1
|
Xiong M, Jain PP, Chen J, Babicheva A, Zhao T, Alotaibi M, Kim NH, Lai N, Izadi A, Rodriguez M, Li J, Balistrieri A, Balistrieri F, Parmisano S, Sun X, Voldez-Jasso D, Shyy JYJ, Thistlethwaite PA, Wang J, Makino A, Yuan JXJ. Mouse model of experimental pulmonary hypertension: Lung angiogram and right heart catheterization. Pulm Circ 2021; 11:20458940211041512. [PMID: 34531976 PMCID: PMC8438952 DOI: 10.1177/20458940211041512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 05/26/2021] [Indexed: 12/15/2022] Open
Abstract
Pulmonary arterial hypertension is a progressive and fatal disease and rodents with experimental pulmonary hypertension (PH) are often used to study pathogenic mechanisms, identify therapeutic targets, and develop novel drugs for treatment. Here we describe a hands-on set of experimental approaches including ex vivo lung angiography and histology and in vivo right heart catheterization (RHC) to phenotypically characterize pulmonary hemodynamics and lung vascular structure in normal mice and mice with experimental PH. We utilized Microfil polymer as contrast in our ex vivo lung angiogram to quantitatively examine pulmonary vascular remodeling in mice with experimental PH, and lung histology to estimate pulmonary artery wall thickness. The peripheral lung vascular images were selected to determine the total length of lung vascular branches, the number of branches and the number of junctions in a given area (mm-2). We found that the three parameters determined by angiogram were not significantly different among the apical, middle, and basal regions of the mouse lung from normal mice, and were not influenced by gender (no significant difference between female and male mice). We conducted RHC in mice to measure right ventricular systolic pressure, a surrogate measure for pulmonary artery systolic pressure and right ventricle (RV) contractility (RV ± dP/dtmax) to estimate RV function. RHC, a short time (4-6 min) procedure, did not alter the lung angiography measurements. In summary, utilizing ex vivo angiogram to determine peripheral vascular structure and density in the mouse lung and utilizing in vivo RHC to measure pulmonary hemodynamics are reliable readouts to phenotype normal mice and mice with experimental PH. Lung angiogram and RHC are also reliable approaches to examine pharmacological effects of new drugs on pulmonary vascular remodeling and hemodynamics.
Collapse
Affiliation(s)
- Mingmei Xiong
- Section of Physiology, University of California, San Diego, La Jolla, CA, USA
- Department of Critical Care Medicine, Guangzhou Medical University, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Pritesh P. Jain
- Section of Physiology, University of California, San Diego, La Jolla, CA, USA
| | - Jiyuan Chen
- Section of Physiology, University of California, San Diego, La Jolla, CA, USA
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | | | - Tengteng Zhao
- Section of Physiology, University of California, San Diego, La Jolla, CA, USA
| | - Mona Alotaibi
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Nick H. Kim
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ning Lai
- Section of Physiology, University of California, San Diego, La Jolla, CA, USA
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Amin Izadi
- Section of Physiology, University of California, San Diego, La Jolla, CA, USA
| | - Marisela Rodriguez
- Section of Physiology, University of California, San Diego, La Jolla, CA, USA
| | - Jifeng Li
- Section of Physiology, University of California, San Diego, La Jolla, CA, USA
- Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Angela Balistrieri
- Section of Physiology, University of California, San Diego, La Jolla, CA, USA
| | | | - Sophia Parmisano
- Section of Physiology, University of California, San Diego, La Jolla, CA, USA
| | - Xin Sun
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Daniela Voldez-Jasso
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - John Y-J. Shyy
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Jian Wang
- Section of Physiology, University of California, San Diego, La Jolla, CA, USA
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Ayako Makino
- Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, USA
| | - Jason X.-J. Yuan
- Section of Physiology, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
2
|
Hiraide T, Teratani T, Uemura S, Yoshimatsu Y, Naganuma M, Shinya Y, Momoi M, Kobayashi E, Hakamata Y, Fukuda K, Kanai T, Kataoka M. Pulmonary Arterial Hypertension Caused by AhR Signal Activation Protecting against Colitis. Am J Respir Crit Care Med 2021; 203:385-388. [PMID: 33052717 DOI: 10.1164/rccm.202009-3385le] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
| | | | - Shizuka Uemura
- Nippon Veterinary and Life Science University Tokyo, Japan and
| | | | | | | | | | | | - Yoji Hakamata
- Nippon Veterinary and Life Science University Tokyo, Japan and
| | | | | | | |
Collapse
|
3
|
Honda Y, Kosugi K, Fuchikami C, Kuramoto K, Numakura Y, Kuwano K. The selective PGI2 receptor agonist selexipag ameliorates Sugen 5416/hypoxia-induced pulmonary arterial hypertension in rats. PLoS One 2020; 15:e0240692. [PMID: 33057388 PMCID: PMC7561119 DOI: 10.1371/journal.pone.0240692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/01/2020] [Indexed: 11/25/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a lethal disease characterized by a progressive increase in pulmonary artery pressure due to an increase in vessel tone and occlusion of vessels. The endogenous vasodilator prostacyclin and its analogs are used as therapeutic agents for PAH. However, their pharmacological effects on occlusive vascular remodeling have not been elucidated yet. Selexipag is a recently approved, orally available and selective prostacyclin receptor agonist with a non-prostanoid structure. In this study, we investigated the pharmacological effects of selexipag on the pathology of chronic severe PAH in Sprague-Dawley and Fischer rat models in which PAH was induced by a combination of injection with the vascular endothelial growth factor receptor antagonist Sugen 5416 and exposure to hypoxia (SuHx). Oral administration of selexipag for three weeks significantly improved right ventricular systolic pressure and right ventricular (RV) hypertrophy in Sprague-Dawley SuHx rats. Selexipag attenuated the proportion of lung vessels with occlusive lesions and the medial wall thickness of lung arteries, corresponding to decreased numbers of Ki-67-positive cells and a reduced expression of collagen type 1 in remodeled vessels. Administration of selexipag to Fischer rats with SuHx-induced PAH reduced RV hypertrophy and mortality caused by RV failure. These effects were probably based on the potent prostacyclin receptor agonistic effect of selexipag on pulmonary vessels. Selexipag has been approved and is used in the clinical treatment of PAH worldwide. It is thought that these beneficial effects of prostacyclin receptor agonists on multiple aspects of PAH pathology contribute to the clinical outcomes in patients with PAH.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/therapeutic use
- Acetamides/pharmacology
- Acetamides/therapeutic use
- Animals
- Cell Proliferation/drug effects
- Collagen Type I/metabolism
- Disease Models, Animal
- Heart Ventricles/drug effects
- Heart Ventricles/physiopathology
- Hemodynamics/drug effects
- Hypertrophy, Right Ventricular/chemically induced
- Hypertrophy, Right Ventricular/physiopathology
- Hypoxia/complications
- Hypoxia/physiopathology
- Indoles
- Lung/drug effects
- Lung/pathology
- Lung/physiopathology
- Male
- Pulmonary Arterial Hypertension/complications
- Pulmonary Arterial Hypertension/drug therapy
- Pulmonary Arterial Hypertension/etiology
- Pulmonary Arterial Hypertension/physiopathology
- Pyrazines/pharmacology
- Pyrazines/therapeutic use
- Pyrroles
- Rats, Sprague-Dawley
- Receptors, Epoprostenol/agonists
- Receptors, Epoprostenol/metabolism
- Systole/drug effects
- Vascular Remodeling/drug effects
Collapse
Affiliation(s)
- Yohei Honda
- Discovery Research Laboratories, Nippon Shinyaku Co., Ltd, Kyoto, Japan
- * E-mail:
| | - Keiji Kosugi
- R&D Administration Division, Nippon Shinyaku Co., Ltd, Kyoto, Japan
| | - Chiaki Fuchikami
- Discovery Research Laboratories, Nippon Shinyaku Co., Ltd, Kyoto, Japan
| | - Kazuya Kuramoto
- R&D Administration Division, Nippon Shinyaku Co., Ltd, Kyoto, Japan
| | - Yuki Numakura
- Discovery Research Laboratories, Nippon Shinyaku Co., Ltd, Kyoto, Japan
| | - Keiichi Kuwano
- R&D Administration Division, Nippon Shinyaku Co., Ltd, Kyoto, Japan
| |
Collapse
|
4
|
Andersen A, van der Feen DE, Andersen S, Schultz JG, Hansmann G, Bogaard HJ. Animal models of right heart failure. Cardiovasc Diagn Ther 2020; 10:1561-1579. [PMID: 33224774 PMCID: PMC7666958 DOI: 10.21037/cdt-20-400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022]
Abstract
Right heart failure may be the ultimate cause of death in patients with acute or chronic pulmonary hypertension (PH). As PH is often secondary to other cardiovascular diseases, the treatment goal is to target the underlying disease. We do however know, that right heart failure is an independent risk factor, and therefore, treatments that improve right heart function may improve morbidity and mortality in patients with PH. There are no therapies that directly target and support the failing right heart and translation from therapies that improve left heart failure have been unsuccessful, with the exception of mineralocorticoid receptor antagonists. To understand the underlying pathophysiology of right heart failure and to aid in the development of new treatments we need solid animal models that mimic the pathophysiology of human disease. There are several available animal models of acute and chronic PH. They range from flow induced to pressure overload induced right heart failure and have been introduced in both small and large animals. When initiating new pre-clinical or basic research studies it is key to choose the right animal model to ensure successful translation to the clinical setting. Selecting the right animal model for the right study is hence important, but may be difficult due to the plethora of different models and local availability. In this review we provide an overview of the available animal models of acute and chronic right heart failure and discuss the strengths and limitations of the different models.
Collapse
Affiliation(s)
- Asger Andersen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Diederik E. van der Feen
- Center for Congenital Heart Diseases, University Medical Center Groningen, Groningen, The Netherlands
| | - Stine Andersen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
| | - Harm Jan Bogaard
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|