1
|
Yan Y, Chai X, Luo G, Liu X, Liu Z, Li Z, Cai H, Li W, Zhao J. Mechanical power of ventilation and survival in critically ill obese patients. Am J Emerg Med 2025; 93:160-164. [PMID: 40209338 DOI: 10.1016/j.ajem.2025.03.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/26/2025] [Accepted: 03/29/2025] [Indexed: 04/12/2025] Open
Abstract
BACKGROUND Obesity complicates mechanical ventilation due to altered respiratory mechanics, raising the risk of ventilator-induced lung injury (VILI). Mechanical power (MP) quantifies the energy transferred from the ventilator to the lungs per unit time, incorporating factors such as tidal volume, airway pressures, respiratory rate, and PEEP. The role of mechanical power as a predictor of outcomes in critically obese patients remains uncertain. METHODS This retrospective cohort study analyzed data from the MIMIC-IV database, including 1860 obese patients (BMI ≥ 30 kg/m2) on mechanical ventilation for at least 48 h. Mechanical power was calculated over the first and second 24-h intervals, with time-weighted averages considered. Logistic regression, propensity score matching, and inverse probability of treatment weighting were employed to assess the relationships between mechanical power and hospital mortality. RESULTS A total of 1860 patients were included in the final analysis, of whom 539 (29.0 %) experienced in-hospital mortality. The median mechanical power during the second 24 h of ventilation was 15.50 J/min [10.54, 21.45], while the time-weighted average mechanical power was 16.12 J/min [11.75, 20.94]. No significant association was found between mechanical power during the second 24 h of ventilation and hospital mortality (OR 0.99, 95 % CI 0.97-1.00). However, time-weighted average mechanical power was associated with hospital length of stay (OR 0.98, 95 % CI 0.96-1.00). Additionally, the duration of mechanical ventilation emerged as a significant predictor of hospital mortality, whereas mechanical power alone did not significantly impact ICU or 28-day mortality. CONCLUSIONS Mechanical power did not predict hospital mortality in critically ill obese patients, suggesting the need for tailored ventilatory strategies focusing on both mechanical power and exposure duration.
Collapse
Affiliation(s)
- Yun Yan
- Department of Anesthesiology, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, China
| | - Xin Chai
- Department of Critical Care Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Gang Luo
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiaowen Liu
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, China
| | - Zhen Liu
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, China
| | - Zhe Li
- Department of Anesthesiology, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, China
| | - Huamei Cai
- Department of Anesthesiology, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, China
| | - Weixia Li
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, China.
| | - Jing Zhao
- Department of Anesthesiology, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
2
|
Zhou L, Lin J, Zhuang M, Wang Y, Weng Q, Zhang H. Heliox ventilation in elderly, hypertensive ICU patients improves microcirculation: A randomized controlled study. J Crit Care 2024; 84:154897. [PMID: 39137689 DOI: 10.1016/j.jcrc.2024.154897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Conventional mechanical ventilation has adverse impacts on the hemodynamics of elderly, hypertensive ICU patients. Limited studies have addressed ways to ameliorate these negative effects. This study aimed to determine whether heliox ventilation could improve the hemodynamics, especially microcirculation, of elderly, hypertensive patients undergoing mechanical ventilation. METHODS Thirty-eight patients, over the age of 65 with essential hypertension who underwent invasive mechanical ventilation treatment, were divided into two groups: a control group of nitrogen‑oxygen ventilation (n = 19) and an experimental group of heliox ventilation (n = 19). The control group received conventional room air ventilation and the experimental group adopted the innovative, closed heliox ventilation technique. Changes in blood pressure, heart rate (HR), peripheral oxygen saturation (SpO2), central venous oxygen saturation (ScvO2), regional cerebral oxygen saturation (rSO2), lactic acid (Lac) and airway pressure were measured at 0,1,2,3 h under volume-controlled ventilation (VCV) mode throughout the study. Sublingual microcirculation parameters were additionally measured at 0 h and 3 h of ventilation treatment. RESULTS SpO2 in both groups increased after 1 h of ventilation compared with 0 h (p < 0.001), subsequently remaining stable. Compared with the control group, the experimental group showed a decrease in airway pressure and Lac, while blood pressure, ScvO2, and rSO2 increased (p < 0.05). Moreover, the sublingual microcirculation indexes in the experimental group improved compared with the control group (p < 0.05). CONCLUSIONS Heliox ventilation improves blood pressure and microcirculation in elderly hypertensive patients and may resolve the limitations of traditional nitrogen‑oxygen ventilation. TRIAL REGISTRATION This trial was registered. The Chinese trial registration number is ChiCTR2100043945. The date of registration is 6-3-2021.
Collapse
Affiliation(s)
- Lili Zhou
- Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, PR China; Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, PR China.
| | - Jing Lin
- Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, PR China; Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, PR China
| | - Mingkai Zhuang
- Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, PR China; Department of Digestive Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, PR China.
| | - Yue Wang
- Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, PR China; Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, PR China
| | - Qinyong Weng
- Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, PR China; Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, PR China.
| | - Hui Zhang
- Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, PR China; Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, PR China.
| |
Collapse
|
3
|
Rocha NN, Silva PL, Battaglini D, Rocco PRM. Heart-lung crosstalk in acute respiratory distress syndrome. Front Physiol 2024; 15:1478514. [PMID: 39493867 PMCID: PMC11527665 DOI: 10.3389/fphys.2024.1478514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Acute Respiratory Distress Syndrome (ARDS) is initiated by a primary insult that triggers a cascade of pathological events, including damage to lung epithelial and endothelial cells, extracellular matrix disruption, activation of immune cells, and the release of pro-inflammatory mediators. These events lead to increased alveolar-capillary barrier permeability, resulting in interstitial/alveolar edema, collapse, and subsequent hypoxia and hypercapnia. ARDS not only affects the lungs but also significantly impacts the cardiovascular system. We conducted a comprehensive literature review on heart-lung crosstalk in ARDS, focusing on the pathophysiology, effects of mechanical ventilation, hypoxemia, and hypercapnia on cardiac function, as well as ARDS secondary to cardiac arrest and cardiac surgery. Mechanical ventilation, essential for ARDS management, can increase intrathoracic pressure, decrease venous return and right ventricle preload. Moreover, acidemia and elevations in transpulmonary pressures with mechanical ventilation both increase pulmonary vascular resistance and right ventricle afterload. Cardiac dysfunction can exacerbate pulmonary edema and impair gas exchange, creating a vicious cycle, which hinders both heart and lung therapy. In conclusion, understanding the heart-lung crosstalk in ARDS is important to optimize therapeutic strategies. Future research should focus on elucidating the precise mechanisms underlying this interplay and developing targeted interventions that address both organs simultaneously.
Collapse
Affiliation(s)
- Nazareth N. Rocha
- Biomedical Institute, Department of Physiology and Pharmacology, Fluminense Federal University, Niteroi, Brazil
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro L. Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Denise Battaglini
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico, Genova, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, Genova, Italy
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Tanios M, Wu TT, Nguyen H(M, Smith L, Mahidhara R, Devlin JW. Comparing the impact of targeting limited driving pressure to low tidal volume ventilation on mortality in mechanically ventilated adults with COVID-19 ARDS: an exploratory target trial emulation. BMJ Open Respir Res 2024; 11:e002439. [PMID: 39353713 PMCID: PMC11448172 DOI: 10.1136/bmjresp-2024-002439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND An association between driving pressure (∆P) and the outcomes of invasive mechanical ventilation (IMV) may exist. However, the effect of a sustained limitation of ∆P on mortality in patients with acute respiratory distress syndrome (ARDS), including patients with COVID-19 (COVID-19-related acute respiratory distress syndrome (C-ARDS)) undergoing IMV, has not been rigorously evaluated. The use of emulations of a target trial in intensive care unit research remains in its infancy. To inform future, large ARDS target trials, we explored using a target trial emulation approach to analyse data from a cohort of IMV adults with C-ARDS to determine whether maintaining daily ∆p<15 cm H2O (in addition to traditional low tidal volume ventilation (LTVV) (tidal volume 5-7 cc/PBW+plateau pressure (Pplat) ≤30 cm H2O), compared with LTVV alone, affects the 28-day mortality. METHODS To emulate a target trial, adults with C-ARDS requiring >24 hours of IMV were considered to be assigned to limited ∆P or LTVV. Lung mechanics were measured twice daily after ventilator setting adjustments were made. To evaluate the effect of each lung-protective ventilation (LPV) strategy on the 28-day mortality, we fit a stabilised inverse probability weighted marginal structural model that adjusted for baseline and time-varying confounders known to affect protection strategy use/adherence or survival. RESULTS Among the 92 patients included, 27 (29.3%) followed limited ∆P ventilation, 23 (25.0%) the LTVV strategy and 42 (45.7%) received no LPV strategy. The adjusted estimated 28-day survival was 47.0% (95% CI 23%, 76%) in the limited ∆P group, 70.3% in the LTVV group (95% CI 37.6%, 100%) and 37.6% (95% CI 20.8%, 58.0%) in the no LPV strategy group. INTERPRETATION Limiting ∆P may not provide additional survival benefits for patients with C-ARDS over LTVV. Our results help inform the development of future target trial emulations focused on evaluating LPV strategies, including reduced ∆P, in adults with ARDS.
Collapse
Affiliation(s)
- Maged Tanios
- Long Beach Memorial Medical Center, Long Beach, California, USA
- Division of Pulmonary and Critical Care Medicine, University of California Irvine, Irvine, California, USA
| | - Ting Ting Wu
- Northeastern University - Boston Campus, Boston, Massachusetts, USA
- Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | - Louisa Smith
- Pharmacy and Health Systems Sciences, Northeastern University - Boston Campus, Boston, Massachusetts, USA
| | - Raja Mahidhara
- Long Beach Memorial Medical Center, Long Beach, California, USA
- Sound Physicians, Tacoma, Washington, USA
| | - John W Devlin
- Pharmacy and Health Systems Sciences, Northeastern University - Boston Campus, Boston, Massachusetts, USA
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Xavier TB, Coelho LV, Ferreira DAL, Cota y Raposeiras JM, Duran MS, Silva LA, da Motta-Ribeiro GC, Camilo LM, Carvalho ARS, Silva PL. Individualized positive end-expiratory pressure reduces driving pressure in obese patients during laparoscopic surgery under pneumoperitoneum: a randomized clinical trial. Front Physiol 2024; 15:1383167. [PMID: 38645690 PMCID: PMC11026699 DOI: 10.3389/fphys.2024.1383167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/19/2024] [Indexed: 04/23/2024] Open
Abstract
Introduction During pneumoperitoneum (PNP), airway driving pressure (ΔPRS) increases due to the stiffness of the chest wall and cephalic shift of the diaphragm, which favors atelectasis. In addition, depending on the mechanical power (MP) formulas, they may lead to different interpretations. Methods Patients >18 years of age with body mass index >35 kg/m2 were included in a single-center randomized controlled trial during their admission for bariatric surgery by abdominal laparoscopy. Intra-abdominal pressure was set at 15 mmHg at the pneumoperitoneum time point (PNP). After the recruitment maneuver, the lowest respiratory system elastance (ERS) was detected during the positive end-expiratory pressure (PEEP) step-wise decrement. Patients were randomized to the 1) CTRL group: ventilated with PEEP of 5 cmH2O and 2) PEEPIND group: ventilated with PEEP value associated with ERS that is 5% higher than its lowest level. Respiratory system mechanics and mean arterial pressure (MAP) were assessed at the PNP, 5 min after randomization (T1), and at the end of the ventilation protocol (T2); arterial blood gas was assessed at PNP and T2. ΔPRS was the primary outcome. Three MP formulas were used: MPA, which computes static PEEP × volume, elastic, and resistive components; MPB, which computes only the elastic component; and MPC, which computes static PEEP × volume, elastic, and resistive components without inspiratory holds. Results Twenty-eight patients were assessed for eligibility: eight were not included and 20 patients were randomized and allocated to CTRL and PEEPIND groups (n = 10/group). The PEEPIND ventilator strategy reduced ΔPRS when compared with the CTRL group (PEEPIND, 13 ± 2 cmH2O; CTRL, 22 ± 4 cmH2O; p < 0.001). Oxygenation improved in the PEEPIND group when compared with the CTRL group (p = 0.029), whereas MAP was comparable between the PEEPIND and CTRL groups. At the end of surgery, MPA and MPB were correlated in both the CTRL (rho = 0.71, p = 0.019) and PEEPIND (rho = 0.84, p = 0.020) groups but showed different bias (CTRL, -1.9 J/min; PEEPIND, +10.0 J/min). At the end of the surgery, MPA and MPC were correlated in both the CTRL (rho = 0.71, p = 0.019) and PEEPIND (rho = 0.84, p = 0.020) groups but showed different bias (CTRL, -1.9 J/min; PEEPIND, +10.0 J/min). Conclusion Individualized PEEP was associated with a reduction in ΔPRS and an improvement in oxygenation with comparable MAP. The MP, which solely computes the elastic component, better reflected the improvement in ΔPRS observed in the individualized PEEP group. Clinical Trial Registration The protocol was registered at the Brazilian Registry of Clinical Trials (U1111-1220-7296).
Collapse
Affiliation(s)
- Tiago Batista Xavier
- Laboratório de Fisiologia da Respiração, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Educação, Ciência e Tecnologia do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | - Leticia Almeida Silva
- Laboratório de Investigação Pulmonar, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Luciana Moisés Camilo
- Instituto de Educação, Ciência e Tecnologia do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Pedro Leme Silva
- Laboratório de Investigação Pulmonar, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Zheng CZ, Cortes-Puentes GA. Airway Versus Transpulmonary Driving Pressures During Pressure Support Ventilation in ARDS. Respir Care 2023; 68:1606-1608. [PMID: 37863827 PMCID: PMC10589109 DOI: 10.4187/respcare.11428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Affiliation(s)
- Christopher Z Zheng
- Department of Pulmonary and Critical Care Medicine Mayo Clinic Rochester, Minnesota
| | | |
Collapse
|
7
|
Boesing C, Schaefer L, Hammel M, Otto M, Blank S, Pelosi P, Rocco PRM, Luecke T, Krebs J. Individualized Positive End-expiratory Pressure Titration Strategies in Superobese Patients Undergoing Laparoscopic Surgery: Prospective and Nonrandomized Crossover Study. Anesthesiology 2023; 139:249-261. [PMID: 37224406 DOI: 10.1097/aln.0000000000004631] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
BACKGROUND Superobesity and laparoscopic surgery promote negative end-expiratory transpulmonary pressure that causes atelectasis formation and impaired respiratory mechanics. The authors hypothesized that end-expiratory transpulmonary pressure differs between fixed and individualized positive end-expiratory pressure (PEEP) strategies and mediates their effects on respiratory mechanics, end-expiratory lung volume, gas exchange, and hemodynamic parameters in superobese patients. METHODS In this prospective, nonrandomized crossover study including 40 superobese patients (body mass index 57.3 ± 6.4 kg/m2) undergoing laparoscopic bariatric surgery, PEEP was set according to (1) a fixed level of 8 cm H2O (PEEPEmpirical), (2) the highest respiratory system compliance (PEEPCompliance), or (3) an end-expiratory transpulmonary pressure targeting 0 cm H2O (PEEPTranspul) at different surgical positioning. The primary endpoint was end-expiratory transpulmonary pressure at different surgical positioning; secondary endpoints were respiratory mechanics, end-expiratory lung volume, gas exchange, and hemodynamic parameters. RESULTS Individualized PEEPCompliance compared to fixed PEEPEmpirical resulted in higher PEEP (supine, 17.2 ± 2.4 vs. 8.0 ± 0.0 cm H2O; supine with pneumoperitoneum, 21.5 ± 2.5 vs. 8.0 ± 0.0 cm H2O; and beach chair with pneumoperitoneum; 15.8 ± 2.5 vs. 8.0 ± 0.0 cm H2O; P < 0.001 each) and less negative end-expiratory transpulmonary pressure (supine, -2.9 ± 2.0 vs. -10.6 ± 2.6 cm H2O; supine with pneumoperitoneum, -2.9 ± 2.0 vs. -14.1 ± 3.7 cm H2O; and beach chair with pneumoperitoneum, -2.8 ± 2.2 vs. -9.2 ± 3.7 cm H2O; P < 0.001 each). Titrated PEEP, end-expiratory transpulmonary pressure, and lung volume were lower with PEEPCompliance compared to PEEPTranspul (P < 0.001 each). Respiratory system and transpulmonary driving pressure and mechanical power normalized to respiratory system compliance were reduced using PEEPCompliance compared to PEEPTranspul. CONCLUSIONS In superobese patients undergoing laparoscopic surgery, individualized PEEPCompliance may provide a feasible compromise regarding end-expiratory transpulmonary pressures compared to PEEPEmpirical and PEEPTranspul, because PEEPCompliance with slightly negative end-expiratory transpulmonary pressures improved respiratory mechanics, lung volumes, and oxygenation while preserving cardiac output. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Christoph Boesing
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany; Theodor-Kutzer-Ufer 1-3, Mannheim, Germany
| | - Laura Schaefer
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany; Theodor-Kutzer-Ufer 1-3, Mannheim, Germany
| | - Marvin Hammel
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany; Theodor-Kutzer-Ufer 1-3, Mannheim, Germany
| | - Mirko Otto
- Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany; Theodor-Kutzer-Ufer 1-3, Mannheim, Germany
| | - Susanne Blank
- Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, Mannheim, Germany
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy; Anesthesiology and Critical Care - San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Ilha do Fundao, Rio de Janeiro, Brazil
| | - Thomas Luecke
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany; Theodor-Kutzer-Ufer 1-3, Mannheim, Germany
| | - Joerg Krebs
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany; Theodor-Kutzer-Ufer 1-3, Mannheim, Germany
| |
Collapse
|
8
|
Battaglini D, Iavarone IG, Robba C, Ball L, Silva PL, Rocco PRM. Mechanical ventilation in patients with acute respiratory distress syndrome: current status and future perspectives. Expert Rev Med Devices 2023; 20:905-917. [PMID: 37668146 DOI: 10.1080/17434440.2023.2255521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/14/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
INTRODUCTION Although there has been extensive research on mechanical ventilation for acute respiratory distress syndrome (ARDS), treatment remains mainly supportive. Recent studies and new ventilatory modes have been proposed to manage patients with ARDS; however, the clinical impact of these strategies remains uncertain and not clearly supported by guidelines. The aim of this narrative review is to provide an overview and update on ventilatory management for patients with ARDS. AREAS COVERED This article reviews the literature regarding mechanical ventilation in ARDS. A comprehensive overview of the principal settings for the ventilator parameters involved is provided as well as a report on the differences between controlled and assisted ventilation. Additionally, new modes of assisted ventilation are presented and discussed. The evidence concerning rescue strategies, including recruitment maneuvers and extracorporeal membrane oxygenation support, is analyzed. PubMed, EBSCO, and the Cochrane Library were searched up until June 2023, for relevant literature. EXPERT OPINION Available evidence for mechanical ventilation in cases of ARDS suggests the use of a personalized mechanical ventilation strategy. Although promising, new modes of assisted mechanical ventilation are still under investigation and guidelines do not recommend rescue strategies as the standard of care. Further research on this topic is required.
Collapse
Affiliation(s)
- Denise Battaglini
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Ida Giorgia Iavarone
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Chiara Robba
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Lorenzo Ball
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Hayanga JWA, Chatterjee S, Kim BS, Merritt-Genore H, Karianna Milewski RC, Haft JW, Arora RC. Venovenous extracorporeal membrane oxygenation in patients with COVID-19 respiratory failure. J Thorac Cardiovasc Surg 2023; 165:212-217. [PMID: 34756623 PMCID: PMC8505026 DOI: 10.1016/j.jtcvs.2021.09.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022]
Affiliation(s)
- J W Awori Hayanga
- Department of Cardiothoracic and Vascular Surgery, West Virginia University Medicine, Morgantown, WVa.
| | - Subhasis Chatterjee
- Divisions of General and Cardiothoracic Surgery, Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Bo Soo Kim
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins Medicine, Baltimore, Md
| | | | | | - Jonathan W Haft
- Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Mich
| | - Rakesh C Arora
- Section of Cardiac Surgery, Department of Surgery, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
10
|
Fogagnolo A, Montanaro F, Al-Husinat L, Turrini C, Rauseo M, Mirabella L, Ragazzi R, Ottaviani I, Cinnella G, Volta CA, Spadaro S. Management of Intraoperative Mechanical Ventilation to Prevent Postoperative Complications after General Anesthesia: A Narrative Review. J Clin Med 2021; 10:jcm10122656. [PMID: 34208699 PMCID: PMC8234365 DOI: 10.3390/jcm10122656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 01/02/2023] Open
Abstract
Mechanical ventilation (MV) is still necessary in many surgical procedures; nonetheless, intraoperative MV is not free from harmful effects. Protective ventilation strategies, which include the combination of low tidal volume and adequate positive end expiratory pressure (PEEP) levels, are usually adopted to minimize the ventilation-induced lung injury and to avoid post-operative pulmonary complications (PPCs). Even so, volutrauma and atelectrauma may co-exist at different levels of tidal volume and PEEP, and therefore, the physiological response to the MV settings should be monitored in each patient. A personalized perioperative approach is gaining relevance in the field of intraoperative MV; in particular, many efforts have been made to individualize PEEP, giving more emphasis on physiological and functional status to the whole body. In this review, we summarized the latest findings about the optimization of PEEP and intraoperative MV in different surgical settings. Starting from a physiological point of view, we described how to approach the individualized MV and monitor the effects of MV on lung function.
Collapse
Affiliation(s)
- Alberto Fogagnolo
- Department of Translation Medicine and for Romagna, Section of Anesthesia and Intensive Care, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (C.T.); (R.R.); (I.O.); (C.A.V.); (S.S.)
- Correspondence:
| | - Federica Montanaro
- Department of Translation Medicine and for Romagna, Section of Anesthesia and Intensive Care, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (C.T.); (R.R.); (I.O.); (C.A.V.); (S.S.)
| | - Lou’i Al-Husinat
- Department of Clinical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan;
| | - Cecilia Turrini
- Department of Translation Medicine and for Romagna, Section of Anesthesia and Intensive Care, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (C.T.); (R.R.); (I.O.); (C.A.V.); (S.S.)
| | - Michela Rauseo
- Department of Anesthesia and Intensive Care, University of Foggia, 71122 Foggia, Italy; (M.R.); (L.M.); (G.C.)
| | - Lucia Mirabella
- Department of Anesthesia and Intensive Care, University of Foggia, 71122 Foggia, Italy; (M.R.); (L.M.); (G.C.)
| | - Riccardo Ragazzi
- Department of Translation Medicine and for Romagna, Section of Anesthesia and Intensive Care, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (C.T.); (R.R.); (I.O.); (C.A.V.); (S.S.)
| | - Irene Ottaviani
- Department of Translation Medicine and for Romagna, Section of Anesthesia and Intensive Care, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (C.T.); (R.R.); (I.O.); (C.A.V.); (S.S.)
| | - Gilda Cinnella
- Department of Anesthesia and Intensive Care, University of Foggia, 71122 Foggia, Italy; (M.R.); (L.M.); (G.C.)
| | - Carlo Alberto Volta
- Department of Translation Medicine and for Romagna, Section of Anesthesia and Intensive Care, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (C.T.); (R.R.); (I.O.); (C.A.V.); (S.S.)
| | - Savino Spadaro
- Department of Translation Medicine and for Romagna, Section of Anesthesia and Intensive Care, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (C.T.); (R.R.); (I.O.); (C.A.V.); (S.S.)
| |
Collapse
|