1
|
Gaspar LS, Pyakurel S, Xu N, D'Souza SP, Koritala BSC. Circadian Biology in Obstructive Sleep Apnea-Associated Cardiovascular Disease. J Mol Cell Cardiol 2025; 202:116-132. [PMID: 40107345 DOI: 10.1016/j.yjmcc.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/16/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
A dysregulated circadian system is independently associated with both Obstructive Sleep Apnea (OSA) and cardiovascular disease (CVD). OSA and CVD coexistence is often seen in patients with prolonged untreated OSA. However, the role of circadian dysregulation in their relationship is unclear. Half of the human genes, associated biological pathways, and physiological functions exhibit circadian rhythms, including blood pressure and heart rate regulation. Mechanisms related to circadian dysregulation and heart function are potentially involved in the coexistence of OSA and CVD. In this article, we provide a comprehensive overview of circadian dysregulation in OSA and associated CVD. We also discuss feasible animal models and new avenues for future research to understand their relationship. Oxygen-sensing pathways, inflammation, dysregulation of cardiovascular processes, oxidative stress, metabolic regulation, hormone signaling, and epigenetics are potential clock-regulated mechanisms connecting OSA and CVD.
Collapse
Affiliation(s)
- Laetitia S Gaspar
- Centre for Neuroscience and Cell Biology, University of Coimbra, Portugal; Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Santoshi Pyakurel
- Division of Pediatric Otolaryngology-Head and Neck Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Na Xu
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Shane P D'Souza
- Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Bala S C Koritala
- Division of Pediatric Otolaryngology-Head and Neck Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America; Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America.
| |
Collapse
|
2
|
Biose IJ, Bakare AB, Wang H, Gressett TE, Bix GJ. Sleep apnea and ischemic stroke- a perspective for translational preclinical modelling. Sleep Med Rev 2024; 75:101929. [PMID: 38581800 DOI: 10.1016/j.smrv.2024.101929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 03/13/2024] [Accepted: 03/24/2024] [Indexed: 04/08/2024]
Abstract
Obstructive sleep apnea (OSA) is associated with ischemic stroke. There is, however, a lack of knowledge on the exact cause-effect relationship, and preclinical models of OSA for experimental ischemic stroke investigations are not well characterized. In this review, we discuss sleep apnea and its relationship with stroke risk factors. We consider how OSA may lead to ischemic stroke and how OSA-induced metabolic syndrome and hypothalamic-pituitary axis (HPA) dysfunction could serve as therapeutic targets to prevent ischemic stroke. Further, we examine the translational potential of established preclinical models of OSA. We conclude that metabolic syndrome and HPA dysfunction, which are often overlooked in the context of experimental stroke and OSA studies, are crucial for experimental consideration to improve the body of knowledge as well as the translational potential of investigative efforts.
Collapse
Affiliation(s)
- I J Biose
- Department of Pharmacology, Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
| | - A B Bakare
- School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| | - H Wang
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| | - T E Gressett
- School of Medicine, Tulane University, New Orleans, LA, 70112, USA; Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| | - G J Bix
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA; Tulane Brain Institute, Tulane University, New Orleans, LA, 70112, USA; Department of Neurology, Tulane University School of Medicine, New Orleans, LA, 70112, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA; Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70122, USA.
| |
Collapse
|
3
|
Alvente S, Matteoli G, Miglioranza E, Zoccoli G, Bastianini S. How to study sleep apneas in mouse models of human pathology. J Neurosci Methods 2023; 395:109923. [PMID: 37459897 DOI: 10.1016/j.jneumeth.2023.109923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/28/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Sleep apnea, the most widespread sleep-related breathing disorder (SBD), consists of recurrent episodes of breathing cessation during sleep. This condition can be classified as either central (CSA) or obstructive (OSA) sleep apnea, with the latest being the most common and toxic. Due to the complexity of living organisms, animal models and, particularly, mice still represent an essential tool for the study of SBD. In the present review we first discuss the methodological pros and cons in the use of whole-body plethysmography to coupling respiratory and sleep measurements and to characterize CSA and OSA in mice; then, we draw an updated and objective picture of the methods used so far in the study of sleep apnea in mice. Most of the studies present in the literature used intermittent hypoxia to mimic OSA in mice and to investigate consequent pathological correlates. On the contrary, few studies using genetic manipulation or high-fat diets investigated the pathogenesis or potential treatments of sleep apnea. To date, mice lacking orexins, hemeoxygenase-2, monoamine oxidase A, Phox2b or Cdkl5 can be considered validated mouse models of sleep apnea. Moreover, genetically- or diet-induced obese mice, and mice recapitulating Down syndrome were proposed as OSA models. In conclusion, our review shows that despite the growing interest in the field and the need of new therapeutical approaches, technical complexity and inter-study variability strongly limit the availability of validated mouse of sleep apnea, which are essential in biomedical research.
Collapse
Affiliation(s)
- Sara Alvente
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Gabriele Matteoli
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Elena Miglioranza
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giovanna Zoccoli
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Stefano Bastianini
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
4
|
Zong S, Du P, Li H, Wang M, Xiao H. Advances in animal models of obstructive sleep apnea. Front Med (Lausanne) 2023; 10:988752. [PMID: 36824607 PMCID: PMC9941153 DOI: 10.3389/fmed.2023.988752] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
Animal experiments play an important role in the study of the pathogenesis of human diseases and new methods of diagnosis and treatment. Due to the great differences in the anatomical structure and physiology of the upper airway between animals and humans, there is currently no animal model that can fully simulate the pathological anatomy and pathophysiological characteristics of human obstructive sleep apnea (OSA) patients. Herein, we summarizes the construction methods of several OSA animal models that have been widely used in the studies published in the last 5 years, the advantages and limitations of each model as well as related evaluation techniques are described. This information has potential to provide further guide for the development of OSA related animal experiments.
Collapse
Affiliation(s)
| | | | - Hejie Li
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | |
Collapse
|
5
|
Amorim MR, Aung O, Mokhlesi B, Polotsky VY. Leptin-mediated neural targets in obesity hypoventilation syndrome. Sleep 2022; 45:zsac153. [PMID: 35778900 PMCID: PMC9453616 DOI: 10.1093/sleep/zsac153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/20/2022] [Indexed: 07/30/2023] Open
Abstract
Obesity hypoventilation syndrome (OHS) is defined as daytime hypercapnia in obese individuals in the absence of other underlying causes. In the United States, OHS is present in 10%-20% of obese patients with obstructive sleep apnea and is linked to hypoventilation during sleep. OHS leads to high cardiorespiratory morbidity and mortality, and there is no effective pharmacotherapy. The depressed hypercapnic ventilatory response plays a key role in OHS. The pathogenesis of OHS has been linked to resistance to an adipocyte-produced hormone, leptin, a major regulator of metabolism and control of breathing. Mechanisms by which leptin modulates the control of breathing are potential targets for novel therapeutic strategies in OHS. Recent advances shed light on the molecular pathways related to the central chemoreceptor function in health and disease. Leptin signaling in the nucleus of the solitary tract, retrotrapezoid nucleus, hypoglossal nucleus, and dorsomedial hypothalamus, and anatomical projections from these nuclei to the respiratory control centers, may contribute to OHS. In this review, we describe current views on leptin-mediated mechanisms that regulate breathing and CO2 homeostasis with a focus on potential therapeutics for the treatment of OHS.
Collapse
Affiliation(s)
- Mateus R Amorim
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - O Aung
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Babak Mokhlesi
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Vsevolod Y Polotsky
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Kim LJ, Shin MK, Pho H, Otvos L, Tufik S, Andersen ML, Pham LV, Polotsky VY. Leptin Receptor Blockade Attenuates Hypertension, but Does Not Affect Ventilatory Response to Hypoxia in a Model of Polygenic Obesity. Front Physiol 2021; 12:688375. [PMID: 34276408 PMCID: PMC8283021 DOI: 10.3389/fphys.2021.688375] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/15/2021] [Indexed: 12/24/2022] Open
Abstract
Background Obesity can cause hypertension and exacerbates sleep-disordered breathing (SDB). Leptin is an adipocyte-produced hormone, which increases metabolic rate, suppresses appetite, modulates control of breathing, and increases blood pressure. Obese individuals with high circulating levels of leptin are resistant to metabolic and respiratory effects of leptin, but they appear to be sensitive to hypertensive effects of this hormone. Obesity-induced hypertension has been associated with hyperleptinemia. New Zealand obese (NZO) mice, a model of polygenic obesity, have high levels of circulating leptin and hypertension, and are prone to develop SDB, similarly to human obesity. We hypothesize that systemic leptin receptor blocker Allo-aca will treat hypertension in NZO mice without any effect on body weight, food intake, or breathing. Methods Male NZO mice, 12–13 weeks of age, were treated with Allo-aca (n = 6) or a control peptide Gly11 (n = 12) for 8 consecutive days. Doses of 0.2 mg/kg were administered subcutaneously 2×/day, at 10 AM and 6 PM. Blood pressure was measured by telemetry for 48 h before and during peptide infusion. Ventilation was assessed by whole-body barometric plethysmography, control of breathing was examined by assessing the hypoxic ventilatory response (HVR), and polysomnography was performed during light-phase at baseline and during treatment. Heart rate variability analyses were performed to estimate the cardiac autonomic balance. Results Systemic leptin receptor blockade with Allo-aca did not affect body weight, body temperature, and food intake in NZO mice. Plasma levels of leptin did not change after the treatment with either Allo-aca or the control peptide Gy11. NZO mice were hypertensive at baseline and leptin receptor blocker Allo-aca significantly reduced the mean arterial pressure from 134.9 ± 3.1 to 124.9 ± 5.7 mmHg during the light phase (P < 0.05), whereas the control peptide had no effect. Leptin receptor blockade did not change the heart rate or cardiac autonomic balance. Allo-aca did not affect minute ventilation under normoxic or hypoxic conditions and HVR. Ventilation, apnea index, and oxygen desaturation during NREM and REM sleep did not change with leptin receptor blockade. Conclusion Systemic leptin receptor blockade attenuates hypertension in NZO mice, but does not exacerbate obesity and SDB. Thus, leptin receptor blockade represents a potential pharmacotherapy for obesity-associated hypertension.
Collapse
Affiliation(s)
- Lenise J Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mi-Kyung Shin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Huy Pho
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Laszlo Otvos
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary.,Arrevus, Inc., Raleigh, NC, United States.,OLPE, LLC, Audubon, PA, United States
| | - Sergio Tufik
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Monica L Andersen
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luu V Pham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
7
|
A novel mouse model of obstructive sleep apnea by bulking agent-induced tongue enlargement results in left ventricular contractile dysfunction. PLoS One 2020; 15:e0243844. [PMID: 33301470 PMCID: PMC7728202 DOI: 10.1371/journal.pone.0243844] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/28/2020] [Indexed: 01/24/2023] Open
Abstract
AIMS Obstructive sleep apnea (OSA) is a widespread disease with high global socio-economic impact. However, detailed pathomechanisms are still unclear, partly because current animal models of OSA do not simulate spontaneous airway obstruction. We tested whether polytetrafluoroethylene (PTFE) injection into the tongue induces spontaneous obstructive apneas. METHODS AND RESULTS PTFE (100 μl) was injected into the tongue of 31 male C57BL/6 mice and 28 mice were used as control. Spontaneous apneas and inspiratory flow limitations were recorded by whole-body plethysmography and mRNA expression of the hypoxia marker KDM6A was quantified by qPCR. Left ventricular function was assessed by echocardiography and ventricular CaMKII expression was measured by Western blotting. After PTFE injection, mice showed features of OSA such as significantly increased tongue diameters that were associated with significantly and sustained increased frequencies of inspiratory flow limitations and apneas. Decreased KDM6A mRNA levels indicated chronic hypoxemia. 8 weeks after surgery, PTFE-treated mice showed a significantly reduced left ventricular ejection fraction. Moreover, the severity of diastolic dysfunction (measured as E/e') correlated significantly with the frequency of apneas. Accordingly, CaMKII expression was significantly increased in PTFE mice and correlated significantly with the frequency of apneas. CONCLUSIONS We describe here the first mouse model of spontaneous inspiratory flow limitations, obstructive apneas, and hypoxia by tongue enlargement due to PTFE injection. These mice develop systolic and diastolic dysfunction and increased CaMKII expression. This mouse model offers great opportunities to investigate the effects of obstructive apneas.
Collapse
|
8
|
Injectable slurry for selective destruction of neck adipose tissue in New Zealand obese mouse model. Sleep Breath 2020; 24:1715-1718. [PMID: 32474829 DOI: 10.1007/s11325-020-02111-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/29/2020] [Accepted: 05/20/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE Increased neck circumference is a major risk factor for obstructive sleep apnea (OSA). New data suggest that increased adipose tissue in the neck may be a contributory cause of OSA. The aim of this study was to investigate safety and efficacy of a recently developed injectable ice slurry in selective reduction of neck adipose tissue in a mouse model. METHODS We used the New Zealand obese mice that have increased volume of anterior neck fat, and are commonly used in OSA studies. MRI imaging was used to measure changes in fat tissue volume. RESULTS Thirty animals were used in this study. Volumetric measurements in MRI images showed thatchanges in anterior neck adipose tissue volume from baseline in treated mice was significantly different in comparison with the control group (-1.09/kg ± 0.33/kg vs 0.68/kg ± 0.37/kg; p < 0.01 by two-tailed Student's t test). Histological analysis of samples from the treated area of the neck did not show scarring or damage to the surrounding tissues. CONCLUSIONS Injection of ice slurry safely, effectively, and selectively reduces upper airway fat in New Zealand obese mice without scarring or damage to surrounding tissue. Our results suggest that slurry injection may be a novel and minimally invasive method of removing neck adipose tissue. This intervention should be further investigated to determine its suitability for treatment of OSA.
Collapse
|
9
|
Kim LJ, Freire C, Fleury Curado T, Jun JC, Polotsky VY. The Role of Animal Models in Developing Pharmacotherapy for Obstructive Sleep Apnea. J Clin Med 2019; 8:jcm8122049. [PMID: 31766589 PMCID: PMC6947279 DOI: 10.3390/jcm8122049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/12/2019] [Accepted: 11/19/2019] [Indexed: 12/17/2022] Open
Abstract
Obstructive sleep apnea (OSA) is a highly prevalent disease characterized by recurrent closure of the upper airway during sleep. It has a complex pathophysiology involving four main phenotypes. An abnormal upper airway anatomy is the key factor that predisposes to sleep-related collapse of the pharynx, but it may not be sufficient for OSA development. Non-anatomical traits, including (1) a compromised neuromuscular response of the upper airway to obstruction, (2) an unstable respiratory control (high loop gain), and (3) a low arousal threshold, predict the development of OSA in association with anatomical abnormalities. Current therapies for OSA, such as continuous positive airway pressure (CPAP) and oral appliances, have poor adherence or variable efficacy among patients. The search for novel therapeutic approaches for OSA, including pharmacological agents, has been pursued over the past years. New insights into OSA pharmacotherapy have been provided by preclinical studies, which highlight the importance of appropriate use of animal models of OSA, their applicability, and limitations. In the present review, we discuss potential pharmacological targets for OSA discovered using animal models.
Collapse
|
10
|
Khalyfa A, Gozal D. Connexins and Atrial Fibrillation in Obstructive Sleep Apnea. CURRENT SLEEP MEDICINE REPORTS 2018; 4:300-311. [PMID: 31106116 PMCID: PMC6516763 DOI: 10.1007/s40675-018-0130-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF THE REVIEW To summarize the potential interactions between obstructive sleep apnea (OSA), atrial fibrillation (AF), and connexins. RECENT FINDINGS OSA is highly prevalent in patients with cardiovascular disease, and is associated with increased risk for end-organ substantial morbidities linked to autonomic nervous system imbalance, increased oxidative stress and inflammation, ultimately leading to reduced life expectancy. Epidemiological studies indicate that OSA is associated with increased incidence and progression of coronary heart disease, heart failure, stroke, as well as arrhythmias, particularly AF. Conversely, AF is very common among subjects referred for suspected OSA, and the prevalence of AF increases with OSA severity. The interrelationships between AF and OSA along with the well-known epidemiological links between these two conditions and obesity may reflect shared pathophysiological pathways, which may depend on the intercellular diffusion of signaling molecules into either the extracellular space or require cell-to-cell contact. Connexin signaling is accomplished via direct exchanges of cytosolic molecules between adjacent cells at gap membrane junctions for cell-to-cell coupling. The role of connexins in AF is now quite well established, but the impact of OSA on cardiac connexins has only recently begun to be investigated. Understanding the biology and regulatory mechanisms of connexins in OSA at the transcriptional, translational, and post-translational levels will undoubtedly require major efforts to decipher the breadth and complexity of connexin functions in OSA-induced AF. SUMMARY The risk of end-organ morbidities has initiated the search for circulating mechanistic biomarker signatures and the implementation of biomarker-based algorithms for precision-based diagnosis and risk assessment. Here we summarize recent findings in OSA as they relate to AF risk, and also review potential mechanisms linking OSA, AF and connexins.
Collapse
Affiliation(s)
- Abdelnaby Khalyfa
- Department of Pediatrics, Biological Sciences Division, Pritzker School of Medicine, The University of Chicago, Chicago IL 60637, USA
| | - David Gozal
- Department of Child Health, University of Missouri School of Medicine, Columbia, MO 65201, USA
| |
Collapse
|