1
|
Klopper M, van der Merwe CJ, van der Heijden YF, Folkerts M, Loubser J, Streicher EM, Mekler K, Hayes C, Engelthaler DM, Metcalfe JZ, Warren RM. The Hidden Epidemic of Isoniazid-Resistant Tuberculosis in South Africa. Ann Am Thorac Soc 2024; 21:1391-1397. [PMID: 38935769 PMCID: PMC11451881 DOI: 10.1513/annalsats.202312-1076oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/26/2024] [Indexed: 06/29/2024] Open
Abstract
Rationale: Isoniazid-resistant tuberculosis (Hr-TB) is often overlooked in diagnostic algorithms because of reliance on first-line molecular assays testing only for rifampicin resistance. Objectives: To determine the prevalence, outcomes, and molecular mechanisms associated with rifampin-susceptible, isoniazid-resistant TB (Hr-TB) in the Eastern Cape, South Africa. Methods: Between April 2016 and October 2017, sputum samples were collected from patients with rifampin-susceptible TB at baseline and at Weeks 7 and 23 of drug-susceptible TB treatment. We performed isoniazid phenotypic and genotypic drug susceptibility testing, including FluoroTypeMTBDR, Sanger sequencing, targeted next-generation sequencing, and whole-genome sequencing. Results: We analyzed baseline isolates from 766 patients with rifampin-susceptible TB. Of 89 patients (11.7%) who were found to have Hr-TB, 39 (44%) had canonical katG or inhA promoter mutations; 35 (39%) had noncanonical katG mutations (including 5 with underlying large deletions); 4 (5%) had mutations in other candidate genes associated with isoniazid resistance. For 11 (12.4%), no cause of resistance was found. Conclusions: Among patients with rifampin-susceptible TB who were diagnosed using first-line molecular TB assays, there is a high prevalence of Hr-TB. Phenotypic drug susceptibility testing remains the gold standard. To improve the performance of genetic-based phenotyping tests, all isoniazid resistance-associated regions should be included, and such tests should have the ability to identify underlying mutations.
Collapse
Affiliation(s)
- Marisa Klopper
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Department of Science and Innovation, National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Cape Town, South Africa
| | - Charnay J. van der Merwe
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Department of Science and Innovation, National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Cape Town, South Africa
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine, University of Cape Town and University of Cape Town Lung Institute, Cape Town, South Africa
| | - Yuri F. van der Heijden
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Vanderbilt University, Nashville, Tennessee
- The Aurum Institute, Johannesburg, South Africa
| | - Megan Folkerts
- Pathogen and Microbiome Division, Translational Genomics Research Institute, Flagstaff, Arizona
| | - Johannes Loubser
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Department of Science and Innovation, National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Cape Town, South Africa
| | - Elizabeth M. Streicher
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Department of Science and Innovation, National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Cape Town, South Africa
| | | | - Cindy Hayes
- National Health Laboratory Services, Port Elizabeth, South Africa; and
| | - David M. Engelthaler
- Pathogen and Microbiome Division, Translational Genomics Research Institute, Flagstaff, Arizona
| | - John Z. Metcalfe
- Division of Pulmonary and Critical Care Medicine, San Francisco General Hospital and Trauma Center, University of California, San Francisco, San Francisco, California
| | - Robin M. Warren
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Department of Science and Innovation, National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Cape Town, South Africa
| |
Collapse
|
2
|
Zhang SY, Qiu L, Zhang SX, Xiao HP, Chu NH, Zhang X, Zhang HQ, Zheng PY, Zhang HY, Lu ZH. Efficacy and Safety of Bufei Jiedu Granules in Treating Multidrug-Resistant Pulmonary Tuberculosis: A Multi-center, Double-Blinded and Randomized Controlled Trial. Chin J Integr Med 2024; 30:579-587. [PMID: 38733454 DOI: 10.1007/s11655-024-3812-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2023] [Indexed: 05/13/2024]
Abstract
OBJECTIVE To assess the efficacy and safety of Bufei Jiedu (BFJD) ranules as adjuvant therapy for patients with multidrug-resistant pulmonary tuberculosis (MDR-PTB). METHODS A large-scale, multi-center, double-blinded, and randomized controlled trial was conducted in 18 sentinel hospitals in China from December 2012 to December 2016. A total of 312 MDR-PTB patients were randomly assigned to BFJD Granules or placebo groups (1:1) using a stratified randomization method, which both received the long-course chemotherapy regimen for 18 months (6 Am-Lfx-P-Z-Pto, 12 Lfx-P-Z-Pto). Meanwhile, patients in both groups also received BFJD Granules or placebo twice a day for a total of 18 months, respectively. The primary outcome was cure rate. The secondary outcomes included time to sputum-culture conversion, changes in lung cavities and quality of life (QoL) of patients. Adverse reactions were monitored during and after the trial. RESULTS A total of 216 cases completed the trial, 111 in the BFJD Granules group and 105 in the placebo group. BFJD Granules, as an adjuvant treatment, increased the cure rate by 13.6% at the end of treatment, compared with the placebo (58.4% vs. 44.8%, P=0.02), and accelerated the median time to sputum-culture conversion (5 months vs. 11 months). The cavity closure rate of the BFJD Granules group (50.6%, 43/85) was higher than that of the placebo group (32.1%, 26/81; P=0.02) in patients who completed the treatment. At the end of the intensive treatment, according to the 36-item Short Form, the BFJD Granules significantly improved physical functioning, general health, and vitality of patients relative to the placebo group (all P<0.01). Overall, the death rates in the two groups were not significantly different; 5.1% (8/156) in the BFJD Granules group and 2.6% (4/156) in the placebo group. CONCLUSIONS Supplementing BFJD Granules with the long-course chemotherapy regimen significantly increased the cure rate and cavity closure rates, and rapidly improved QoL of patients with MDR-PTB (Registration No. ChiCTR-TRC-12002850).
Collapse
Affiliation(s)
- Shao-Yan Zhang
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Lei Qiu
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Shun-Xian Zhang
- Clinical Research Center, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - He-Ping Xiao
- Department of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200433, China
| | - Nai-Hui Chu
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing, 101100, China
| | - Xia Zhang
- Department of Tuberculosis, the Second Hospital of Nanjing, Nanjing, 210003, China
| | - Hui-Qiang Zhang
- Department of Tuberculosis, the First Hospital Affiliated to Xinxiang Medical College, Xinxiang, Henan Province, 453100, China
| | - Pei-Yong Zheng
- Clinical Research Center, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Hui-Yong Zhang
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Zhen-Hui Lu
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
3
|
Bloom BR. A half-century of research on tuberculosis: Successes and challenges. J Exp Med 2023; 220:e20230859. [PMID: 37552470 PMCID: PMC10407785 DOI: 10.1084/jem.20230859] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/09/2023] Open
Abstract
Great progress has been made over the past half-century, but TB remains a formidable global health problem, particularly in low- and middle-income countries. Understanding the mechanisms of pathogenesis and necessary and sufficient conditions for protection are critical. The need for inexpensive and sensitive point-of-care diagnostic tests for earlier detection of infection and disease, shorter and less-toxic drug regimens for drug-sensitive and -resistant TB, and a more effective vaccine than BCG is immense. New and better tools, greater support for international research, collaborations, and training will be required to dramatically reduce the burden of this devastating disease which still kills 1.6 million people annually.
Collapse
Affiliation(s)
- Barry R. Bloom
- Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
4
|
Endobronchial Valve Treatment of Tuberculous Cavities in Patients with Multidrug-Resistant Pulmonary Tuberculosis: A Randomized Clinical Study. Pathogens 2022; 11:pathogens11080899. [PMID: 36015021 PMCID: PMC9414730 DOI: 10.3390/pathogens11080899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/26/2022] Open
Abstract
Background: Multidrug-resistant pulmonary tuberculosis (MDR-PTB) has become a major cause of high morbidity and mortality related to TB. Conventional drug regimens are ineffective for the treatment of MDR-PTB patients with cavities. This study aimed to evaluate the clinical efficacy and safety of one-way endobronchial valves (EBVs) for the treatment of cavities in MDR-PTB patients. Methods: MDR-PTB patients with positive sputum cultures, sputum smears, and cavities were treated with EBVs in the drainage bronchus of the pulmonary cavity between November 2013 and March 2018. The participants comprised those who had failed previous anti-tuberculosis therapy, as determined by drug susceptibility testing. Results: Thirty-five MDR-PTB patients were included, three of whom were lost during follow-up. The size of the lung cavity was reduced in all of the patients after EBV implantation, including the three lost to follow-up. In the remaining 32 patients, the sputum culture conversion (SCC) rate reached 100%, and the cavity closure rate was 68.8%. There were no significant differences in the cavity closure rate between patients aged ≤40 and >40 years, between the upper and lower lobes, or between the use and non-use of linezolid groups (p > 0.05). Interestingly, the cavity closure rate was higher in women than in men (p = 0.005). Moreover, the cavity closure rate correlated with the time to SCC (correlation coefficient, 0.8933; p < 0.0001). There were no severe adverse events in the patients treated with EBV implantation. Conclusion: EBV installation is effective and safe for the treatment of cavities in MDR-PTB patients. The efficacy of EBV treatment may not be affected by age, disease course, or the location of the lung lobe in the cavity.
Collapse
|
5
|
Kaforou M, Broderick C, Vito O, Levin M, Scriba TJ, Seddon JA. Transcriptomics for child and adolescent tuberculosis. Immunol Rev 2022; 309:97-122. [PMID: 35818983 PMCID: PMC9540430 DOI: 10.1111/imr.13116] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tuberculosis (TB) in humans is caused by Mycobacterium tuberculosis (Mtb). It is estimated that 70 million children (<15 years) are currently infected with Mtb, with 1.2 million each year progressing to disease. Of these, a quarter die. The risk of progression from Mtb infection to disease and from disease to death is dependent on multiple pathogen and host factors. Age is a central component in all these transitions. The natural history of TB in children and adolescents is different to adults, leading to unique challenges in the development of diagnostics, therapeutics, and vaccines. The quantification of RNA transcripts in specific cells or in the peripheral blood, using high-throughput methods, such as microarray analysis or RNA-Sequencing, can shed light into the host immune response to Mtb during infection and disease, as well as understanding treatment response, disease severity, and vaccination, in a global hypothesis-free manner. Additionally, gene expression profiling can be used for biomarker discovery, to diagnose disease, predict future disease progression and to monitor response to treatment. Here, we review the role of transcriptomics in children and adolescents, focused mainly on work done in blood, to understand disease biology, and to discriminate disease states to assist clinical decision-making. In recent years, studies with a specific pediatric and adolescent focus have identified blood gene expression markers with diagnostic or prognostic potential that meet or exceed the current sensitivity and specificity targets for diagnostic tools. Diagnostic and prognostic gene expression signatures identified through high-throughput methods are currently being translated into diagnostic tests.
Collapse
Affiliation(s)
- Myrsini Kaforou
- Department of Infectious DiseaseImperial College LondonLondonUK
| | | | - Ortensia Vito
- Department of Infectious DiseaseImperial College LondonLondonUK
| | - Michael Levin
- Department of Infectious DiseaseImperial College LondonLondonUK
| | - Thomas J. Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of PathologyUniversity of Cape TownCape TownSouth Africa
| | - James A. Seddon
- Department of Infectious DiseaseImperial College LondonLondonUK
- Desmond Tutu TB Centre, Department of Paediatrics and Child HealthStellenbosch UniversityCape TownSouth Africa
| |
Collapse
|
6
|
Lightweight YOLOv4 with Multiple Receptive Fields for Detection of Pulmonary Tuberculosis. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:9465646. [PMID: 35401735 PMCID: PMC8989572 DOI: 10.1155/2022/9465646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 11/17/2022]
Abstract
The characteristics of pulmonary tuberculosis are complex, and the cost of manual screening is high. The detection model based on convolutional neural network is an essential method for assisted diagnosis with artificial intelligence. However, it also has the disadvantages of complex structure and a large number of parameters, and the detection accuracy needs to be further improved. Therefore, an improved lightweight YOLOv4 pulmonary tuberculosis detection model named MIP-MY is proposed. Firstly, over 300 actual cases are selected to make a common dataset by professional physicians, which is used to evaluate the performance of the model. Subsequently, by introducing the inverted residual channel attention and the pyramid pooling module, a new structure of MIP is created and used as the backbone extractor of MIP-MY, which could further decrease the number of parameters and fuse context information. Then the multiple receptive field module is added after the three effective feature layers of the backbone extractor, which effectively enhances the information extraction ability of the deep feature layer and reduces the miss detection rate of small pulmonary tuberculosis lesions. Finally, the pulmonary tuberculosis detection model MIP-MY with lightweight and multiple receptive field characteristics is constructed by combining each improved modules with multiscale structure. Compared to the original YOLOv4, the model parameters of MIP-MY is reduced by 47%, while the mAP value is raised to 95.32% and the miss detection rate is decreased to 6%. It is verified that the model can effectively assist radiologists in the diagnosis of pulmonary tuberculosis.
Collapse
|
7
|
Elkington P, Polak ME, Reichmann MT, Leslie A. Understanding the tuberculosis granuloma: the matrix revolutions. Trends Mol Med 2022; 28:143-154. [PMID: 34922835 PMCID: PMC8673590 DOI: 10.1016/j.molmed.2021.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023]
Abstract
Mycobacterium tuberculosis (Mtb) causes the human disease tuberculosis (TB) and remains the top global infectious pandemic after coronavirus disease 2019 (COVID-19). Furthermore, TB has killed many more humans than any other pathogen, after prolonged coevolution to optimise its pathogenic strategies. Full understanding of fundamental disease processes in humans is necessary to successfully combat this highly successful pathogen. While the importance of immunodeficiency has been long recognised, biologic therapies and unbiased approaches are providing unprecedented insights into the intricacy of the host-pathogen interaction. The nature of a protective response is more complex than previously hypothesised. Here, we integrate recent evidence from human studies and unbiased approaches to consider how Mtb causes human TB and highlight the recurring theme of extracellular matrix (ECM) turnover.
Collapse
Affiliation(s)
- Paul Elkington
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
| | - Marta E Polak
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Michaela T Reichmann
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Alasdair Leslie
- Department of Infection and Immunity, University College London, London, UK; Africa Health Research Institute, KwaZulu-Natal, South Africa
| |
Collapse
|
8
|
Chen Q, Hu C, Lu W, Hang T, Shao Y, Chen C, Wang Y, Li N, Jin L, Wu W, Wang H, Zeng X, Xie W. Characteristics of alveolar macrophages in bronchioalveolar lavage fluids from active tuberculosis patients identified by single-cell RNA sequencing. J Biomed Res 2022; 36:167-180. [PMID: 35635159 PMCID: PMC9179115 DOI: 10.7555/jbr.36.20220007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Tuberculosis (TB), is an infectious disease caused by Mycobacterium tuberculosis (M. tuberculosis), and presents with high morbidity and mortality. Alveolar macrophages play an important role in TB pathogenesis although there is heterogeneity and functional plasticity. This study aimed to show the characteristics of alveolar macrophages from bronchioalveolar lavage fluid (BALF) in active TB patients. Single-cell RNA sequencing (scRNA-seq) was performed on BALF cells from three patients with active TB and additional scRNA-seq data from three healthy adults were established as controls. Transcriptional profiles were analyzed and compared by differential geneexpression and functional enrichment analysis. We applied pseudo-temporal trajectory analysis to investigate correlations and heterogeneity within alveolar macrophage subclusters. Alveolar macrophages from active TB patients at the single-cell resolution are described. We found that TB patients have higher cellular percentages in five macrophage subclusters. Alveolar macrophage subclusters with increased percentages were involved in inflammatory signaling pathways as well as the basic macrophage functions. The TB-increased alveolar macrophage subclusters might be derived from M1-like polarization state, before switching to an M2-like polarization state with the development ofM. tuberculosis infection. Cell-cell communications of alveolar macrophages also increased and enhanced in active TB patients. Overall, our study demonstrated the characteristics of alveolar macrophages from BALF in active TB patients by using scRNA-seq.
Collapse
Affiliation(s)
- Qianqian Chen
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Chunmei Hu
- Department of Tuberculosis, the Second Hospital of Nanjing, Nanjing, Jiangsu 210029, China
| | - Wei Lu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210029, China
| | - Tianxing Hang
- Department of Tuberculosis, the Second Hospital of Nanjing, Nanjing, Jiangsu 210029, China
| | - Yan Shao
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210029, China
| | - Cheng Chen
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210029, China
| | - Yanli Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Nan Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Linling Jin
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wei Wu
- Department of Bioinformatics, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210029, China
| | - Hong Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Weiping Xie, Xiaoning Zeng, and Hong Wang. Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China. Tel/Fax: +86-25-68306030/+86-25-68306030. E-mails:
,
, and
| | - Xiaoning Zeng
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Weiping Xie, Xiaoning Zeng, and Hong Wang. Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China. Tel/Fax: +86-25-68306030/+86-25-68306030. E-mails:
,
, and
| | - Weiping Xie
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Weiping Xie, Xiaoning Zeng, and Hong Wang. Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China. Tel/Fax: +86-25-68306030/+86-25-68306030. E-mails:
,
, and
| |
Collapse
|
9
|
Pollara G, Turner CT, Rosenheim J, Chandran A, Bell LCK, Khan A, Patel A, Peralta LF, Folino A, Akarca A, Venturini C, Baker T, Ecker S, Ricciardolo FLM, Marafioti T, Ugarte-Gil C, Moore DAJ, Chain BM, Tomlinson GS, Noursadeghi M. Exaggerated IL-17A activity in human in vivo recall responses discriminates active tuberculosis from latent infection and cured disease. Sci Transl Med 2021; 13:13/592/eabg7673. [PMID: 33952677 PMCID: PMC7610803 DOI: 10.1126/scitranslmed.abg7673] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022]
Abstract
Host immune responses at the site of Mycobacterium tuberculosis (Mtb) infection can mediate pathogenesis of tuberculosis (TB) and onward transmission of infection. We hypothesized that pathological immune responses would be enriched at the site of host-pathogen interactions modelled by a standardized tuberculin skin test (TST) challenge in patients with active TB compared to those without disease, and interrogated immune responses by genome-wide transcriptional profiling. We show exaggerated interleukin (IL)-17A and Th17 responses among 48 individuals with active TB compared to 191 with latent TB infection, associated with increased neutrophil recruitment and matrix metalloproteinase-1 expression, both involved in TB pathogenesis. Curative antimicrobial treatment reversed these observed changes. Increased IL-1β and IL-6 responses to mycobacterial stimulation were evident in both circulating monocytes and in molecular changes at the site of TST in individuals with active TB, supporting a model in which monocyte-derived IL-1β and IL-6 promote Th17 differentiation within tissues. Modulation of these cytokine pathways may provide a rational strategy for host-directed therapy in active TB.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Anna Folino
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | | | | | | | | | | | - Cesar Ugarte-Gil
- School of Medicine, Universidad Peruana Cayetano Heredia, Lima, Peru.,TB Centre, London School of Hygiene & Tropical Medicine, London, UK
| | - David A J Moore
- TB Centre, London School of Hygiene & Tropical Medicine, London, UK.,Laboratorio de Investigación de Enfermedades Infecciosas, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | | | | |
Collapse
|
10
|
Moreno-Molina M, Shubladze N, Khurtsilava I, Avaliani Z, Bablishvili N, Torres-Puente M, Villamayor L, Gabrielian A, Rosenthal A, Vilaplana C, Gagneux S, Kempker RR, Vashakidze S, Comas I. Genomic analyses of Mycobacterium tuberculosis from human lung resections reveal a high frequency of polyclonal infections. Nat Commun 2021; 12:2716. [PMID: 33976135 PMCID: PMC8113332 DOI: 10.1038/s41467-021-22705-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/22/2021] [Indexed: 01/15/2023] Open
Abstract
Polyclonal infections occur when at least two unrelated strains of the same pathogen are detected in an individual. This has been linked to worse clinical outcomes in tuberculosis, as undetected strains with different antibiotic resistance profiles can lead to treatment failure. Here, we examine the amount of polyclonal infections in sputum and surgical resections from patients with tuberculosis in the country of Georgia. For this purpose, we sequence and analyse the genomes of Mycobacterium tuberculosis isolated from the samples, acquired through an observational clinical study (NCT02715271). Access to the lung enhanced the detection of multiple strains (40% of surgery cases) as opposed to just using a sputum sample (0-5% in the general population). We show that polyclonal infections often involve genetically distant strains and can be associated with reversion of the patient's drug susceptibility profile over time. In addition, we find different patterns of genetic diversity within lesions and across patients, including mutational signatures known to be associated with oxidative damage; this suggests that reactive oxygen species may be acting as a selective pressure in the granuloma environment. Our results support the idea that the magnitude of polyclonal infections in high-burden tuberculosis settings is underestimated when only testing sputum samples.
Collapse
MESH Headings
- Antitubercular Agents/therapeutic use
- Biopsy
- Clone Cells
- Cohort Studies
- Drug Resistance, Multiple, Bacterial/genetics
- Genetic Variation
- Genome, Bacterial
- Georgia (Republic)
- Granuloma/drug therapy
- Granuloma/microbiology
- Granuloma/pathology
- Granuloma/surgery
- Humans
- Lung/microbiology
- Lung/pathology
- Lung/surgery
- Mycobacterium tuberculosis/classification
- Mycobacterium tuberculosis/drug effects
- Mycobacterium tuberculosis/genetics
- Mycobacterium tuberculosis/pathogenicity
- Reactive Oxygen Species/metabolism
- Sputum/microbiology
- Tuberculosis, Multidrug-Resistant/drug therapy
- Tuberculosis, Multidrug-Resistant/microbiology
- Tuberculosis, Multidrug-Resistant/pathology
- Tuberculosis, Multidrug-Resistant/surgery
- Tuberculosis, Pulmonary/drug therapy
- Tuberculosis, Pulmonary/microbiology
- Tuberculosis, Pulmonary/pathology
- Tuberculosis, Pulmonary/surgery
Collapse
Affiliation(s)
| | - Natalia Shubladze
- National Center for Tuberculosis and Lung Diseases of Georgia, Tbilisi, Georgia
| | - Iza Khurtsilava
- National Center for Tuberculosis and Lung Diseases of Georgia, Tbilisi, Georgia
| | - Zaza Avaliani
- National Center for Tuberculosis and Lung Diseases of Georgia, Tbilisi, Georgia
| | - Nino Bablishvili
- National Center for Tuberculosis and Lung Diseases of Georgia, Tbilisi, Georgia
| | | | | | - Andrei Gabrielian
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, U.S. Department of Health and Human Services, Maryland, USA
| | - Alex Rosenthal
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, U.S. Department of Health and Human Services, Maryland, USA
| | - Cristina Vilaplana
- Fundació Institut Germans Trias i Pujol (IGTP), Barcelona, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- CIBER of Respiratory Diseases, Madrid, Spain
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Russell R Kempker
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, USA
| | - Sergo Vashakidze
- National Center for Tuberculosis and Lung Diseases of Georgia, Tbilisi, Georgia
| | - Iñaki Comas
- Instituto de Biomedicina de Valencia IBV-CSIC, Valencia, Spain.
- CIBER in Epidemiology and Public Health, Madrid, Spain.
| |
Collapse
|
11
|
Neutrophils in Tuberculosis: Cell Biology, Cellular Networking and Multitasking in Host Defense. Int J Mol Sci 2021; 22:ijms22094801. [PMID: 33946542 PMCID: PMC8125784 DOI: 10.3390/ijms22094801] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 12/20/2022] Open
Abstract
Neutrophils readily infiltrate infection foci, phagocytose and usually destroy microbes. In tuberculosis (TB), a chronic pulmonary infection caused by Mycobacterium tuberculosis (Mtb), neutrophils harbor bacilli, are abundant in tissue lesions, and their abundances in blood correlate with poor disease outcomes in patients. The biology of these innate immune cells in TB is complex. Neutrophils have been assigned host-beneficial as well as deleterious roles. The short lifespan of neutrophils purified from blood poses challenges to cell biology studies, leaving intracellular biological processes and the precise consequences of Mtb–neutrophil interactions ill-defined. The phenotypic heterogeneity of neutrophils, and their propensity to engage in cellular cross-talk and to exert various functions during homeostasis and disease, have recently been reported, and such observations are newly emerging in TB. Here, we review the interactions of neutrophils with Mtb, including subcellular events and cell fate upon infection, and summarize the cross-talks between neutrophils and lung-residing and -recruited cells. We highlight the roles of neutrophils in TB pathophysiology, discussing recent findings from distinct models of pulmonary TB, and emphasize technical advances that could facilitate the discovery of novel neutrophil-related disease mechanisms and enrich our knowledge of TB pathogenesis.
Collapse
|
12
|
Ordonez AA, Tucker EW, Anderson CJ, Carter CL, Ganatra S, Kaushal D, Kramnik I, Lin PL, Madigan CA, Mendez S, Rao J, Savic RM, Tobin DM, Walzl G, Wilkinson RJ, Lacourciere KA, Via LE, Jain SK. Visualizing the dynamics of tuberculosis pathology using molecular imaging. J Clin Invest 2021; 131:145107. [PMID: 33645551 PMCID: PMC7919721 DOI: 10.1172/jci145107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nearly 140 years after Robert Koch discovered Mycobacterium tuberculosis, tuberculosis (TB) remains a global threat and a deadly human pathogen. M. tuberculosis is notable for complex host-pathogen interactions that lead to poorly understood disease states ranging from latent infection to active disease. Additionally, multiple pathologies with a distinct local milieu (bacterial burden, antibiotic exposure, and host response) can coexist simultaneously within the same subject and change independently over time. Current tools cannot optimally measure these distinct pathologies or the spatiotemporal changes. Next-generation molecular imaging affords unparalleled opportunities to visualize infection by providing holistic, 3D spatial characterization and noninvasive, temporal monitoring within the same subject. This rapidly evolving technology could powerfully augment TB research by advancing fundamental knowledge and accelerating the development of novel diagnostics, biomarkers, and therapeutics.
Collapse
Affiliation(s)
- Alvaro A. Ordonez
- Center for Infection and Inflammation Imaging Research
- Center for Tuberculosis Research
- Department of Pediatrics, and
| | - Elizabeth W. Tucker
- Center for Infection and Inflammation Imaging Research
- Center for Tuberculosis Research
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Claire L. Carter
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, New Jersey, USA
| | - Shashank Ganatra
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Igor Kramnik
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusets, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Philana L. Lin
- Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Cressida A. Madigan
- Department of Biological Sciences, UCSD, San Diego, La Jolla, California, USA
| | - Susana Mendez
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Rockville, Maryland, USA
| | - Jianghong Rao
- Molecular Imaging Program at Stanford, Department of Radiology and Chemistry, Stanford University, Stanford, California, USA
| | - Rada M. Savic
- Department of Bioengineering and Therapeutic Sciences, School of Pharmacy and Medicine, UCSF, San Francisco, California, USA
| | - David M. Tobin
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Gerhard Walzl
- SAMRC Centre for Tuberculosis Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
| | - Robert J. Wilkinson
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
- Wellcome Centre for Infectious Diseases Research in Africa and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- The Francis Crick Institute, London, United Kingdom
| | - Karen A. Lacourciere
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Rockville, Maryland, USA
| | - Laura E. Via
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, and Tuberculosis Imaging Program, Division of Intramural Research, NIAID, NIH, Bethesda, Maryland, USA
| | - Sanjay K. Jain
- Center for Infection and Inflammation Imaging Research
- Center for Tuberculosis Research
- Department of Pediatrics, and
| |
Collapse
|
13
|
Matos ADO, Dantas PHDS, Silva-Sales M, Sales-Campos H. TREM-1 isoforms in bacterial infections: to immune modulation and beyond. Crit Rev Microbiol 2021; 47:290-306. [PMID: 33522328 DOI: 10.1080/1040841x.2021.1878106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The triggering receptor expressed on myeloid cells 1 (TREM-1) is an innate immunity receptor associated with the amplification of inflammation in sterile and non-sterile inflammatory disorders. Since its first description, the two isoforms of the receptor, membrane and soluble (mTREM-1 and sTREM-1, respectively) have been largely explored in the immunopathogenesis of several bacterial diseases and sepsis. The role of the receptor in these scenarios seems to be at least partly dependent on the source/type of bacteria, host and context. As uncontrolled inflammation is a result of several bacterial infections, the inhibition of the receptor has been considered as a promising approach to treat such conditions. Further, sTREM-1 has been explored as a biomarker for diagnosis and/or prognosis of several bacterial diseases. Therefore, this review aims to provide an updated insight into how the receptor influences and is influenced by bacterial infections, highlighting the advances regarding the use/manipulation of TREM-1 isoforms in biomedical research and clinical practice.
Collapse
Affiliation(s)
| | | | - Marcelle Silva-Sales
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | | |
Collapse
|
14
|
Bell LC, Meydan C, Kim J, Foox J, Butler D, Mason CE, Shapira SD, Noursadeghi M, Pollara G. Transcriptional response modules characterize IL-1β and IL-6 activity in COVID-19. iScience 2021; 24:101896. [PMID: 33319166 PMCID: PMC7721347 DOI: 10.1016/j.isci.2020.101896] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/16/2020] [Accepted: 12/02/2020] [Indexed: 12/16/2022] Open
Abstract
Dysregulated IL-1β and IL-6 responses have been implicated in the pathogenesis of severe Coronavirus Disease 2019 (COVID-19). Innovative approaches for evaluating the biological activity of these cytokines in vivo are urgently needed to complement clinical trials of therapeutic targeting of IL-1β and IL-6 in COVID-19. We show that the expression of IL-1β or IL-6 inducible transcriptional signatures (modules) reflects the bioactivity of these cytokines in immunopathology modelled by juvenile idiopathic arthritis (JIA) and rheumatoid arthritis. In COVID-19, elevated expression of IL-1β and IL-6 response modules, but not the cytokine transcripts themselves, is a feature of infection in the nasopharynx and blood but is not associated with severity of COVID-19 disease, length of stay, or mortality. We propose that IL-1β and IL-6 transcriptional response modules provide a dynamic readout of functional cytokine activity in vivo, aiding quantification of the biological effects of immunomodulatory therapies in COVID-19.
Collapse
Affiliation(s)
- Lucy C.K. Bell
- Division of Infection & Immunity, University College London, Cruciform Building, Gower Street, London WC1E 6BT, UK
- Hospital for Tropical Diseases, University College London Hospitals NHS Trust, London, UK
| | - Cem Meydan
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Jacob Kim
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Jonathan Foox
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Daniel Butler
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Christopher E. Mason
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Sagi D. Shapira
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Mahdad Noursadeghi
- Division of Infection & Immunity, University College London, Cruciform Building, Gower Street, London WC1E 6BT, UK
- Hospital for Tropical Diseases, University College London Hospitals NHS Trust, London, UK
| | - Gabriele Pollara
- Division of Infection & Immunity, University College London, Cruciform Building, Gower Street, London WC1E 6BT, UK
- Department of Infection, Royal Free London NHS Trust, London, UK
| |
Collapse
|
15
|
Bell LCK, Meydan C, Kim J, Foox J, Butler D, Mason CE, Shapira SD, Noursadeghi M, Pollara G. Transcriptional response modules characterise IL-1β and IL-6 activity in COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.07.22.202275. [PMID: 33299992 PMCID: PMC7724660 DOI: 10.1101/2020.07.22.202275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dysregulated IL-1β and IL-6 responses have been implicated in the pathogenesis of severe Coronavirus Disease 2019 (COVID-19). Innovative approaches for evaluating the biological activity of these cytokines in vivo are urgently needed to complement clinical trials of therapeutic targeting of IL-1β and IL-6 in COVID-19. We show that the expression of IL-1β or IL-6 inducible transcriptional signatures (modules) reflects the bioactivity of these cytokines in immunopathology modelled by juvenile idiopathic arthritis (JIA) and rheumatoid arthritis. In COVID-19, elevated expression of IL-1β and IL-6 response modules, but not the cytokine transcripts themselves, is a feature of infection in the nasopharynx and blood, but is not associated with severity of COVID-19 disease, length of stay or mortality. We propose that IL-1β and IL-6 transcriptional response modules provide a dynamic readout of functional cytokine activity in vivo, aiding quantification of the biological effects of immunomodulatory therapies in COVID-19.
Collapse
Affiliation(s)
- Lucy CK Bell
- Division of Infection & Immunity, University College London, London, UK
- Hospital for Tropical Diseases, University College London Hospitals NHS Trust, London, UK
| | - Cem Meydan
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Jacob Kim
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Jonathan Foox
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Daniel Butler
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Christopher E. Mason
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Sagi D. Shapira
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Mahdad Noursadeghi
- Division of Infection & Immunity, University College London, London, UK
- Hospital for Tropical Diseases, University College London Hospitals NHS Trust, London, UK
| | - Gabriele Pollara
- Division of Infection & Immunity, University College London, London, UK
- Department of Infection, Royal Free London NHS Trust, London, UK
| |
Collapse
|
16
|
Katoto PDMC, Musole P, Maheshe G, Bamuleke B, Murhula A, Balungwe P, Byamungu LN. A miner with No left lung: Extensive pulmonary destruction in delayed effective Multi-Drug-Resistant Tuberculosis treatment. Respir Med Case Rep 2020; 31:101234. [PMID: 33117645 PMCID: PMC7582097 DOI: 10.1016/j.rmcr.2020.101234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 11/28/2022] Open
Abstract
We report a case of extensive pulmonary destruction due to delayed effective pulmonary tuberculosis (TB) treatment in an adult artisanal miner in eastern Democratic Republic of Congo. Xpert MTB/RIF was positive after his second rifampicin-susceptible TB treatment. Chest X-rays were suggestive of large cavity, fibrosis of remaining lung and air-fluid levels at the base of the destroyed lung. The patient passed away after delayed effective TB regimens. Clinicians should be aware that urgent surgical intervention is often required to prevent lethal acute respiratory failure and shock notwithstanding effective chemotherapy in such condition. Effort is needed to timely diagnose multidrug resistance TB and to implement thoracic surgery for TB in high burden countries.
Collapse
Affiliation(s)
- Patrick D M C Katoto
- Department of Internal Medicine, Division of Respiratory Medicine & Prof. Lurhuma Biomedical Research Laboratory, Mycobacterium Unit, The Expertise Center on Mining Governance (CEGEMI), Catholic University of Bukavu, Bukavu, Democratic Republic of the Congo.,Department of Global Health, Centre for Infectious Diseases, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Patrick Musole
- Department of Internal Medicine, Division of Respiratory Medicine & Prof. Lurhuma Biomedical Research Laboratory, Mycobacterium Unit, The Expertise Center on Mining Governance (CEGEMI), Catholic University of Bukavu, Bukavu, Democratic Republic of the Congo
| | - Ghislain Maheshe
- Department of Medical Imagery, Provincial General Hospital of Bukavu, Catholic University of Bukavu, Bukavu, Democratic Republic of the Congo
| | - Bertrand Bamuleke
- Department of Internal Medicine, Division of Respiratory Medicine & Prof. Lurhuma Biomedical Research Laboratory, Mycobacterium Unit, The Expertise Center on Mining Governance (CEGEMI), Catholic University of Bukavu, Bukavu, Democratic Republic of the Congo
| | - Aime Murhula
- Department of Internal Medicine, Division of Respiratory Medicine & Prof. Lurhuma Biomedical Research Laboratory, Mycobacterium Unit, The Expertise Center on Mining Governance (CEGEMI), Catholic University of Bukavu, Bukavu, Democratic Republic of the Congo
| | - Patrick Balungwe
- Department of Otorhinolaryngology, Provincial General Hospital of Bukavu, Catholic University of Bukavu, Bukavu, Democratic Republic of the Congo
| | - Liliane N Byamungu
- Department of Paediatric, Provincial General Hospital of Bukavu, Catholic University of Bukavu, Bukavu, Democratic Republic of the Congo.,Department of Paediatric, University of KwaZulu Natal, Durban, South Africa
| |
Collapse
|
17
|
Davids M, Pooran A, Hermann C, Mottay L, Thompson F, Cardenas J, Gu J, Koeuth T, Meldau R, Limberis J, Gina P, Srivastava S, Calder B, Esmail A, Tomasicchio M, Blackburn J, Gumbo T, Dheda K. A Human Lung Challenge Model to Evaluate the Safety and Immunogenicity of PPD and Live Bacillus Calmette-Guérin. Am J Respir Crit Care Med 2020; 201:1277-1291. [PMID: 31860339 DOI: 10.1164/rccm.201908-1580oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale: A human model to better understand tuberculosis immunopathogenesis and facilitate vaccine development is urgently needed.Objectives: We evaluated the feasibility, safety, and immunogenicity of live bacillus Calmette-Guérin (BCG) in a lung-oriented controlled human infection model.Methods: We recruited 106 healthy South African participants with varying degrees of tuberculosis susceptibility. Live BCG, sterile PPD, and saline were bronchoscopically instilled into separate lung segments (n = 65). A control group (n = 34) underwent a single bronchoscopy without challenge. The primary outcome was safety. Cellular and antibody immune signatures were identified in BAL before and 3 days after challenge using flow cytometry, ELISA, RNA sequencing, and mass spectrometry.Measurements and Main Results: The frequency of adverse events was low (9.4%; n = 10), similar in the challenge versus control groups (P = 0.8), and all adverse events were mild and managed conservatively in an outpatient setting. The optimal PPD and BCG dose was 0.5 TU and 104 cfu, respectively, based on changes in BAL cellular profiles (P = 0.02) and antibody responses (P = 0.01) at incremental doses before versus after challenge. At 104 versus 103 cfu BCG, there was a significant increase in number of differentially expressed genes (367 vs. 3; P < 0.001) and dysregulated proteins (64 vs. 0; P < 0.001). Immune responses were highly setting specific (in vitro vs. in vivo) and compartment specific (BAL vs. blood) and localized to the challenged lung segments.Conclusions: A lung-oriented mycobacterial controlled human infection model using live BCG and PPD is feasible and safe. These data inform the study of tuberculosis immunopathogenesis and strategies for evaluation and development of tuberculosis vaccine candidates.
Collapse
Affiliation(s)
- Malika Davids
- Centre for Lung Infection and Immunity, University of Cape Town Lung Institute, Cape Town, South Africa.,South African Medical Research Council/University of Cape Town Centre for the Study of Antimicrobial Resistance, Cape Town, South Africa
| | - Anil Pooran
- Centre for Lung Infection and Immunity, University of Cape Town Lung Institute, Cape Town, South Africa.,South African Medical Research Council/University of Cape Town Centre for the Study of Antimicrobial Resistance, Cape Town, South Africa
| | - Clemens Hermann
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Lynelle Mottay
- Centre for Lung Infection and Immunity, University of Cape Town Lung Institute, Cape Town, South Africa.,South African Medical Research Council/University of Cape Town Centre for the Study of Antimicrobial Resistance, Cape Town, South Africa
| | - Fawziyah Thompson
- Centre for Lung Infection and Immunity, University of Cape Town Lung Institute, Cape Town, South Africa.,South African Medical Research Council/University of Cape Town Centre for the Study of Antimicrobial Resistance, Cape Town, South Africa
| | - Jacob Cardenas
- Baylor Institute for Immunology Research, Dallas, Texas; and
| | - Jinghua Gu
- Baylor Institute for Immunology Research, Dallas, Texas; and
| | - Thearith Koeuth
- Baylor Institute for Immunology Research, Dallas, Texas; and
| | - Richard Meldau
- Centre for Lung Infection and Immunity, University of Cape Town Lung Institute, Cape Town, South Africa.,South African Medical Research Council/University of Cape Town Centre for the Study of Antimicrobial Resistance, Cape Town, South Africa
| | - Jason Limberis
- Centre for Lung Infection and Immunity, University of Cape Town Lung Institute, Cape Town, South Africa.,South African Medical Research Council/University of Cape Town Centre for the Study of Antimicrobial Resistance, Cape Town, South Africa
| | - Phindile Gina
- Centre for Lung Infection and Immunity, University of Cape Town Lung Institute, Cape Town, South Africa.,South African Medical Research Council/University of Cape Town Centre for the Study of Antimicrobial Resistance, Cape Town, South Africa
| | | | - Bridget Calder
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Aliasgar Esmail
- Centre for Lung Infection and Immunity, University of Cape Town Lung Institute, Cape Town, South Africa.,South African Medical Research Council/University of Cape Town Centre for the Study of Antimicrobial Resistance, Cape Town, South Africa
| | - Michele Tomasicchio
- Centre for Lung Infection and Immunity, University of Cape Town Lung Institute, Cape Town, South Africa.,South African Medical Research Council/University of Cape Town Centre for the Study of Antimicrobial Resistance, Cape Town, South Africa
| | - Jonathan Blackburn
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Tawanda Gumbo
- Baylor Institute for Immunology Research, Dallas, Texas; and
| | - Keertan Dheda
- Centre for Lung Infection and Immunity, University of Cape Town Lung Institute, Cape Town, South Africa.,South African Medical Research Council/University of Cape Town Centre for the Study of Antimicrobial Resistance, Cape Town, South Africa.,Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
18
|
Dheda K, Gumbo T, Maartens G, Dooley KE, Murray M, Furin J, Nardell EA, Warren RM. The Lancet Respiratory Medicine Commission: 2019 update: epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant and incurable tuberculosis. THE LANCET RESPIRATORY MEDICINE 2020; 7:820-826. [PMID: 31486393 DOI: 10.1016/s2213-2600(19)30263-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 01/23/2023]
Abstract
The Lancet Respiratory Medicine Commission on drug-resistant tuberculosis was published in 2017, which comprehensively reviewed and provided recommendations on various aspects of the disease. Several key new developments regarding drug-resistant tuberculosis are outlined in this Commission Update. The WHO guidelines on treating drug-resistant tuberculosis were updated in 2019 with a reclassification of second line anti-tuberculosis drugs. An injection-free MDR tuberculosis treatment regimen is now recommended. Over the past 3 years, advances in treatment include the recognition of the safety and mortality benefit of bedaquiline, the finding that the 9-11 month injectable-based 'Bangladesh' regimen was non-inferior to longer regimens, and promising interim results of a novel 6 month 3-drug regimen (bedaquiline, pretomanid, and linezolid). Studies of explanted lungs from patients with drug-resistant tuberculosis have shown substantial drug-specific gradients across pulmonary cavities, suggesting that alternative dosing and drug delivery strategies are needed to reduce functional monotherapy at the site of disease. Several controversies are discussed including the optimal route of drug administration, optimal number of drugs constituting a regimen, selection of individual drugs for a regimen, duration of the regimen, and minimal desirable standards of antibiotic stewardship. Newer rapid nucleic acid amplification test platforms, including point-of-care systems that facilitate active case-finding, are discussed. The rapid diagnosis of resistance to other drugs, (notably fluoroquinolones), and detection of resistance by targeted or whole genome sequencing will probably change the diagnostic landscape in the near future.
Collapse
Affiliation(s)
- Keertan Dheda
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African Medical Research Council/University of Cape Town Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa; Faculty of Infectious and Tropical Diseases, Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK.
| | - Tawanda Gumbo
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX, USA
| | - Gary Maartens
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Kelly E Dooley
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Megan Murray
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| | - Jennifer Furin
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA; T H Chan School of Public Health, Harvard Medical School, Boston, MA, USA
| | - Edward A Nardell
- T H Chan School of Public Health, Harvard Medical School, Boston, MA, USA
| | - Robin M Warren
- South African Medical Research Council Centre for Tuberculosis Research/Department of Science and Technology/ National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Tygerberg, South Africa
| | | |
Collapse
|
19
|
Howard NC, Khader SA. Immunometabolism during Mycobacterium tuberculosis Infection. Trends Microbiol 2020; 28:832-850. [PMID: 32409147 DOI: 10.1016/j.tim.2020.04.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/26/2022]
Abstract
Over a quarter of the world's population is infected with Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB). Approximately 3.4% of new and 18% of recurrent cases of TB are multidrug-resistant (MDR) or rifampicin-resistant. Recent evidence has shown that certain drug-resistant strains of Mtb modulate host metabolic reprogramming, and therefore immune responses, during infection. However, it remains unclear how widespread these mechanisms are among circulating MDR Mtb strains and what impact drug-resistance-conferring mutations have on immunometabolism during TB. While few studies have directly addressed metabolic reprogramming in the context of drug-resistant Mtb infection, previous literature examining how drug-resistance mutations alter Mtb physiology and differences in the immune response to drug-resistant Mtb provides significant insights into how drug-resistant strains of Mtb differentially impact immunometabolism.
Collapse
Affiliation(s)
- Nicole C Howard
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
20
|
Lee Y, Raviglione MC, Flahault A. Use of Digital Technology to Enhance Tuberculosis Control: Scoping Review. J Med Internet Res 2020; 22:e15727. [PMID: 32053111 PMCID: PMC7055857 DOI: 10.2196/15727] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Tuberculosis (TB) is the leading cause of death from a single infectious agent, with around 1.5 million deaths reported in 2018, and is a major contributor to suffering worldwide, with an estimated 10 million new cases every year. In the context of the World Health Organization's End TB strategy and the quest for digital innovations, there is a need to understand what is happening around the world regarding research into the use of digital technology for better TB care and control. OBJECTIVE The purpose of this scoping review was to summarize the state of research on the use of digital technology to enhance TB care and control. This study provides an overview of publications covering this subject and answers 3 main questions: (1) to what extent has the issue been addressed in the scientific literature between January 2016 and March 2019, (2) which countries have been investing in research in this field, and (3) what digital technologies were used? METHODS A Web-based search was conducted on PubMed and Web of Science. Studies that describe the use of digital technology with specific reference to keywords such as TB, digital health, eHealth, and mHealth were included. Data from selected studies were synthesized into 4 functions using narrative and graphical methods. Such digital health interventions were categorized based on 2 classifications, one by function and the other by targeted user. RESULTS A total of 145 relevant studies were identified out of the 1005 published between January 2016 and March 2019. Overall, 72.4% (105/145) of the research focused on patient care and 20.7% (30/145) on surveillance and monitoring. Other programmatic functions 4.8% (7/145) and electronic learning 2.1% (3/145) were less frequently studied. Most digital health technologies used for patient care included primarily diagnostic 59.4% (63/106) and treatment adherence tools 40.6% (43/106). On the basis of the second type of classification, 107 studies targeted health care providers (107/145, 73.8%), 20 studies targeted clients (20/145, 13.8%), 17 dealt with data services (17/145, 11.7%), and 1 study was on the health system or resource management. The first authors' affiliations were mainly from 3 countries: the United States (30/145 studies, 20.7%), China (20/145 studies, 13.8%), and India (17/145 studies, 11.7%). The researchers from the United States conducted their research both domestically and abroad, whereas researchers from China and India conducted all studies domestically. CONCLUSIONS The majority of research conducted between January 2016 and March 2019 on digital interventions for TB focused on diagnostic tools and treatment adherence technologies, such as video-observed therapy and SMS. Only a few studies addressed interventions for data services and health system or resource management.
Collapse
Affiliation(s)
- Yejin Lee
- Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Global Studies Institute, University of Geneva, Geneva, Switzerland
| | - Mario C Raviglione
- Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Global Studies Institute, University of Geneva, Geneva, Switzerland
- Centre for Multidisciplinary Research in Health Science (MACH), Università di Milano, Milan, Italy
| | - Antoine Flahault
- Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Global Studies Institute, University of Geneva, Geneva, Switzerland
| |
Collapse
|
21
|
Mashabela GT, de Wet TJ, Warner DF. Mycobacterium tuberculosis Metabolism. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0067-2019. [PMID: 31350832 PMCID: PMC10957194 DOI: 10.1128/microbiolspec.gpp3-0067-2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Indexed: 02/06/2023] Open
Abstract
Mycobacterium tuberculosis is the cause of tuberculosis (TB), a disease which continues to overwhelm health systems in endemic regions despite the existence of effective combination chemotherapy and the widespread use of a neonatal anti-TB vaccine. For a professional pathogen, M. tuberculosis retains a surprisingly large proportion of the metabolic repertoire found in nonpathogenic mycobacteria with very different lifestyles. Moreover, evidence that additional functions were acquired during the early evolution of the M. tuberculosis complex suggests the organism has adapted (and augmented) the metabolic pathways of its environmental ancestor to persistence and propagation within its obligate human host. A better understanding of M. tuberculosis pathogenicity, however, requires the elucidation of metabolic functions under disease-relevant conditions, a challenge complicated by limited knowledge of the microenvironments occupied and nutrients accessed by bacilli during host infection, as well as the reliance in experimental mycobacteriology on a restricted number of experimental models with variable relevance to clinical disease. Here, we consider M. tuberculosis metabolism within the framework of an intimate host-pathogen coevolution. Focusing on recent advances in our understanding of mycobacterial metabolic function, we highlight unusual adaptations or departures from the better-characterized model intracellular pathogens. We also discuss the impact of these mycobacterial "innovations" on the susceptibility of M. tuberculosis to existing and experimental anti-TB drugs, as well as strategies for targeting metabolic pathways. Finally, we offer some perspectives on the key gaps in the current knowledge of fundamental mycobacterial metabolism and the lessons which might be learned from other systems.
Collapse
Affiliation(s)
- Gabriel T Mashabela
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- Current address: Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, University of Stellenbosch, South Africa
| | - Timothy J de Wet
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- Department of Integrative Biomedical Sciences, University of Cape Town, South Africa
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- Wellcome Centre for Infectious Disease Research in Africa, University of Cape Town, South Africa
| |
Collapse
|