1
|
Büyükbayram G, Yüceer Ö, Oymak FS. The Relationship between Serum Uric Acid Levels and Early Mortality in Chronic Obstructive Pulmonary Disease Cases during Exacerbation. SARCOIDOSIS, VASCULITIS, AND DIFFUSE LUNG DISEASES : OFFICIAL JOURNAL OF WASOG 2022; 39:e2022014. [PMID: 36118541 PMCID: PMC9437757 DOI: 10.36141/svdld.v39i2.12127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 04/09/2022] [Indexed: 06/15/2023]
Abstract
AIM In this study, it was aimed to compare the levels of serum uric acid and uric acid/creatinine ratios in patients with COPD during an attack or in stable COPD, and to show whether serum uric acid and uric acid/creatinine ratios are associated with early mortality in COPD patients during an acute attack. MATERIALS AND METHODS In this study, COPD acute attack (n=155) and stable COPD (n=30) patients were evaluated. The data of these patients were obtained from patient files and computer records. COPD diagnosis and severity assessment were made according to the GOLD 2006 guideline. Participants' age, gender, body mass index, pulmonary function test, arterial blood gas, uric acid, creatinine values and comorbidity information were recorded in the previously prepared Case Data Form. In 2012, when we conducted this study, gold 2006 was taken as the guideline for spirometry measurement, but spirometric measurements determined with reference values determined according to age, height and gender, and FEV1/FVC measurement <70% as diagnostic criteria in acute attack after bronchodilator were the guidelines used later, gold 2017. It is also compatible with gold2020 and gold2021 spirometry criteria. RESULTS It was determined that the uric acid (p<0.001) and uric acid/creatinine (p<0.001) levels of the patients in the acute attack group were significantly higher than the levels of the patients in the stable group. The attack group was divided into two subgroups according to certain cut-off points for uric acid (>6 mg/dl for women and >7 mg/dl for men) and uric acid/creatinine ratio (median value 7.10). Since the upper limit of the uric acid value measured in the blood is 6 mg/dl in women and 7-8 mg/dl in men, the cut-off points for uric acid (>6 mg/dl for women and >7 mg/dl for men) were determined in our study. According to this categorization, it was determined that there was no statistically significant relationship between uric acid level (odds ratio 2.985 [95% confidence interval 0.61814,151]) and early mortality risk. CONCLUSION The results of this study showed that the uric acid and uric acid/creatinine levels in the attack group were higher than the levels in the stable group, but these parameters were not associated with early mortality.
Collapse
Affiliation(s)
| | - Ömer Yüceer
- Niğde Ömer Halis Demir Training and Research Hospital Emergency Service Niğde, Turkey
| | - Fatma Sema Oymak
- Erciyes University, Faculty of Medicine, Internal Medicine, Department of Chest Diseases
| |
Collapse
|
2
|
Masson Silva JB, Tannus Silva DGS, Furtado RG, da Silva Júnior CG, Araújo FA, Costa SDA, Marra da Madeira Freitas E, Rassi DDC, Rabahi MF, Rassi S. Correlation Between 2D Strain and Classic Echocardiographic Indices in the Diagnosis of Right Ventricular Dysfunction in COPD. Int J Chron Obstruct Pulmon Dis 2021; 16:1967-1976. [PMID: 34234427 PMCID: PMC8254030 DOI: 10.2147/copd.s290957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 05/04/2021] [Indexed: 12/26/2022] Open
Abstract
Purpose This study aims to define which of the right ventricular myocardial deformation indices best correlates with the classic echocardiographic measurements and indices of right ventricular (RV) dysfunction in patients with stable chronic obstructive pulmonary disease (COPD). Patients and Methods Ninety-one patients with stable COPD underwent clinical evaluation, spirometry, a 6-minute walk test, and echocardiographic examination. Patients were divided into two groups: “with RV dysfunction” (≥1 classic parameter) and “without RV dysfunction”. We used speckle tracking to estimate myocardial deformation. For all analyses, results were considered significant if p < 0.05. Results The mean age across all participants was 65 ± 9 years, with 53% (48/91) being male. Patients in the group with RV dysfunction were able to walk shorter distances and had higher estimated right ventricular systolic pressure (RVSP) and mean pulmonary arterial pressure (mPAP). The RV free wall longitudinal strain (RVFWLS) was the only deformation indices that showed a significant correlation with all classic measurements and indices in the diagnosis of RV dysfunction (Wald test, 10.24; p < 0.01; odds ratio, 1.61). In the ROC curve analysis, the absolute value <20% was the lowest cut-off point of this index for detection of RV dysfunction (AUC = 0.93, S: 95.8%, and E: 88%). Conclusion In COPD patients, RVFWLS is the myocardial deformation index that best correlates with classic echocardiographic parameters for the diagnosis of RV dysfunction using <20% as a cut-off point.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Salvador Rassi
- Hospital das Clínicas da Universidade Federal de Goiás, Goiânia, GO, Brazil.,Faculdade de Medicina da Universidade Federal de Goiás, Goiânia, GO, Brazil
| |
Collapse
|
3
|
Xu J, Gaddis NC, Bartz TM, Hou R, Manichaikul AW, Pankratz N, Smith AV, Sun F, Terzikhan N, Markunas CA, Patchen BK, Schu M, Beydoun MA, Brusselle GG, Eiriksdottir G, Zhou X, Wood AC, Graff M, Harris TB, Ikram MA, Jacobs DR, Launer LJ, Lemaitre RN, O’Connor GT, Oelsner EC, Psaty BM, Vasan RS, Rohde RR, Rich SS, Rotter JI, Seshadri S, Smith LJ, Tiemeier H, Tsai MY, Uitterlinden AG, Voruganti VS, Xu H, Zilhão NR, Fornage M, Zillikens MC, London SJ, Barr RG, Dupuis J, Gharib SA, Gudnason V, Lahousse L, North KE, Steffen LM, Cassano PA, Hancock DB. Omega-3 Fatty Acids and Genome-Wide Interaction Analyses Reveal DPP10-Pulmonary Function Association. Am J Respir Crit Care Med 2019; 199:631-642. [PMID: 30199657 PMCID: PMC6396866 DOI: 10.1164/rccm.201802-0304oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 09/07/2018] [Indexed: 12/18/2022] Open
Abstract
RATIONALE Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have anti-inflammatory properties that could benefit adults with comprised pulmonary health. OBJECTIVE To investigate n-3 PUFA associations with spirometric measures of pulmonary function tests (PFTs) and determine underlying genetic susceptibility. METHODS Associations of n-3 PUFA biomarkers (α-linolenic acid, eicosapentaenoic acid, docosapentaenoic acid [DPA], and docosahexaenoic acid [DHA]) were evaluated with PFTs (FEV1, FVC, and FEV1/FVC) in meta-analyses across seven cohorts from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium (N = 16,134 of European or African ancestry). PFT-associated n-3 PUFAs were carried forward to genome-wide interaction analyses in the four largest cohorts (N = 11,962) and replicated in one cohort (N = 1,687). Cohort-specific results were combined using joint 2 degree-of-freedom (2df) meta-analyses of SNP associations and their interactions with n-3 PUFAs. RESULTS DPA and DHA were positively associated with FEV1 and FVC (P < 0.025), with evidence for effect modification by smoking and by sex. Genome-wide analyses identified a novel association of rs11693320-an intronic DPP10 SNP-with FVC when incorporating an interaction with DHA, and the finding was replicated (P2df = 9.4 × 10-9 across discovery and replication cohorts). The rs11693320-A allele (frequency, ∼80%) was associated with lower FVC (PSNP = 2.1 × 10-9; βSNP = -161.0 ml), and the association was attenuated by higher DHA levels (PSNP×DHA interaction = 2.1 × 10-7; βSNP×DHA interaction = 36.2 ml). CONCLUSIONS We corroborated beneficial effects of n-3 PUFAs on pulmonary function. By modeling genome-wide n-3 PUFA interactions, we identified a novel DPP10 SNP association with FVC that was not detectable in much larger studies ignoring this interaction.
Collapse
Affiliation(s)
- Jiayi Xu
- Division of Nutritional Sciences, Cornell University, Ithaca, New York
| | | | - Traci M. Bartz
- Department of Biostatistics
- Cardiovascular Health Research Unit
| | - Ruixue Hou
- Department of Nutrition, Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina
| | - Ani W. Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | | | - Albert V. Smith
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Fangui Sun
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Natalie Terzikhan
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Epidemiology
| | - Christina A. Markunas
- Center for Omics Discovery and Epidemiology, Behavioral Health Research Division, and
| | - Bonnie K. Patchen
- Division of Nutritional Sciences, Cornell University, Ithaca, New York
| | - Matthew Schu
- Genomics in Public Health and Medicine Center, Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, North Carolina
| | - May A. Beydoun
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Bethesda, Maryland
| | - Guy G. Brusselle
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Epidemiology
- Department of Respiratory Medicine
| | | | - Xia Zhou
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota
| | - Alexis C. Wood
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas
| | - Mariaelisa Graff
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Tamara B. Harris
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Bethesda, Maryland
| | | | - David R. Jacobs
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota
| | - Lenore J. Launer
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Bethesda, Maryland
| | | | | | | | - Bruce M. Psaty
- Cardiovascular Health Research Unit
- Department of Medicine
- Department of Epidemiology
- Department of Health Services, and
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington
| | - Ramachandran S. Vasan
- Division of Cardiology and Preventive Medicine, Department of Medicine, and
- Boston University’s and NHLBI’s Framingham Heart Study, Framingham, Massachusetts
| | - Rebecca R. Rohde
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Jerome I. Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute and Department of Pediatrics, Harbor–UCLA Medical Center, Torrance, California
| | - Sudha Seshadri
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
- Glenn Biggs Institute of Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, Texas
| | - Lewis J. Smith
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Henning Tiemeier
- Department of Epidemiology
- Department of Psychiatry
- Department of Child and Adolescent Psychiatry, and
| | | | | | - V. Saroja Voruganti
- Department of Nutrition, Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina
| | - Hanfei Xu
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | | | - Myriam Fornage
- Institute of Molecular Medicine and
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas
| | - M. Carola Zillikens
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
- Netherlands Genomics Initiative–sponsored Netherlands Consortium for Healthy Aging, Leiden, the Netherlands
| | - Stephanie J. London
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - R. Graham Barr
- Department of Medicine, Columbia University, New York, New York
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Sina A. Gharib
- Department of Medicine
- Center for Lung Biology, University of Washington, Seattle, Washington
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- University of Iceland, Reykjavik, Iceland
| | - Lies Lahousse
- Department of Epidemiology
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Kari E. North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Lyn M. Steffen
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota
| | - Patricia A. Cassano
- Division of Nutritional Sciences, Cornell University, Ithaca, New York
- Division of Biostatistics and Epidemiology, Department of Healthcare Policy and Research, Weill Cornell Medical College, New York, New York
| | - Dana B. Hancock
- Center for Omics Discovery and Epidemiology, Behavioral Health Research Division, and
| |
Collapse
|
4
|
Dong J, Liao W, Tan LH, Yong A, Peh WY, Wong WSF. Gene silencing of receptor-interacting protein 2 protects against cigarette smoke-induced acute lung injury. Pharmacol Res 2019; 139:560-568. [PMID: 30394320 DOI: 10.1016/j.phrs.2018.10.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE Chronic obstructive pulmonary disease (COPD) is characterized by progressive alveolar damage and generally irreversible airflow limitation. Nuclear factor-κB (NF-κB) plays a critical role in COPD pathogenesis. Receptor-interacting protein 2 (Rip2), a 60 kDa adaptor protein, is a positive regulator of NF-κB pathway and also an inducible transcriptional product of NF-κB activation. We sought to investigate if Rip2 gene silencing could protect against cigarette smoke (CS)-induced acute lung injury. EXPERIMENTAL APPROACH Gene silencing efficacy of Rip2 siRNA was characterized in mouse macrophage and mouse lung epithelial cell lines, and in a CS-induced acute lung injury mouse model. Bronchoalveolar lavage (BAL) fluid cell counts, levels of pro-inflammatory and oxidative damage markers, lung section inflammatory and epithelium thickness scorings, and nuclear NF-κB translocation were measured. KEY RESULTS CS was found to upregulate Rip2 level in mouse lungs. Rip2 siRNA was able to suppress Rip2 levels in both macrophage and lung epithelial cell lines and in mouse lungs, block CS extract (CSE)-induced mediator release by the cultured cells, and abate neutrophil counts in BAL fluid from CS-challenged mice. Rip2 siRNA suppressed CS-induced inflammatory and oxidative damage markers, and nuclear p65 accumulation and transcriptional activation in lung tissues. Besides, Rip2 siRNA was able to disrupt CSE-induced NF-κB activation in a NF-κB reporter gene assay. CONCLUSIONS AND IMPLICATIONS Taken together, we report for the first time that Rip2 gene silencing ameliorated CS-induced acute lung injury probably via disruption of the NF-κB activity, postulating that Rip2 may be a novel therapeutic target for COPD.
Collapse
Affiliation(s)
- Jinrui Dong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore
| | - Wupeng Liao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore
| | - Lay Hong Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore
| | - Amy Yong
- Department of Pharmacology and Therapeutics, Faculty of Life Sciences and Medicine, King's College London, UK
| | - Wen Yan Peh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore; Immunology Program, Life Science Institute, National University of Singapore, Singapore; Singapore-HUJ Alliance for Research and Enterprise, Molecular Mechanisms of Inflammatory Diseases Interdisciplinary Research Group, Singapore.
| |
Collapse
|