1
|
Gutierrez CT, Loizides C, Hafez I, Brostrøm A, Wolff H, Szarek J, Berthing T, Mortensen A, Jensen KA, Roursgaard M, Saber AT, Møller P, Biskos G, Vogel U. Acute phase response following pulmonary exposure to soluble and insoluble metal oxide nanomaterials in mice. Part Fibre Toxicol 2023; 20:4. [PMID: 36650530 PMCID: PMC9843849 DOI: 10.1186/s12989-023-00514-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Acute phase response (APR) is characterized by a change in concentration of different proteins, including C-reactive protein and serum amyloid A (SAA) that can be linked to both exposure to metal oxide nanomaterials and risk of cardiovascular diseases. In this study, we intratracheally exposed mice to ZnO, CuO, Al2O3, SnO2 and TiO2 and carbon black (Printex 90) nanomaterials with a wide range in phagolysosomal solubility. We subsequently assessed neutrophil numbers, protein and lactate dehydrogenase activity in bronchoalveolar lavage fluid, Saa3 and Saa1 mRNA levels in lung and liver tissue, respectively, and SAA3 and SAA1/2 in plasma. Endpoints were analyzed 1 and 28 days after exposure, including histopathology of lung and liver tissues. RESULTS All nanomaterials induced pulmonary inflammation after 1 day, and exposure to ZnO, CuO, SnO2, TiO2 and Printex 90 increased Saa3 mRNA levels in lungs and Saa1 mRNA levels in liver. Additionally, CuO, SnO2, TiO2 and Printex 90 increased plasma levels of SAA3 and SAA1/2. Acute phase response was predicted by deposited surface area for insoluble metal oxides, 1 and 28 days post-exposure. CONCLUSION Soluble and insoluble metal oxides induced dose-dependent APR with different time dependency. Neutrophil influx, Saa3 mRNA levels in lung tissue and plasma SAA3 levels correlated across all studied nanomaterials, suggesting that these endpoints can be used as biomarkers of acute phase response and cardiovascular disease risk following exposure to soluble and insoluble particles.
Collapse
Affiliation(s)
- Claudia Torero Gutierrez
- grid.5254.60000 0001 0674 042XSection of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark ,grid.418079.30000 0000 9531 3915National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Charis Loizides
- grid.426429.f0000 0004 0580 3152Atmosphere and Climate Research Centre, The Cyprus Institute, Nicosia, Cyprus
| | - Iosif Hafez
- grid.426429.f0000 0004 0580 3152Atmosphere and Climate Research Centre, The Cyprus Institute, Nicosia, Cyprus
| | - Anders Brostrøm
- grid.5170.30000 0001 2181 8870National Centre for Nano Fabrication and Characterization, Technical University of Denmark, Copenhagen, Denmark
| | - Henrik Wolff
- grid.6975.d0000 0004 0410 5926Finnish Institute of Occupational Health, Helsinki, Finland
| | - Józef Szarek
- grid.412607.60000 0001 2149 6795Department of Pathophysiology, Forensic Veterinary Medicine and Administration, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Trine Berthing
- grid.418079.30000 0000 9531 3915National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Alicja Mortensen
- grid.418079.30000 0000 9531 3915National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Keld Alstrup Jensen
- grid.418079.30000 0000 9531 3915National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Martin Roursgaard
- grid.5254.60000 0001 0674 042XSection of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Anne Thoustrup Saber
- grid.418079.30000 0000 9531 3915National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Peter Møller
- grid.5254.60000 0001 0674 042XSection of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - George Biskos
- grid.426429.f0000 0004 0580 3152Atmosphere and Climate Research Centre, The Cyprus Institute, Nicosia, Cyprus ,grid.5292.c0000 0001 2097 4740Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, The Netherlands
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark.
| |
Collapse
|
2
|
Chemistry and lung toxicity of particulate matter emitted from firearms. Sci Rep 2022; 12:20722. [PMID: 36456643 PMCID: PMC9715551 DOI: 10.1038/s41598-022-24856-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
Smoke emissions produced by firearms contain hazardous chemicals, but little is known if their properties change depending on firearm and ammunition type and whether such changes affect toxicity outcomes. Pulmonary toxicity was assessed in mice exposed by oropharyngeal aspiration to six different types of smoke-related particulate matter (PM) samples; (1) handgun PM, (2) rifle PM, (3) copper (Cu) particles (a surrogate for Cu in the rifle PM) with and without the Cu chelator penicillamine, (4) water-soluble components of the rifle PM, (5) soluble components with removal of metal ions, and (6) insoluble components of the rifle PM. Gun firing smoke PM was in the respirable size range but the chemical composition varied with high levels of Pb in the handgun and Cu in the rifle smoke. The handgun PM did not induce appreciable lung toxicity at 4 and 24 h post-exposure while the rifle PM significantly increased lung inflammation and reduced lung function. The same levels of pure Cu particles alone and the soluble components from the rifle fire PM increased neutrophil numbers but did not cause appreciable cellular damage or lung function changes when compared to the negative (saline) control. Penicillamine treated rifle PM or Cu, slightly reduced lung inflammation and injury but did not improve the lung function decrements. Chelation of the soluble metal ions from the rifle fire PM neutralized the lung toxicity while the insoluble components induced the lung toxicity to the same degree as the rifle PM. The results show that different firearm types can generate contrasting chemical spectra in their emissions and that the rifle PM effects were mostly driven by water-insoluble components containing high levels of Cu. These findings provide better knowledge of hazardous substances in gun firing smoke and their potential toxicological profile.
Collapse
|
3
|
Airborne and Dermal Collection Methods of Gunshot Residue for Toxicity Studies. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Gunshot residue (GSR) has potential negative health effects on humans as a result of inhalation and dermal exposure to the chemical and physical characteristics of GSR such as Pb, Sb, Ba, nitrocellulose, nitroglycerine, and particulate size fraction. Filter (size selective) and double-sided tape (non-size selective) samples collected airborne GSR during single and triple firing of a 0.22 caliber revolver. Dermal exposures were considered using hand swabs and de-leading wipes, designed to remove the heavy metals. The samples underwent analysis to investigate physical (morphology, size distribution, zeta potential), chemical (black carbon and element concentrations), and potential to induce oxidative stress (oxidative potential via the dithiothreitol (DTT) assay). All sample types detected Pb concentrations higher than national ambient air standards. The de-leading wipes reduced the metal content on the hands of the shooter for Pb (15.57 ± 12.99 ppb and 3.13 ± 4.95 ppb). Filter samples provided health relevant data for airborne PM2.5 for all of the analysis methods except for GSR morphology. This work identified collection and analysis methods for GSR in an outdoor setting, providing protocols and considerations for future toxicological studies related to inhalation and dermal exposures to particulate GSR. Future studies should investigate the influence of meteorological factors on GSR exposure in an outdoor setting.
Collapse
|
4
|
Skalny AV, Aschner M, Bobrovnitsky IP, Chen P, Tsatsakis A, Paoliello MMB, Buha Djordevic A, Tinkov AA. Environmental and health hazards of military metal pollution. ENVIRONMENTAL RESEARCH 2021; 201:111568. [PMID: 34174260 DOI: 10.1016/j.envres.2021.111568] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
An increasing body of literature has demonstrated that armed conflicts and military activity may contribute to environmental pollution with metals, although the existing data are inconsistent. Therefore, in this paper, we discuss potential sources of military-related metal emissions, environmental metal contamination, as well as routes of metal exposure and their health hazards in relation to military activities. Emission of metals into the environment upon military activity occurs from weapon residues containing high levels of particles containing lead (Pb; leaded ammunition), copper (Cu; unleaded), and depleted uranium (DU). As a consequence, military activity results in soil contamination with Pb and Cu, as well as other metals including Cd, Sb, Cr, Ni, Zn, with subsequent metal translocation to water, thus increasing the risk of human exposure. Biomonitoring studies have demonstrated increased accumulation of metals in plants, invertebrates, and vertebrate species (fish, birds, mammals). Correspondingly, military activity is associated with human metal exposure that results from inhalation or ingestion of released particles, as well as injuries with subsequent metal release from embedded fragments. It is also notable that local metal accumulation following military injury may occur even without detectable fragments. Nonetheless, data on health effects of military-related metal exposures have yet to be systematized. The existing data demonstrate adverse neurological, cardiovascular, and reproductive outcomes in exposed military personnel. Moreover, military-related metal exposures also result in adverse neurodevelopmental outcome in children living within adulterated territories. Experimental in vivo and in vitro studies also demonstrated toxic effects of specific metals as well as widely used metal alloys, although laboratory data report much wider spectrum of adverse effects as compared to epidemiological studies. Therefore, further epidemiological, biomonitoring and laboratory studies are required to better characterize military-related metal exposures and their underlying mechanisms of their adverse toxic effects.
Collapse
Affiliation(s)
- Anatoly V Skalny
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; KG Razumovsky Moscow State University of Technologies and Management, Moscow, Russia
| | - Michael Aschner
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Igor P Bobrovnitsky
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Centre for Strategic Planning of FMBA of Russia, Moscow, Russia
| | - Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aristidis Tsatsakis
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Laboratory of Toxicology, Medical School, University of Crete, Voutes, Heraklion, Crete, Greece
| | - Monica M B Paoliello
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aleksandra Buha Djordevic
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, Russia.
| |
Collapse
|
5
|
Elfsmark L, Ekstrand-Hammarström B, Forsgren N, Lejon C, Hägglund L, Wingfors H. Characterization of toxicological effects of complex nano-sized metal particles using in vitro human cell and whole blood model systems. J Appl Toxicol 2021; 42:203-215. [PMID: 34050537 DOI: 10.1002/jat.4202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/27/2021] [Accepted: 05/10/2021] [Indexed: 11/07/2022]
Abstract
Metal oxide fumes form at high temperatures, for instance, during welding or firing ammunition. Inhalation exposure to high levels of airborne metal oxide particles can cause metal fume fever, cardiovascular effects, and lung damage in humans, but the associated underlying pathological mechanisms are still not fully understood. Using human alveolar epithelial cells, vascular endothelial cells, and whole blood model systems, we aimed to elucidate the short-term effects of well-characterized metal particles emitted while firing pistol ammunition. Human lung epithelial cells exposed to gunshot smoke particles (0.1-50 μg/ml) produced reactive oxygen species (ROS) and pro-inflammatory cytokines (interleukin 8 (IL-8), granulocyte-macrophage colony-stimulating factor (GM-CSF)) that activate and recruit immune cells. Particles comprising high copper (Cu) and zinc (Zn) content activated human endothelial cells via a non-ROS-mediated mechanism that triggered immune activation (IL-8, GM-CSF), leukocyte adhesion to the endothelium (soluble intercellular adhesion molecule 1 (sICAM-1)), and secretion of regulators of the acute-phase protein synthesis (interleukin 6 (IL-6)). In human whole blood, metal oxides in gunshot smoke demonstrated intrinsic properties that activated platelets (release of soluble cluster of differentiation 40 ligand (sCD40L), platelet-derived growth factor B-chain homodimer(PDGF-BB), and vascular endothelial growth factor A (VEGF-A)) and blood coagulation and induced concomitant release of pro-inflammatory cytokines from blood leukocytes that further orchestrate thrombogenesis. The model systems applied provide useful tools for health risk assessment of particle exposures, but more studies are needed to further elucidate the mechanisms of metal fume fever and to evaluate the potential risk of long-term cardiovascular diseases.
Collapse
Affiliation(s)
- Linda Elfsmark
- CBRN Defence and Security, Swedish Defence Research Agency, Umeå, Sweden
| | | | - Nina Forsgren
- CBRN Defence and Security, Swedish Defence Research Agency, Umeå, Sweden
| | - Christian Lejon
- CBRN Defence and Security, Swedish Defence Research Agency, Umeå, Sweden
| | - Lars Hägglund
- CBRN Defence and Security, Swedish Defence Research Agency, Umeå, Sweden
| | - Håkan Wingfors
- CBRN Defence and Security, Swedish Defence Research Agency, Umeå, Sweden
| |
Collapse
|
6
|
Toxic effects of gunshot fumes from different ammunitions for small arms on lung cells exposed at the air liquid interface. Toxicol In Vitro 2021; 72:105095. [DOI: 10.1016/j.tiv.2021.105095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/18/2020] [Accepted: 01/11/2021] [Indexed: 12/26/2022]
|
7
|
Aurell J, Holder AL, Gullett BK, McNesby K, Weinstein JP. Characterization of M4 carbine rifle emissions with three ammunition types. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:112982. [PMID: 31554143 PMCID: PMC7369134 DOI: 10.1016/j.envpol.2019.112982] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/02/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
Muzzle emissions from firing an M4 carbine rifle in a semi-enclosed chamber were characterized for an array of compounds to provide quantitative data for future studies on potential inhalation exposure and rangeland contamination. Air emissions were characterized for particulate matter (PM) size distribution, composition, and morphology; carbon monoxide (CO); carbon dioxide (CO2); energetics; metals; polycyclic aromatic hydrocarbons; and methane. Three types of ammunition were used: a "Legacy" (Vietnam-era) round, the common M855 round (no longer fielded), and its variant, an M855 round with added potassium (K)-based salts to reduce muzzle flash. Average CO concentrations up to 1500 ppm significantly exceeded CO2 concentrations. Emitted particles were in the respirable size range with mass median diameters between 0.33 and 0.58 μm. PM emissions were highest from the M855 salt-added ammunition, likely due to incomplete secondary combustion in the muzzle blast caused by scavenging of combustion radicals by the K salt. Copper (Cu) had the highest emitted metal concentration for all three round formulations, likely originating from the Cu jacket on the bullet. Based on a mass balance analysis of each round's formulation, lead (Pb) was completely emitted for all three round types. This work demonstrated methods for characterizing emissions from gun firing which can distinguish between round-specific effects and can be used to initiate studies of inhalation risk and environmental deposition.
Collapse
Affiliation(s)
- Johanna Aurell
- University of Dayton Research Institute, 300 College Park, Dayton, OH 45469, USA
| | - Amara L Holder
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory (E343-04), Research Triangle Park, NC 27711, USA
| | - Brian K Gullett
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory (E343-04), Research Triangle Park, NC 27711, USA.
| | - Kevin McNesby
- U.S. Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, MD 20783, USA
| | - Jason P Weinstein
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory (E343-04), Research Triangle Park, NC 27711, USA
| |
Collapse
|
8
|
Tarran R, Ghosh A, Alexis N. Reply to Shields et al.: Electronic Cigarettes and the Lung Proteome. Am J Respir Crit Care Med 2019; 198:1351-1352. [PMID: 30153039 DOI: 10.1164/rccm.201807-1336le] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Robert Tarran
- 1 University of North Carolina at Chapel Hill Chapel Hill, North Carolina
| | - Arunava Ghosh
- 1 University of North Carolina at Chapel Hill Chapel Hill, North Carolina
| | - Neil Alexis
- 1 University of North Carolina at Chapel Hill Chapel Hill, North Carolina
| |
Collapse
|
9
|
Hadrup N, Mielżyńska-Švach D, Kozłowska A, Campisi M, Pavanello S, Vogel U. Association between a urinary biomarker for exposure to PAH and blood level of the acute phase protein serum amyloid A in coke oven workers. Environ Health 2019; 18:81. [PMID: 31477116 PMCID: PMC6721239 DOI: 10.1186/s12940-019-0523-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/23/2019] [Indexed: 05/27/2023]
Abstract
BACKGROUND Coke oven workers are exposed to both free and particle bound PAH. Through this exposure, the workers may be at increased risk of cardiovascular diseases. Systemic levels of acute phase response proteins have been linked to cardiovascular disease in epidemiological studies, suggesting it as a marker of these conditions. The aim of this study was to assess whether there was association between PAH exposure and the blood level of the acute phase inflammatory response marker serum amyloid A (SAA) in coke oven workers. METHODS A total of 87 male Polish coke oven workers from two different plants comprised the study population. Exposure was assessed by means of the individual post-shift urinary excretion of 1-hydroxypyrene, as internal dose of short-term PAH exposure, and by anti-benzo[a]pyrene diolepoxide (anti-B[a]PDE)-DNA), as a biomarker of long-term PAH exposure. Blood levels of acute phase proteins SAA and CRP were measured by immunoassay. C-reactive protein (CRP) levels were included to adjust for baseline levels of SAA. RESULTS Multiple linear regression showed that the major determinants of increased SAA levels were urinary 1-hydroxypyrene (beta = 0.56, p = 0.030) and serum CRP levels (beta = 7.08; p < 0.0001) whereas anti-B[a]PDE-DNA, the GSTM1 detoxifying genotype, diet, and smoking were not associated with SAA levels. CONCLUSIONS Urinary 1-hydroxypyrene as biomarker of short-term PAH exposure and serum levels of CRP were predictive of serum levels of SAA in coke oven workers. Our data suggest that exposure of coke oven workers to PAH can lead to increased systemic acute response and therefore potentially increased risk of cardiovascular disease.
Collapse
Affiliation(s)
- Niels Hadrup
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark
| | - Danuta Mielżyńska-Švach
- Institute of Occupational Medicine and Environmental Health, Sosnowiec, Poland
- Witold Pilecki State School of Higher Education, Nursing Institute, Oświęcim, Poland
| | - Agnieszka Kozłowska
- Witold Pilecki State School of Higher Education, Nursing Institute, Oświęcim, Poland
| | - Manuela Campisi
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Sofia Pavanello
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Ulla Vogel
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark
| |
Collapse
|
10
|
Vogel U, Cassee FR. Editorial: dose-dependent ZnO particle-induced acute phase response in humans warrants re-evaluation of occupational exposure limits for metal oxides. Part Fibre Toxicol 2018; 15:7. [PMID: 29429406 PMCID: PMC5808423 DOI: 10.1186/s12989-018-0247-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 01/22/2018] [Indexed: 02/06/2023] Open
Abstract
Epidemiological studies link inhalation of particles to increased risk of cardiovascular disease. Inhaled particles may induce cardiovascular disease by several different mechanisms including translocation of particles to systemic circulation, activation of airway sensory nerves resulting in autonomic imbalance and particle-induced pulmonary inflammation and acute phase response.The acute phase response is the systemic response to acute and chronic inflammatory states caused by for example bacterial infection, virus infection, trauma and infarction. It is characterized by differential expression of ca. 50 different acute phase proteins including C-reactive protein and Serum amyloid A, which are the most differentially up-regulated acute phase response proteins. Blood levels of these two acute phase proteins are closely associated with risk of cardiovascular disease in epidemiological studies and SAA has been causally related to the formation of plaques in the aorta in animal studies.In a recent paper in Particle and Fibre Toxicology, Christian Monsé et al. provide evidence that inhalation of ZnO nanoparticles induces dose-dependent acute phase response in humans at dose levels well below the current mass-based occupational exposure limits in a number of countries including Germany, The Netherlands, UK, Sweden, Denmark and the US.Given the evidence suggesting a causal relationship between increased levels of serum amyloid A and atherosclerosis, the current results call for a re-evaluation of occupational exposure limits for a number of particle exposures including ZnO taking induction of acute phase response into account. Furthermore, it underscores cardiovascular disease as an occupational disease.
Collapse
Affiliation(s)
- Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark.
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs. Lyngby, Denmark.
| | - Flemming R Cassee
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|