese databases (e.g., PubMed, CNKI, CBM, VIP, and Wanfang Data Journal Full-text Database) and the Clinical Trial Registration website up to April 2024. The selected studies underwent meta-analysis to investigate the impact of BCST on the patient's quality of life and cough frequency. RESULTS The included 12 studies showed that BCST significantly improved the Leicester Cough Questionnaire scores of the patients (MD = 4.50, 95% CI (4.03, 4.97), p < 0.001) compared to the simple verbal education group. In addition, a significant reduction in objective cough frequency was observed in patients compared to before BCST, with a statistically significant difference (MD = -8.06, 95% CI (-9.71, -6.41), p < 0.001). Other measures of cough symptoms, such as symptom scores, Visual Analog Scale (VAS) scores, and Cough Severity Index (CSI) also showed improvement. CONCLUSION This meta-analysis revealed positive therapeutic effects of BCST in patients with RCC/UCC, potentially advancing its application in broader clinical settings. TRIAL REGISTRATION This study was registered on PROSPERO with the registration number CRD42024530746.
Collapse
Affiliation(s)
- Baiyi Yi
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shengyuan Wang
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xianghuai Xu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China
| | - Li Yu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China
| |
Collapse
|
7
|
Jin FD, Wang J, Deng SJ, Song WJ, Zhang X, Wang CY, Gao SY, Chung KF, Yang Y, Vertigan AE, Luo FM, Birring SS, Li WM, Liu D, Wang G. Interaction effect of chronic cough and ageing on increased risk of exacerbation in patients with asthma: a prospective cohort study in a real-world setting. ERJ Open Res 2023; 9:00461-2023. [PMID: 38152080 PMCID: PMC10752289 DOI: 10.1183/23120541.00461-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/26/2023] [Indexed: 12/29/2023] Open
Abstract
Background Older adults with asthma have the greatest burden and worst outcomes, and there is increasing evidence that chronic cough (CC) is associated with asthma severity and poor prognosis. However, the clinical characteristics of older adult patients with both asthma and CC remain largely unknown. Methods Participants with stable asthma underwent two cough assessments within 3 months to define the presence of CC. Patients were divided into four groups based on CC and age (cut-off ≥60 years). Multidimensional assessment was performed at baseline, followed by a 12-month follow-up to investigate asthma exacerbations. Logistic regression models were used to explore the interaction effect of CC and age on asthma control and exacerbations. Results In total, 310 adult patients were prospectively recruited and divided into four groups: older CC group (n=46), older non-CC group (n=20), younger CC group (n=112) and younger non-CC group (n=132). Compared with the younger non-CC group, the older CC group had worse asthma control and quality of life and increased airflow obstruction. The older CC group showed an increase in moderate-to-severe exacerbations during the 12-month follow-up. There was a significant interaction effect of CC and ageing on the increased moderate-to-severe exacerbations (adjusted risk ratio 2.36, 95% CI 1.47-3.30). Conclusion Older asthma patients with CC have worse clinical outcomes, including worse asthma control and quality of life, increased airway obstruction and more frequent moderate-to-severe exacerbations, which can be partly explained by the interaction between CC and ageing.
Collapse
Affiliation(s)
- Fan Ding Jin
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Sichuan University, Chengdu, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, China
- These authors contributed equally
| | - Ji Wang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Sichuan University, Chengdu, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, China
- These authors contributed equally
| | - Su Jun Deng
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Sichuan University, Chengdu, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, China
| | - Woo-Jung Song
- Airway Sensation and Cough Research Laboratory, Department of Allergy and Clinical Immunology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Xin Zhang
- Division of Internal Medicine, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Chang Yong Wang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Sichuan University, Chengdu, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, China
| | - Si Yang Gao
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Sichuan University, Chengdu, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, China
| | - Kian Fan Chung
- Department of Respiratory Medicine, Royal Brompton and Harefield NHS Trust, London, UK
- Experimental Studies Unit, National Heart and Lung Institute, Imperial College London, London, UK
| | - Ye Yang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, China
- Department of Thoracic Medical Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Cancer Hospital affiliate to School of Medicine, Chengdu, China
| | - Anne E. Vertigan
- National Health and Medical Research Council Centre for Research Excellence in Severe Asthma and Treatable Traits, The University of Newcastle, Newcastle, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, Hunter Medical Research Institute, Newcastle, Australia
- Speech Pathology, John Hunter Hospital, Newcastle, Australia
| | - Feng Ming Luo
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Sichuan University, Chengdu, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, China
| | - Surinder S. Birring
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Wei Min Li
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Sichuan University, Chengdu, China
- Respiratory Microbiome Laboratory, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, China
| | - Dan Liu
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Sichuan University, Chengdu, China
- Respiratory Microbiome Laboratory, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, China
| | - Gang Wang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Sichuan University, Chengdu, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Ding W, Xu D, Li F, Huang C, Song T, Zhong N, Lai K, Deng Z. Intrapulmonary IFN-γ instillation causes chronic lymphocytic inflammation in the spleen and lung through the CXCR3 pathway. Int Immunopharmacol 2023; 122:110675. [PMID: 37481849 DOI: 10.1016/j.intimp.2023.110675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/05/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
Some patients with chronic refractory cough have high levels of pulmonary IFN-γ and IFN-γ-producing T lymphocytes. Pulmonary IFN-γ administration causes acute airway lymphocytic inflammation and cough hypersensitivity by increasing the number of pulmonary IFN-γ-producing T lymphocytes, but these lymphocytes may be recruited from other organs. Intraperitoneal IFN-γ injection can increase the spleen weight of mice. It remains elusive whether pulmonary IFN-γ can induce chronic airway lymphocytic inflammation and cough hypersensitivity by stimulating the proliferation of IFN-γ -producing T lymphocytes in the spleen. Here, we found that pulmonary IFN-γ administration induced chronic airway inflammation and chronic cough hypersensitivity with an increased number of IFN-γ-producing T lymphocytes in the spleen, blood and lung. Pulmonary IFN-γ administration also increased 1) the proliferation of spleen lymphocytes in vivo and 2) the IP-10 level and CXCR3+ T lymphocyte numbers in the spleen and lung of mice. IP-10 could promote the proliferation of spleen lymphocytes in vitro but not blood lymphocytes or lung-resident lymphocytes. AMG487, a potent inhibitor of binding between IP-10 and CXCR3, could block pulmonary IFN-γ instillation-induced chronic airway lymphocytic inflammation and the proliferation of IFN-γ-producing T lymphocytes in mouse spleens. In conclusion, intrapulmonary IFN-γ instillation may induce the proliferation of splenic IFN-γ-producing T lymphocytes through IP-10 and the CXCR3 pathway. The IFN-γ-producing T lymphocytes in blood, partly released from the mouse spleen, may be partly attracted to the lung by pulmonary IP-10 through the CXCR3 pathway. IFN-γ-producing T lymphocytes and IFN-γ in the lung may cause chronic airway lymphocytic inflammation and chronic cough hypersensitivity.
Collapse
Affiliation(s)
- Wenbin Ding
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dongting Xu
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fengying Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chuqin Huang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tongtong Song
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kefang Lai
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Zheng Deng
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
9
|
Wang S, Li S, Wu H, Zhang T, Chen Y, Zhu Y, Wen S, Shi C, Yu L, Xu X. A randomized, double-blinded, placebo-controlled clinical trial of duloxetine hydrochloride enteric-coated tablets in the treatment of refractory chronic cough. BMC Pulm Med 2023; 23:282. [PMID: 37533019 PMCID: PMC10399068 DOI: 10.1186/s12890-023-02575-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023] Open
Abstract
INTRODUCTION Refractory cough, a chronic cough with an unclear diagnosis or poor treatment response. The symptoms are often stubborn and persistent, causing serious complications and lowering the patient's quality of life. Cough hypersensitivity syndrome (CHS) is proposed as a potential cause, and reducing sensory nerve hyperresponsiveness is suggested as an effective treatment. However, current drugs have low efficacy and benefit rates and numerous side effects. This trail proposes using duloxetine, a selective 5-HT and norepinephrine reuptake inhibitor, as a potential treatment for refractory cough, which has shown promise in treating pain and depression. Duloxetine may inhibit pain conduction and oxidative stress in peripheral nerves by inhibiting the activity of TRPV1 channels, which play an important role in the peripheral afferent pathway of refractory cough. Meanwhile, the antidepressant effects of duloxetine may also play a role in the treatment of refractory cough. METHODS AND ANALYSIS This is a single-center, prospective, randomized, double-blind, and controlled trial. A total of 98 individuals will be randomized in a 1:1 ratio to duloxetine group and placebo control group (starting with 20 mg QD, increasing 20 mg daily until 20 mg TID). After a screening period, the second stage runs from baseline to the 42nd (last) day of treatment, with follow-up visits on the 3rd, 7th, 14th, 21st, 28th, 35th, 42nd and 49th days. The main end-stage observation indicators include objective cough frequency, cough visual analog scale (VAS), cough symptom score, Leicester Cough Questionnaire (LCQ), and cough evaluation test (CET); the secondary end-stage observation indicators include capsaicin cough sensitivity, Patient Health Questionnaire-9 (PHQ-9), Major Depression Inventory (MDI), the Generalized Anxiety Disorder-7 scale (GAD-7), Life Events Scale (LES-32), induced sputum supernatant. The safety measures will be AEs/SAEs, vital signs, liver and kidney function, fecal occult blood test. DISCUSSION This study is the first randomized, double-blind, and controlled clinical trial investigating the use of duloxetine in the treatment of refractory coughs. The study aims to provide a high-quality basis for evaluating the efficacy and safety of duloxetine for this condition. TRIAL REGISTRATION Our study was registered in the Chinese Clinical Trials Register ( www.chictr.org.cn/ ) (ChiCTR2000037429) in 28/08/2020.
Collapse
Affiliation(s)
- Shengyuan Wang
- Department of Pulmonary and Critical Care Medicine, School of Medicine, Tongji Hospital, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Shaohui Li
- Department of Otorhinolaryngology - Head and Neck Surgery, School of Medicine, Tongji Hospital, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Heng Wu
- Department of Psychosomatic Medicine, School of Medicine, Tongji Hospital, Tongji University, Shanghai, 200065, China
| | - Tongyangzi Zhang
- Department of Pulmonary and Critical Care Medicine, School of Medicine, Tongji Hospital, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Yixiao Chen
- Department of Psychosomatic Medicine, School of Medicine, Tongji Hospital, Tongji University, Shanghai, 200065, China
| | - Yiqing Zhu
- Department of Pulmonary and Critical Care Medicine, School of Medicine, Tongji Hospital, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Siwan Wen
- Department of Pulmonary and Critical Care Medicine, School of Medicine, Tongji Hospital, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Cuiqin Shi
- Department of Pulmonary and Critical Care Medicine, School of Medicine, Tongji Hospital, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Li Yu
- Department of Pulmonary and Critical Care Medicine, School of Medicine, Tongji Hospital, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China.
| | - Xianghuai Xu
- Department of Pulmonary and Critical Care Medicine, School of Medicine, Tongji Hospital, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China.
| |
Collapse
|
10
|
Drake MG, McGarvey LP, Morice AH. From bench to bedside: The role of cough hypersensitivity in chronic cough. Clin Transl Med 2023; 13:e1343. [PMID: 37501282 PMCID: PMC10374883 DOI: 10.1002/ctm2.1343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Chronic cough is a burdensome condition characterized by persistent cough lasting longer than 8 weeks. Chronic cough can significantly affect quality of life, physical function and productivity, with many people troubled with a cough that lasts for months or even years. People with chronic cough commonly report a persistent urge to cough with frequent bouts of coughing triggered by innocuous stimuli, which has led to the concept of cough hypersensitivity. MAIN BODY Both central and peripheral neural pathways regulate cough, and although mechanisms driving development of cough hypersensitivity are not fully known, sensitization of these neural pathways contributes to excessive cough triggering in cough hypersensitivity. Effective therapies that control chronic cough are currently lacking. Recent therapeutic development has focused on several ion channels and receptors involved in peripheral activation of cough (e.g., transient receptor potential channels, P2 × 3 receptors and voltage-gated sodium channels) or central cough processing (e.g., neurokinin-1 [NK-1] receptors and nicotinic acetylcholine receptors). CONCLUSION These targeted therapies provide novel insights into mechanisms underlying cough hypersensitivity and may offer new treatment options for people with chronic cough. In this review, we explore preclinical and clinical studies that have improved our understanding of the mechanisms responsible for chronic cough and discuss the most promising targeted approaches to date, including trials of P2 × 3-receptor antagonists and NK-1-receptor antagonists.
Collapse
Affiliation(s)
- Matthew G. Drake
- Division of Pulmonary and Critical Care Medicine, Department of MedicineOregon Health and Science UniversityPortlandOregonUSA
| | - Lorcan P. McGarvey
- Wellcome‐Wolfson Institute for Experimental Medicine, School of MedicineDentistry & Biomedical Science, Queen's University BelfastBelfastUnited Kingdom of Great Britain and Northern Ireland
| | - Alyn H. Morice
- Respiratory Research GroupHull York Medical SchoolUniversity of HullCottinghamUK
| |
Collapse
|
11
|
Abstract
Coughing is a dynamic physiological process resulting from input of vagal sensory neurons innervating the airways and perceived airway irritation. Although cough serves to protect and clear the airways, it can also be exploited by respiratory pathogens to facilitate disease transmission. Microbial components or infection-induced inflammatory mediators can directly interact with sensory nerve receptors to induce a cough response. Analysis of cough-generated aerosols and transmission studies have further demonstrated how infectious disease is spread through coughing. This review summarizes the neurophysiology of cough, cough induction by respiratory pathogens and inflammation, and cough-mediated disease transmission.
Collapse
Affiliation(s)
- Kubra F Naqvi
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
| | - Stuart B Mazzone
- Department of Anatomy and Physiology, University of Melbourne, Victoria, Australia
| | - Michael U Shiloh
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
12
|
Deng Z, Ding W, Li F, Shen S, Huang C, Lai K. Pulmonary IFN-γ Causes Lymphocytic Inflammation and Cough Hypersensitivity by Increasing the Number of IFN-γ-Secreting T Lymphocytes. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2022; 14:653-673. [PMID: 36426396 PMCID: PMC9709684 DOI: 10.4168/aair.2022.14.6.653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 07/25/2023]
Abstract
PURPOSE Respiratory viral infection increases the number of lung-resident T lymphocytes, which enhance cough sensitivity by producing interferon-γ (IFN-γ). It is poorly understood why IFN-γ-secreting T lymphocytes persist for a long time when the respiratory viruses have been removed. METHODS Repeated pulmonary administration of IFN-γ and intraperitoneal injection with different inhibitors were used to study the effects of pulmonary IFN-γ in mice and guinea pigs. RESULTS IFN-γ administration caused the increasing of IFN-γ-secreting T lymphocytes in both lung and blood, followed by the elevated physiological level of IFN-γ in the lung, the airway inflammation and the airway epithelial damage. IFN-γ administration also enhanced the cough sensitivity of guinea pigs. IFN-γ activated the STAT1 and extracellular signal-regulated kinase (ERK) pathways in lung tissues, released IFN-γ-inducible protein 10 (IP-10), and resulted in F-actin accumulation in lung-resident lymphocytes. The CXC chemokine receptor 3 (CXCR3) inhibitor potently suppressed all the IFN-γ-induced inflammatory changes. The STAT1 inhibitor mitigated IFN-γ-secreting T lymphocytes infiltration by inhibiting T lymphocytes proliferation. F-actin accumulation and the ERK1/2 pathway contributed to pulmonary IFN-γ-induced augmentation of the airway inflammation and increasing of IFN-γ-secreting T lymphocytes in blood. CONCLUSIONS High physiological levels of IFN-γ in the lung may cause pulmonary lymphocytic inflammation and cough hypersensitivity by increasing the number of IFN-γ-secreting T lymphocytes through the IP-10 and CXCR3 pathways.
Collapse
Affiliation(s)
- Zheng Deng
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenbin Ding
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fengying Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuirong Shen
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chuqin Huang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kefang Lai
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
13
|
Tracheobronchial-esophageal reflex initiates esophageal hypersensitivity and aggravates cough hyperreactivity in guinea pigs with esophageal acid infusion. Respir Physiol Neurobiol 2022; 301:103890. [PMID: 35358761 DOI: 10.1016/j.resp.2022.103890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/13/2022] [Accepted: 03/17/2022] [Indexed: 11/24/2022]
Abstract
Esophageal-tracheobronchial reflex is considered the main mechanism underlying cough due to gastroesophageal reflux, and is associated with esophageal hypersensitivity. We hypothesized that tracheobronchial-esophageal reflex may also exist, and may be related to esophageal hypersensitivity. To test this hypothesis, conscious and ether-anesthetized guinea pigs were subjected to repetitive capsaicin inhalation to establish models of cough (conscious) and cough-free (anesthetized) airway injury, respectively, followed by esophageal acid infusion. Recurrent capsaicin inhalation induced similar cough hyperreactivity to inhaled capsaicin after esophageal acid infusion in guinea pigs with cough and guinea pigs with cough-free airway injury during recurrent capsaicin inhalation. Cough hyperreactivity, along with overexpression of transient receptor potential vanilloid 1 (TRPV1) receptors in esophageal mucosa and in nerve fibers of tracheal mucosa of guinea pigs were blocked by pretreatment with esophageal infusion of capsazepine, but not atropine. Thus, recurrent airway nociceptive stimuli induce esophageal hyperreactivity via a tracheobronchial-esophageal reflex mediated by vagal C afferents expressing TRPV1, and enhance cough due to reflux.
Collapse
|
14
|
Gao R, Xu X, Wang S, Pu J, Shi C, Wen S, Zhu Y, Tang J, Wang X, Yu L. The efficacy of gabapentin for the treatment of refractory cough associated with interstitial lung disease: study protocol for a randomized, double-blind and placebo-controlled clinical trial. Trials 2022; 23:165. [PMID: 35189953 PMCID: PMC8862465 DOI: 10.1186/s13063-022-06059-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/27/2022] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Gabapentin, a neurotransmitter modulator, is thought to treat refractory cough associated with interstitial lung disease by improving cough hypersensitivity. METHODS/DESIGN This is a single-center, prospective, randomized, double-blind, placebo-controlled trial. The trial will investigate the effect of a 10-week course of oral gabapentin 900 mg/day on refractory cough associated with interstitial lung disease (ILD) and explore the possible mechanisms involved in improving cough symptoms. A total of 84 individuals will be randomized in a 1:1 ratio to two treatment groups and will be followed for a total of 14 weeks from the first dose. The primary endpoint of the study will be the change in cough symptom scores at 14 weeks. The secondary endpoints include the change in Leicester Quality of Life Questionnaire (LCQ), Gastroesophageal Reflux Disease Questionnaire (Gerd Q), and Hull Airway Reflux Questionnaire (HARQ) scores; cough sensitivity (C2 and C5) values; and safety. DISCUSSION This study will be the first randomized, controlled clinical trial to investigate gabapentin for the treatment of refractory cough associated with interstitial lung disease and provide data on efficacy, safety, and quality of life. If the study confirms that gabapentin is effective in improving refractory cough associated with interstitial lung disease, it will indicate that a deeper understanding of its mechanisms may reveal new therapeutic targets. TRIAL REGISTRATION Chinese Clinical Trial Registry ChiCTR2100045202 . Registered on 8 April 2021, www.chictr.org.cn.
Collapse
Affiliation(s)
- Ronglin Gao
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai, 200065 China
| | - Xianghuai Xu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai, 200065 China
| | - Shengyuan Wang
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai, 200065 China
| | - Jincheng Pu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai, 200065 China
| | - Cuiqin Shi
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai, 200065 China
| | - Siwan Wen
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai, 200065 China
| | - Yiqing Zhu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai, 200065 China
| | - Jianping Tang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai, 200065 China
| | - Xuan Wang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai, 200065 China
| | - Li Yu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai, 200065 China
| |
Collapse
|
15
|
Liang H, Ye W, Wang Z, Liang J, Yi F, Jiang M, Lai K. Prevalence of chronic cough in China: a systematic review and meta-analysis. BMC Pulm Med 2022; 22:62. [PMID: 35151307 PMCID: PMC8840780 DOI: 10.1186/s12890-022-01847-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022] Open
Abstract
Background Individual studies have indicated variable prevalence for chronic cough, but thus far, there has been no systematic report on the prevalence of this condition. Methods In this study, we performed a systematic review and meta-analysis by searching databases including PubMed, Cochrane Library, Web of Science, China National Knowledge Infrastructure, Chinese biomedical literature service system, Wanfang Database, and VIP database, for studies on chronic cough in China published before December 28, 2020. A random effects model was used to calculate pooled prevalence estimates with 95% confidence interval [95%CI], weighted by study size. Results Fifteen studies with 141,114 community-based adults were included in the study, showing a prevalence of 6.22% (95% CI 5.03–7.41%). And 21 studies with 164,280 community-based children were included, presenting a prevalence of 7.67% (95% CI 6.24–9.11%). In subgroup meta-analyses, the prevalence in adults was 4.38% (95% CI 2.74–6.02%) in southern China and 8.70% (95% CI 6.52–10.88%) in northern China. In the children population, the prevalence in northern China was also higher than in southern China (northern vs. southern: 7.45% with a 95% CI of 5.50–9.41%, vs. 7.86% with a 95% CI of 5.56–10.16%). Conclusions Our population-based study provides relatively reliable data on the prevalence of chronic cough in China and may help the development of global strategies for chronic cough management. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-01847-w.
Collapse
|
16
|
Romanova J, Rydlovskaya A, Mochalov S, Proskurina O, Gorokh Y, Nebolsin V. The Effect of Anti-Chemokine Oral Drug XC8 on Cough Triggered by The Agonists of TRPA1 But Not TRPV1 Channels in Guinea Pigs. Pulm Ther 2022; 8:105-122. [PMID: 35133638 PMCID: PMC8824739 DOI: 10.1007/s41030-022-00183-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/14/2022] [Indexed: 01/09/2023] Open
Abstract
Introduction Chronic cough heavily affects patients’ quality of life, and there are no effective licensed therapies available. Cough is a complication of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) infection, asthma, and other diseases. Patients with various diseases have a different profile of tussive responses to diverse cough triggers, thereby suggesting sundry mechanisms of neuronal dysfunctions. Previously, we demonstrated that the small molecule drug XC8 shows a clinical anti-asthmatic effect. The objective of the present study was to investigate the effect of XC8 on cough. Methods We studied the antitussive effect of XC8 on cough induced by agonists activating human transient receptor potential (TRP) cation channels TRPA1 or TRPV1 in guinea pigs. We checked the agonistic/antagonistic activity of XC8 on the human cation channels TRPA1, TRPV1, TRPM8, P2X purinoceptor 2 (P2X2), and human acid sensing ion channel 3 (hASIC3) in Fluorescent Imaging Plate Reader (FLIPR) assay. Results XC8 demonstrated clear antitussive activity and dose-dependently inhibited cough in guinea pigs induced by citric acid alone (up to 67.1%) or in combination with IFN-γ (up to 76.4%). XC8 suppressed cough reflexes induced by the repeated inhalation of citric acid (up to 80%) or by cinnamaldehyde (up to 60%). No activity of XC8 against cough evoked by capsaicin was revealed. No direct agonistic/antagonistic activity of XC8 on human TRPA1, TRPV1, TRPM8, P2X2, or hASIC3 was detected. Conclusions XC8 acts against cough evoked by the activation of TRPA1 (citric acid/cinnamaldehyde) but not TRPV1 (capsaicin) channels. XC8 inhibits the cough reflex and suppresses the cough potentiation by IFN-γ. XC8 might be of significant therapeutic value for patients suffering from chronic cough associated with inflammation.
Collapse
Affiliation(s)
- Julia Romanova
- Pharmenterprises LLC, 42 Bolshoj Blvd., Building 1, office 771, 772, Skolkovo Innovation Centre, Moscow, 121205, Russian Federation.
| | - Anastasia Rydlovskaya
- Pharmenterprises LLC, 42 Bolshoj Blvd., Building 1, office 771, 772, Skolkovo Innovation Centre, Moscow, 121205, Russian Federation
| | - Stepan Mochalov
- Pharmenterprises LLC, 42 Bolshoj Blvd., Building 1, office 771, 772, Skolkovo Innovation Centre, Moscow, 121205, Russian Federation
| | - Oxana Proskurina
- Pharmenterprises LLC, 42 Bolshoj Blvd., Building 1, office 771, 772, Skolkovo Innovation Centre, Moscow, 121205, Russian Federation
| | - Yulia Gorokh
- Pharmenterprises LLC, 42 Bolshoj Blvd., Building 1, office 771, 772, Skolkovo Innovation Centre, Moscow, 121205, Russian Federation
| | - Vladimir Nebolsin
- Pharmenterprises LLC, 42 Bolshoj Blvd., Building 1, office 771, 772, Skolkovo Innovation Centre, Moscow, 121205, Russian Federation
| |
Collapse
|
17
|
Sun J, Zhan C, Deng Z, Luo W, Chen Q, Jiang M, Zhong N, Lai K. Expression of interferon-γ and its effect on cough hypersensitivity in chronic refractory cough patients. Thorax 2022; 77:621-624. [PMID: 34996851 DOI: 10.1136/thoraxjnl-2021-218403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/07/2021] [Indexed: 11/03/2022]
Abstract
Chronic refractory cough (CRC) is characterised by cough hypersensitivity. Interferon-γ (IFN-γ) has been reported to induce calcium influx, action potentials of vagal neurons in vitro and cough response in guinea pigs. While the effect of IFN-γ in CRC patients remains unknown. Here, via flow-cytometry and inhalation cough challenge, we found CRC patients had significantly increased levels of sputum IFN-γ+CD4+ T cells, IFN-γ+CD8+ T cells as well as supernatant of IFN-γ. The average number of coughs in CRC patients increased as the concentration of inhaled IFN-γ went up in IFN-γ cough challenge. Two or more coughs and five or more coughs elicited by inhaled IFN-γ in CRC patients occurred in 7 of 10 and 2 of 10, respectively. Preinhaled IFN-γ (100 µg/mL) increased the capsaicin cough sensitivity in CRC patients but not healthy volunteers. Targeting IFN-γ may be a potential effective anti-tussive strategy in CRC patients.
Collapse
Affiliation(s)
- Jiayang Sun
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Respiratory Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Chen Zhan
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zheng Deng
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei Luo
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qiaoli Chen
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mei Jiang
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Nanshan Zhong
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Kefang Lai
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
18
|
Kim YC, Song WJ. Neuro-Immune Interactions and IFN-γ in Post-Infectious Cough. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2022; 14:581-584. [DOI: 10.4168/aair.2022.14.6.581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Young-Chan Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Woo-Jung Song
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
19
|
Verzele NAJ, Chua BY, Law CW, Zhang A, Ritchie ME, Wightman O, Edwards IN, Hulme KD, Bloxham CJ, Bielefeldt-Ohmann H, Trewella MW, Moe AAK, Chew KY, Mazzone SB, Short KR, McGovern AE. The impact of influenza pulmonary infection and inflammation on vagal bronchopulmonary sensory neurons. FASEB J 2021; 35:e21320. [PMID: 33660333 DOI: 10.1096/fj.202001509r] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/20/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022]
Abstract
Influenza A virus (IAV) is rapidly detected in the airways by the immune system, with resident parenchymal cells and leukocytes orchestrating viral sensing and the induction of antiviral inflammatory responses. The airways are innervated by heterogeneous populations of vagal sensory neurons which also play an important role in pulmonary defense. How these neurons respond to IAV respiratory infection remains unclear. Here, we use a murine model to provide the first evidence that vagal sensory neurons undergo significant transcriptional changes following a respiratory IAV infection. RNA sequencing on vagal sensory ganglia showed that IAV infection induced the expression of many genes associated with an antiviral and pro-inflammatory response and this was accompanied by a significant increase in inflammatory cell recruitment into the vagal ganglia. Assessment of gene expression in single-vagal sensory neurons confirmed that IAV infection induced a neuronal inflammatory phenotype, which was most prominent in bronchopulmonary neurons, and also evident in some neurons innervating other organs. The altered transcriptome could be mimicked by intranasal treatment with cytokines and the lung homogenates of infected mice, in the absence of infectious virus. These data argue that IAV pulmonary infection and subsequent inflammation induces vagal sensory ganglia neuroinflammation and this may have important implications for IAV-induced morbidity.
Collapse
Affiliation(s)
- Nathalie A J Verzele
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Brendon Y Chua
- The Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
| | - Charity W Law
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Albert Zhang
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Matthew E Ritchie
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Oliver Wightman
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Isaac N Edwards
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Katina D Hulme
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Conor J Bloxham
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
| | - Matthew W Trewella
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Aung Aung Kywe Moe
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Keng Yih Chew
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Stuart B Mazzone
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
| | - Alice E McGovern
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
20
|
Song WJ, Hui CKM, Hull JH, Birring SS, McGarvey L, Mazzone SB, Chung KF. Confronting COVID-19-associated cough and the post-COVID syndrome: role of viral neurotropism, neuroinflammation, and neuroimmune responses. THE LANCET. RESPIRATORY MEDICINE 2021; 9:533-544. [PMID: 33857435 PMCID: PMC8041436 DOI: 10.1016/s2213-2600(21)00125-9] [Citation(s) in RCA: 192] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/15/2021] [Accepted: 02/21/2021] [Indexed: 01/08/2023]
Abstract
Cough is one of the most common presenting symptoms of COVID-19, along with fever and loss of taste and smell. Cough can persist for weeks or months after SARS-CoV-2 infection, often accompanied by chronic fatigue, cognitive impairment, dyspnoea, or pain-a collection of long-term effects referred to as the post-COVID syndrome or long COVID. We hypothesise that the pathways of neurotropism, neuroinflammation, and neuroimmunomodulation through the vagal sensory nerves, which are implicated in SARS-CoV-2 infection, lead to a cough hypersensitivity state. The post-COVID syndrome might also result from neuroinflammatory events in the brain. We highlight gaps in understanding of the mechanisms of acute and chronic COVID-19-associated cough and post-COVID syndrome, consider potential ways to reduce the effect of COVID-19 by controlling cough, and suggest future directions for research and clinical practice. Although neuromodulators such as gabapentin or opioids might be considered for acute and chronic COVID-19 cough, we discuss the possible mechanisms of COVID-19-associated cough and the promise of new anti-inflammatories or neuromodulators that might successfully target both the cough of COVID-19 and the post-COVID syndrome.
Collapse
Affiliation(s)
- Woo-Jung Song
- Department of Allergy and Clinical Immunology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | | | - James H Hull
- Department of Respiratory Medicine, Royal Brompton and Harefield NHS Trust, London, UK
| | - Surinder S Birring
- Centre for Human & Applied Physiological Sciences, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Lorcan McGarvey
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Stuart B Mazzone
- Department of Anatomy and Physiology, University of Melbourne, VIC, Australia
| | - Kian Fan Chung
- Department of Respiratory Medicine, Royal Brompton and Harefield NHS Trust, London, UK; Experimental Studies Unit, National Heart & Lung Institute, Imperial College London, UK.
| |
Collapse
|
21
|
Shapiro CO, Proskocil BJ, Oppegard LJ, Blum ED, Kappel NL, Chang CH, Fryer AD, Jacoby DB, Costello RW, Drake MG. Airway Sensory Nerve Density Is Increased in Chronic Cough. Am J Respir Crit Care Med 2021; 203:348-355. [PMID: 32809840 DOI: 10.1164/rccm.201912-2347oc] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Rationale: Chronic cough is characterized by frequent urges to cough and a heightened sensitivity to inhaled irritants. Airway sensory nerves trigger cough. We hypothesized that sensory nerve density is increased in chronic cough, which may contribute to excessive and persistent coughing.Objectives: To measure airway nerve density (axonal length) and complexity (nerve branching, neuropeptide expression) in humans with and without chronic cough.Methods: Bronchoscopic human airway biopsies were immunolabeled for nerves and the sensory neuropeptide substance P. Eosinophil peroxidase was also quantified given previous reports showing associations between eosinophils and nerve density. Three-dimensional image z-stacks of epithelium and subepithelium were generated using confocal microscopy, and from these z-stacks, total nerve length, the number of nerve branch points, substance P expression, and eosinophil peroxidase were quantified within each airway compartment.Measurements and Main Results: Nerve length and the number of branch points were significantly increased in epithelium, but not subepithelium, in chronic cough compared with healthy airways. Substance P expression was scarce and was similar in chronic cough and healthy airways. Nerve length and branching were not associated with eosinophil peroxidase nor with demographics such as age and sex in either group.Conclusions: Airway epithelial sensory nerve density is increased in chronic cough, suggesting sensory neuroplasticity contributes to cough hypersensitivity.
Collapse
Affiliation(s)
- Clare O Shapiro
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon; and
| | - Becky J Proskocil
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon; and
| | - Laura J Oppegard
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon; and
| | - Emily D Blum
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon; and
| | - Nicole L Kappel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon; and
| | - Christopher H Chang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon; and
| | - Allison D Fryer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon; and
| | - David B Jacoby
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon; and
| | - Richard W Costello
- Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Matthew G Drake
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon; and
| |
Collapse
|
22
|
Pan X, Li R, Guo H, Zhang W, Xu X, Chen X, Ding L. Dihydropyridine Calcium Channel Blockers Suppress the Transcription of PD-L1 by Inhibiting the Activation of STAT1. Front Pharmacol 2021; 11:539261. [PMID: 33519429 PMCID: PMC7838064 DOI: 10.3389/fphar.2020.539261] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 11/30/2020] [Indexed: 12/31/2022] Open
Abstract
Programmed death ligand 1 (PD-L1) which is upregulated in various epithelial tumors, plays a central role in the evasion of the immune system. In addition to monoclonal antibodies that blocking PD1/PD-L1 axis, finding small molecule compounds that can suppress PD-L1 expression might be another substitutable strategy for PD1/PD-L1 based therapy. Here, we found that dihydropyridine calcium channel blockers dose-dependently reduced the expression of PD-L1, both in the cytoplasm and cell surface. IFNγ induced PD-L1 transcription was consistently suppressed by Lercanidipine in 24 h, whereas, the half-life of PD-L1 protein was not significantly affected. IFNγ trigged significant STAT1 phosphorylation, which was eliminated by Lercanidipine. Similarly, STAT1 phosphorylation could also be abolished by extracellular calcium chelating agent EGTA and intracellular calcium chelator BAPTA-AM. Furthermore, Lercanidipine enhanced killing ability of T cells by down-regulating PD-L1. Taken together, our studies suggest that calcium signal is a crucial factor that mediates the transcription of PD-L1 and regulation of calcium can be used as a potential strategy for PD-L1 inhibition.
Collapse
Affiliation(s)
- Xiaohui Pan
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Run Li
- The Second Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongjie Guo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Wenxin Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaqing Xu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xi Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ling Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Dicpinigaitis PV, Canning BJ. Is There (Will There Be) a Post-COVID-19 Chronic Cough? Lung 2020; 198:863-865. [PMID: 33188436 PMCID: PMC7665087 DOI: 10.1007/s00408-020-00406-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Peter V Dicpinigaitis
- Albert Einstein College of Medicine and Montefiore Medical Center, 1825 Eastchester Road, Bronx, NY, 10461, USA.
| | | |
Collapse
|
24
|
Patil MJ, Ru F, Sun H, Wang J, Kolbeck RR, Dong X, Kollarik M, Canning BJ, Undem BJ. Acute activation of bronchopulmonary vagal nociceptors by type I interferons. J Physiol 2020; 598:5541-5554. [PMID: 32924209 DOI: 10.1113/jp280276] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Type I interferon receptors are expressed by the majority of vagal C-fibre neurons innervating the respiratory tract Interferon alpha and beta acutely and directly activate vagal C-fibers in the airways. The interferon-induced activation of C-fibers occurs secondary to stimulation of type 1 interferon receptors Type 1 interferons may contribute to the symptoms as well as the spread of respiratory viral infections by causing coughing and other defensive reflexes associated with vagal C-fibre activation ABSTRACT: We evaluated the ability of type I interferons to acutely activate airway vagal afferent nerve terminals in mouse lungs. Using single cell RT-PCR of lung-specific vagal neurons we found that IFNAR1 and IFNAR2 were expressed in 70% of the TRPV1-positive neurons (a marker for vagal C-fibre neurons) and 44% of TRPV1-negative neurons. We employed an ex vivo vagal innervated mouse trachea-lung preparation to evaluate the effect of interferons in directly activating airway nerves. Utilizing 2-photon microscopy of the nodose ganglion neurons from Pirt-Cre;R26-GCaMP6s mice we found that applying IFNα or IFNβ to the lungs acutely activated the majority of vagal afferent nerve terminals. When the type 1 interferon receptor, IFNAR1, was blocked with a blocking antibody the response to IFNβ was largely inhibited. The type 2 interferon, IFNγ, also activated airway nerves and this was not inhibited by the IFNAR1 blocking antibody. The Janus kinase inhibitor GLPG0634 (1 μm) virtually abolished the nerve activation caused by IFNβ. Consistent with the activation of vagal afferent C-fibers, infusing IFNβ into the mouse trachea led to defensive breathing reflexes including apneas and gasping. These reflexes were prevented by pretreatment with an IFN type-1 receptor blocking antibody. Finally, using whole cell patch-clamp electrophysiology of lung-specific neurons we found that IFNβ (1000 U ml-1 ) directly depolarized the membrane potential of isolated nodose neurons, in some cases beyond to action potential threshold. This acute non-genomic activation of vagal sensory nerve terminals by interferons may contribute to the incessant coughing that is a hallmark of respiratory viral infections.
Collapse
Affiliation(s)
- Mayur J Patil
- The Johns Hopkins School of Medicine Departments of Medicine, Baltimore, MD
| | - Fei Ru
- The Johns Hopkins School of Medicine Departments of Medicine, Baltimore, MD
| | - Hui Sun
- The Johns Hopkins School of Medicine Departments of Medicine, Baltimore, MD
| | - Jingya Wang
- AstraZeneca BioPharmaceuticals R&D Gaithersburg, MD
| | | | - Xinzhong Dong
- The Johns Hopkins School of Medicine Departments of Neuroscience, Baltimore, MD
| | - Marian Kollarik
- The Johns Hopkins School of Medicine Departments of Medicine, Baltimore, MD
| | - Brendan J Canning
- The Johns Hopkins School of Medicine Departments of Medicine, Baltimore, MD
| | - Bradley J Undem
- The Johns Hopkins School of Medicine Departments of Medicine, Baltimore, MD
| |
Collapse
|
25
|
Singh N, Driessen AK, McGovern AE, Moe AAK, Farrell MJ, Mazzone SB. Peripheral and central mechanisms of cough hypersensitivity. J Thorac Dis 2020; 12:5179-5193. [PMID: 33145095 PMCID: PMC7578480 DOI: 10.21037/jtd-2020-icc-007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chronic cough is a difficult to treat symptom of many respiratory and some non-respiratory diseases, indicating that varied pathologies can underpin the development of chronic cough. However, clinically and experimentally it has been useful to collate these different pathological processes into the single unifying concept of cough hypersensitivity. Cough hypersensitivity syndrome is reflected by troublesome cough often precipitated by levels of stimuli that ordinarily don't cause cough in healthy people, and this appears to be a hallmark feature in many patients with chronic cough. Accordingly, a strong argument has emerged that changes in the excitability and/or normal regulation of the peripheral and central neural circuits responsible for cough are instrumental in establishing cough hypersensitivity and for causing excessive cough in disease. In this review, we explore the current peripheral and central neural mechanisms that are believed to be involved in altered cough sensitivity and present possible links to the mechanism of action of novel therapies that are currently undergoing clinical trials for chronic cough.
Collapse
Affiliation(s)
- Nabita Singh
- Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Australia
| | - Alexandria K. Driessen
- Department of Anatomy and Neuroscience, School of Biomedical Science, The University of Melbourne, Parkville, Australia
| | - Alice E. McGovern
- Department of Anatomy and Neuroscience, School of Biomedical Science, The University of Melbourne, Parkville, Australia
| | - Aung Aung Kywe Moe
- Department of Anatomy and Neuroscience, School of Biomedical Science, The University of Melbourne, Parkville, Australia
| | - Michael J. Farrell
- Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Australia
- Monash Biomedical Imaging, Monash University, Clayton, Australia
| | - Stuart B. Mazzone
- Department of Anatomy and Neuroscience, School of Biomedical Science, The University of Melbourne, Parkville, Australia
| |
Collapse
|
26
|
Zhang L, Cui M, Chen S. Identification of the Molecular Mechanisms of Peimine in the Treatment of Cough Using Computational Target Fishing. Molecules 2020; 25:E1105. [PMID: 32131410 PMCID: PMC7179178 DOI: 10.3390/molecules25051105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 01/19/2023] Open
Abstract
Peimine (also known as verticine) is the major bioactive and characterized compound of Fritillariae Thunbergii Bulbus, a traditional Chinese medicine that is most frequently used to relieve a cough. Nevertheless, its molecular targets and mechanisms of action for cough are still not clear. In the present study, potential targets of peimine for cough were identified using computational target fishing combined with manual database mining. In addition, protein-protein interaction (PPI), gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using, GeneMANIA and Database for Annotation, Visualization and Integrated Discovery (DAVID) databases respectively. Finally, an interaction network of drug-targets-pathways was constructed using Cytoscape. The results identified 23 potential targets of peimine associated with cough, and suggested that MAPK1, AKT1 and PPKCB may be important targets of pemine for the treatment of cough. The functional annotations of protein targets were related to the regulation of immunological and neurological function through specific biological processes and related pathways. A visual representation of the multiple targets and pathways that form a network underlying the systematic actions of peimine was generated. In summary, peimine is predicted to exert its systemic pharmacological effects on cough by targeting a network composed of multiple proteins and pathways.
Collapse
Affiliation(s)
- Lihua Zhang
- Department of Food Science, Zhejiang Pharmaceutical College, Ningbo 315000, China;
| | - Mingchao Cui
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical College, Ningbo 315000, China;
| | - Shaojun Chen
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical College, Ningbo 315000, China;
| |
Collapse
|
27
|
Song WJ, Chung KF. Exploring the clinical relevance of cough hypersensitivity syndrome. Expert Rev Respir Med 2020; 14:275-284. [PMID: 31914340 DOI: 10.1080/17476348.2020.1713102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Knowledge of the pathophysiology of cough has continued to advance over recent decades. Establishing anatomic-diagnostic protocols, based on the anatomy and distribution of vagus nerve pathways regulating the cough reflex, was the first breakthrough in modern clinical medicine for chronic cough. The unmet clinical need has prompted revised thinking regarding the pathophysiology of and the clinical approach to chronic cough.Areas covered: The paradigm of cough hypersensitivity syndrome (CHS) has been recently proposed, wherein aberrant neuro-pathophysiology is a common etiology. This review covers major findings on chronic cough and cough hypersensitivity, particularly focused on recently-published studies and explores the clinical relevance and applicability of CHS based on current knowledge and discuss knowledge gaps and future research directions.Expert opinion: This paradigm has provided new opportunities in managing chronic cough and evidence is accumulating to support the validity of CHS. It also warrants the re-appraisal of existing clinical evidence and investigation of how to refine our clinical strategy. While CHS highlights the importance of clinical thinking from the viewpoint of cough, the value of anatomic-diagnostic protocols should remain. Moreover, given the considerable heterogeneity in clinical presentation, cough-associated disease conditions, and treatment responses across different patients, precise molecular endotyping remains key to making further to advancing clinical practice .
Collapse
Affiliation(s)
- Woo-Jung Song
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kian Fan Chung
- National Heart & Lung Institute, Imperial College London & Royal Brompton and Harefield NHS Trust, London, UK
| |
Collapse
|
28
|
Lai K, Long L. Current Status and Future Directions of Chronic Cough in China. Lung 2020; 198:23-29. [PMID: 31912413 DOI: 10.1007/s00408-019-00319-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 12/20/2019] [Indexed: 12/16/2022]
Abstract
Chronic cough is one of the most common complaints for which patients in China seek medical attention. However, there are no nationwide data on the prevalence and socioeconomic burden of chronic cough. Although approximately 50% of Chinese men smoke, the vast majority of patients presenting for evaluation of chronic cough are never smokers. An equal sex distribution and a middle-aged predominance have been observed in the Chinese chronic cough population, despite demonstration of a higher cough reflex sensitivity in females and older patients. The role of air pollution in the distinct age and sex distribution requires further study. In terms of the etiologies of chronic cough in China, cough-variant asthma, upper airway cough syndrome, nonasthmatic eosinophilic bronchitis, and atopic cough are the most common causes, comprising 75.2% to 87.6% of cases across different regions. Chinese Guidelines for Diagnosis and Treatment of Cough were initially published in 2005, and updated in 2009 and 2016. In addition, the China Cough Coalition was established in 2016. Great progress has been made in both cough-related clinical practice and research in recent years, however, there are still challenges ahead. To facilitate optimal management of chronic cough in China, efforts promoting the dissemination and application of published guidelines will be essential, especially in community-based healthcare and in rural regions. As chronic refractory cough has been identified as a huge challenge to clinicians worldwide, continued international cooperation will be essential in optimizing evaluation and management of chronic cough.
Collapse
Affiliation(s)
- Kefang Lai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Rd., Guangzhou, 510120, China.
| | - Li Long
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Rd., Guangzhou, 510120, China
| |
Collapse
|
29
|
Undem BJ, Sun H. Molecular/Ionic Basis of Vagal Bronchopulmonary C-Fiber Activation by Inflammatory Mediators. Physiology (Bethesda) 2020; 35:57-68. [PMID: 31799905 PMCID: PMC6985783 DOI: 10.1152/physiol.00014.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022] Open
Abstract
Stimulation of bronchopulmonary vagal afferent C fibers by inflammatory mediators can lead to coughing, chest tightness, and changes in breathing pattern, as well as reflex bronchoconstriction and secretions. These responses serve a defensive function in healthy lungs but likely contribute to many of the signs and symptoms of inflammatory airway diseases. A better understanding of the mechanisms underlying the activation of bronchopulmonary C-fiber terminals may lead to novel therapeutics that would work in an additive or synergic manner with existing anti-inflammatory strategies.
Collapse
Affiliation(s)
| | - Hui Sun
- Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
30
|
Chung KF. IFN-γ: A Driver of Cough Hypersensitivity Pathways in Chronic Cough? Am J Respir Crit Care Med 2019; 198:827-828. [PMID: 29758165 DOI: 10.1164/rccm.201804-0740ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Kian Fan Chung
- 1 National Heart and Lung Institute Imperial College London London, United Kingdom and.,2 Royal Brompton and Harefield NHS Trust London, United Kingdom
| |
Collapse
|
31
|
Patil MJ, Sun H, Ru F, Meeker S, Undem BJ. Targeting C-fibers for peripheral acting anti-tussive drugs. Pulm Pharmacol Ther 2019; 56:15-19. [PMID: 30872160 DOI: 10.1016/j.pupt.2019.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 01/09/2023]
Abstract
Activation of vagal C-fibers is likely involved in some types of pathological coughing, especially coughing that is associated with airway inflammation. This is because stimulation of vagal C-fibers leads to strong urge to cough sensations, and because C-fiber terminals can be strongly activated by mediators associated with airway inflammation. The most direct manner in which a given mediator can activate a C-fiber terminal is through interacting with its receptor expressed in the terminal membrane. The agonist-receptor interaction then must lead to the opening (or potentially closing) of ion channels that lead to a membrane depolarization. This depolarization is referred to as a generator potential. If, and only if, the generator potential reaches the voltage necessary to activate voltage-gated sodium channels, action potentials are initiated and conducted to the central terminals within the CNS. Therefore, there are three target areas to block the inflammatory mediator induced activation of C-fiber terminals. First, at the level of the mediator-receptor interaction, secondly at the level of the generator potential, and third at the level of the voltage-gated sodium channels. Here we provide a brief overview of each of these therapeutic strategies.
Collapse
Affiliation(s)
- Mayur J Patil
- Department of Medicine, Johns Hopkins University School of Medicine, USA
| | - Hui Sun
- Department of Medicine, Johns Hopkins University School of Medicine, USA
| | - Fei Ru
- Department of Medicine, Johns Hopkins University School of Medicine, USA
| | - Sonya Meeker
- Department of Medicine, Johns Hopkins University School of Medicine, USA
| | - Bradley J Undem
- Department of Medicine, Johns Hopkins University School of Medicine, USA.
| |
Collapse
|
32
|
Turner RD. Cough in pulmonary tuberculosis: Existing knowledge and general insights. Pulm Pharmacol Ther 2019; 55:89-94. [PMID: 30716411 DOI: 10.1016/j.pupt.2019.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/27/2019] [Accepted: 01/30/2019] [Indexed: 12/14/2022]
Abstract
Cough is a prominent symptom of pulmonary tuberculosis (TB), one of the oldest and most prevalent infectious diseases. Coughing probably has a pivotal role in transmission of the causative organism Mycobacterium tuberculosis. Despite this, little research to date has addressed this subject. Current knowledge of the mechanisms of cough in TB and how exactly coughing patterns predict infectiousness is scant, but this is changing. This overview summarises the existing evidence for the infectiousness of cough in TB, clinical correlates, and possible causes of cough in TB. Potential unique characteristics of cough in the disease are discussed, as is treatment and the subjective awareness of coughing in the disease.
Collapse
|
33
|
McGovern AE, Short KR, Kywe Moe AA, Mazzone SB. Translational review: Neuroimmune mechanisms in cough and emerging therapeutic targets. J Allergy Clin Immunol 2018; 142:1392-1402. [DOI: 10.1016/j.jaci.2018.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/12/2018] [Accepted: 09/18/2018] [Indexed: 12/27/2022]
|