1
|
Liu S, He Y, Jin L, Shi S, Zhang J, Xie W, Yang M, Zhang Q, Kong H. H3K18 lactylation-mediated SIX1 upregulation contributes to silica-induced epithelial-mesenchymal transition in airway epithelial cells. Toxicology 2025; 514:154109. [PMID: 40049282 DOI: 10.1016/j.tox.2025.154109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/02/2025] [Accepted: 03/02/2025] [Indexed: 04/15/2025]
Abstract
Silica exposure-induced airway epithelial-mesenchymal transition (EMT) is a critical pathological process in pulmonary fibrosis. This study investigated the role of NLRP3 inflammasome, glycolysis, and histone lactylation in silica-induced EMT of human bronchial epithelial cells (16HBE). Silica exposure activated NLRP3 inflammasome, enhanced glycolysis and H3K18 lactylation, as well as induced EMT in 16HBE cells. Selective inhibition of NLRP3 inflammasome with MCC950, blockade of the interleukin 1 (IL-1) receptor with AF12198, or suppression of lactate production with oxamate effectively reduced glycolysis-mediated histone lactylation and mitigated silica-induced EMT. Moreover, silica-induced upregulation of PFKFB3, a key enzyme of glycolysis, was significantly mitigated by MCC950 or AF12198. Cut&Tag analysis revealed silica treatment led to H3K18 lactylation enrichment at transcription start sites (TSS), particularly within the promoter region of the sine oculis homeobox 1 (SIX1), which enhanced transcription of SIX1, a key transcription factor involved in EMT. Consistently, inhibition of histone lactylation by the histone acetyltransferase P300 inhibitor A-485 suppressed silica-induced SIX1 expression and EMT. These findings indicate that silica activates NLRP3 inflammasome and promotes interleukin 1β (IL-1β) production, thereafter enhancing PFKFB3-mediated glycolysis by IL-1 receptor. Lactate accumulation by glycolysis enhances H3K18 lactylation at the TSS facilitating expression of SIX1. Together, this inflammation-glycolysis-lactylation cascade involved in EMT provides new insights into the molecular mechanisms underlying silica-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Songtao Liu
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Yiting He
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Linling Jin
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Shuangshuang Shi
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Jiayi Zhang
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Weiping Xie
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Mingxia Yang
- Department of Pulmonary & Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, China
| | - Qun Zhang
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210000, China.
| | - Hui Kong
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210000, China.
| |
Collapse
|
2
|
Choe J, Yun J, Kim MJ, Oh YJ, Bae S, Yu D, Seo JB, Lee SM, Lee HY. Leveraging deep learning-based kernel conversion for more precise airway quantification on CT. Eur Radiol 2025:10.1007/s00330-025-11696-w. [PMID: 40405045 DOI: 10.1007/s00330-025-11696-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/26/2025] [Accepted: 04/22/2025] [Indexed: 05/24/2025]
Abstract
OBJECTIVES To evaluate the variability of fully automated airway quantitative CT (QCT) measures caused by different kernels and the effect of kernel conversion. MATERIALS AND METHODS This retrospective study included 96 patients who underwent non-enhanced chest CT at two centers. CT scans were reconstructed using four kernels (medium soft, medium sharp, sharp, very sharp) from three vendors. Kernel conversion targeting the medium soft kernel as reference was applied to sharp kernel images. Fully automated airway quantification was performed before and after conversion. The effects of kernel type and conversion on airway quantification were evaluated using analysis of variance, paired t-tests, and concordance correlation coefficient (CCC). RESULTS Airway QCT measures (e.g., Pi10, wall thickness, wall area percentage, lumen diameter) decreased with sharper kernels (all, p < 0.001), with varying degrees of variability across variables and vendors. Kernel conversion substantially reduced variability between medium soft and sharp kernel images for vendors A (pooled CCC: 0.59 vs. 0.92) and B (0.40 vs. 0.91) and lung-dedicated sharp kernels of vendor C (0.26 vs. 0.71). However, it was ineffective for non-lung-dedicated sharp kernels of vendor C (0.81 vs. 0.43) and showed limited improvement in variability of QCT measures at the subsegmental level. Consistent airway segmentation and identical anatomic labeling improved subsegmental airway variability in theoretical tests. CONCLUSION Deep learning-based kernel conversion reduced the measurement variability of airway QCT across various kernels and vendors but was less effective for non-lung-dedicated kernels and subsegmental airways. Consistent airway segmentation and precise anatomic labeling can further enhance reproducibility for reliable automated quantification. KEY POINTS Question How do different CT reconstruction kernels affect the measurement variability of automated airway measurements, and can deep learning-based kernel conversion reduce this variability? Findings Kernel conversion improved measurement consistency across vendors for lung-dedicated kernels, but showed limited effectiveness for non-lung-dedicated kernels and subsegmental airways. Clinical relevance Understanding kernel-related variability in airway quantification and mitigating it through deep learning enables standardized analysis, but further refinements are needed for robust airway segmentation, particularly for improving measurement variability in subsegmental airways and specific kernels.
Collapse
Affiliation(s)
- Jooae Choe
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jihye Yun
- Department of Convergence Medicine, Biomedical Engineering Research Center, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Myeong Jun Kim
- Department of Radiology, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Yu Jin Oh
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
| | | | | | - Joon Beom Seo
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Sang Min Lee
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.
| | - Ho Yun Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, Korea.
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
3
|
Chilosi M, Ravaglia C, Doglioni C, Piciucchi S, Stefanizzi L, Poletti V. The pathogenesis of idiopathic pulmonary fibrosis: from "folies à deux" to "Culprit cell Trio". Pathologica 2025; 117:3-9. [PMID: 40205925 PMCID: PMC11983081 DOI: 10.32074/1591-951x-1123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 04/11/2025] Open
Affiliation(s)
- Marco Chilosi
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì I
| | - Claudia Ravaglia
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì I
- DIMEC, Bologna University, Forlì Campus, Forlì I
| | - Claudio Doglioni
- Department of Pathology, San Raffaele Scientific Institute. Milan, Italy
| | | | - Lavinia Stefanizzi
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì I
| | - Venerino Poletti
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì I
- DIMEC, Bologna University, Forlì Campus, Forlì I
- Department of Respiratory Diseases & Allergy, Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
Liu Z, Zheng Q, Li Z, Huang M, Zhong C, Yu R, Jiang R, Dai H, Zhang J, Gu X, Xu Y, Li C, Shan S, Xu F, Hong Y, Ren T. Epithelial stem cells from human small bronchi offer a potential for therapy of idiopathic pulmonary fibrosis. EBioMedicine 2025; 112:105538. [PMID: 39753035 PMCID: PMC11754162 DOI: 10.1016/j.ebiom.2024.105538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/21/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a fibrosing interstitial pneumonia with restrictive ventilation. Recently, the structural and functional defects of small airways have received attention in the early pathogenesis of IPF. This study aimed to elucidate the characteristics of small airway epithelial dysfunction in patients with IPF and explore novel therapeutic interventions to impede IPF progression by targeting the dysfunctional small airways. METHODS Airway trees spanning the proximal-distal axis were harvested from control lungs and explanted lungs with end-stage IPF undergoing transplant. Qualified basal cells (BCs, p63/Krt5/ITGA6/NGFR) were expanded, and their cellular functions, feasibility, safety and efficacy for transplantation therapy in IPF were validated with experiments in vitro and mouse model. Single-cell RNA-sequencing was employed to elucidate the underlying mechanisms governing the BCs based therapy. Based upon these evidences, three patients with advanced IPF and small airway dysfunction received autologous-BCs transplantation. Post-transplantation assessments included lung function, exercise capacity and high resolution computed tomography (HRCT) scans were analyzed to quantify the clinical benefits conferred by the BCs transplantation. FINDINGS An overall landscape of senescent phenotype in airway epithelial cells and airway stem/progenitor cells along the proximal-distal axis of the airway tree in IPF were outlined. In contrast to the cells situated in distal airways, BCs located in small bronchi in IPF displayed a non-senescent phenotype, with comparable proliferative, differentiative capabilities, and similar transcriptomic profiles to normal controls. In a mouse model of pulmonary fibrosis, BCs exhibited promising protective efficacy and safety for transplantation therapy. Autologous BCs transplantation in three advanced IPF patients with small airway dysfunction yielded significant clinical improvements in pulmonary function, particularly evidence in lung volume and small airway function. INTERPRETATION Epithelia of small bronchi in IPF contain functional and expandable basal stem cells, which exert therapeutic benefits via bronchoscopic implantation. Our findings offer a potential for IPF treatment by targeting small airways. FUNDING National Natural Science Foundation of China (82430001, 81930001, and 81900059), Shanghai Shenkang Hospital Development Center (SHDC2020CR3063B), Department of Science and Technology of Shandong Province (2024HWYQ-058).
Collapse
Affiliation(s)
- Zeyu Liu
- Department of Respiratory and Clinical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Qi Zheng
- Department of Respiratory and Clinical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zhoubin Li
- Department of Lung Transplantation and Thoracic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, PR China
| | - Moli Huang
- Department of Bioinformatics, School of Biological and Basic Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Cheng Zhong
- Department of Respiratory and Clinical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Ruize Yu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China; Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China
| | - Rong Jiang
- Department of Bioinformatics, School of Biological and Basic Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Haotian Dai
- Department of Respiratory and Clinical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jingyuan Zhang
- Department of Respiratory and Clinical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xiaohua Gu
- Department of Respiratory and Clinical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yongle Xu
- Department of Respiratory and Clinical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chunwei Li
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Shan Shan
- Department of Respiratory and Clinical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Feng Xu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China; Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China.
| | - Yue Hong
- School of Life and Health Sciences, Hainan University, Haikou, Hainan 570228, China; Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan 570228, China.
| | - Tao Ren
- Department of Respiratory and Clinical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
5
|
Yombo DJK, Ghandikota S, Vemulapalli CP, Singh P, Jegga AG, Hardie WD, Madala SK. SEMA3B inhibits TGFβ-induced extracellular matrix protein production and its reduced levels are associated with a decline in lung function in IPF. Am J Physiol Cell Physiol 2024; 326:C1659-C1668. [PMID: 38646784 PMCID: PMC11371361 DOI: 10.1152/ajpcell.00681.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/23/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is marked by the activation of fibroblasts, leading to excessive production and deposition of extracellular matrix (ECM) within the lung parenchyma. Despite the pivotal role of ECM overexpression in IPF, potential negative regulators of ECM production in fibroblasts have yet to be identified. Semaphorin class 3B (SEMA3B), a secreted protein highly expressed in lung tissues, has established roles in axonal guidance and tumor suppression. However, the role of SEMA3B in ECM production by fibroblasts in the pathogenesis of IPF remains unexplored. Here, we show the downregulation of SEMA3B and its cognate binding receptor, neuropilin 1 (NRP1), in IPF lungs compared with healthy controls. Notably, the reduced expression of SEMA3B and NRP1 is associated with a decline in lung function in IPF. The downregulation of SEMA3B and NRP1 transcripts was validated in the lung tissues of patients with IPF, and two alternative mouse models of pulmonary fibrosis. In addition, we show that transforming growth factor-β (TGFβ) functions as a negative regulator of SEMA3B and NRP1 expression in lung fibroblasts. Furthermore, we demonstrate the antifibrotic effects of SEMA3B against TGFβ-induced ECM production in IPF lung fibroblasts. Overall, our findings uncovered a novel role of SEMA3B in the pathogenesis of pulmonary fibrosis and provided novel insights into modulating the SEMA3B-NRP1 axis to attenuate pulmonary fibrosis.NEW & NOTEWORTHY The excessive production and secretion of collagens and other extracellular matrix proteins by fibroblasts lead to the scarring of the lung in severe fibrotic lung diseases. This study unveils an antifibrotic role for semaphorin class 3B (SEMA3B) in the pathogenesis of idiopathic pulmonary fibrosis. SEMA3B functions as an inhibitor of transforming growth factor-β-driven fibroblast activation and reduced levels of SEMA3B and its receptor, neuropilin 1, are associated with decreased lung function in idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Dan J K Yombo
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States
| | - Sudhir Ghandikota
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Chanukya P Vemulapalli
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Priyanka Singh
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Anil G Jegga
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - William D Hardie
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States
| | - Satish K Madala
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| |
Collapse
|
6
|
Han MM, Tang L, Huang B, Li XN, Fang YF, Qi L, Duan BW, Yao YT, He YJ, Xing L, Jiang HL. Inhaled nanoparticles for treating idiopathic pulmonary fibrosis by inhibiting honeycomb cyst and alveoli interstitium remodeling. J Control Release 2024; 366:732-745. [PMID: 38242209 DOI: 10.1016/j.jconrel.2024.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/03/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with high mortality. The Food and Drug Administration-approved drugs, nintedanib and pirfenidone, could delay progressive fibrosis by inhibiting the overactivation of fibroblast, however, there was no significant improvement in patient survival due to low levels of drug accumulation and remodeling of honeycomb cyst and interstitium surrounding the alveoli. Herein, we constructed a dual drug (verteporfin and pirfenidone)-loaded nanoparticle (Lip@VP) with the function of inhibiting airway epithelium fluidization and fibroblast overactivation to prevent honeycomb cyst and interstitium remodeling. Specifically, Lip@VP extensively accumulated in lung tissues via atomized inhalation. Released verteporfin inhibited the fluidization of airway epithelium and the formation of honeycomb cyst, and pirfenidone inhibited fibroblast overactivation and reduced cytokine secretion that promoted the fluidization of airway epithelium. Our results indicated that Lip@VP successfully rescued lung function through inhibiting honeycomb cyst and interstitium remodeling. This study provided a promising strategy to improve the therapeutic efficacy for IPF.
Collapse
Affiliation(s)
- Meng-Meng Han
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Ling Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Bin Huang
- Department of Lung Transplantation, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Xue-Na Li
- College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Yue-Fei Fang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Liang Qi
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Bo-Wen Duan
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Ya-Ting Yao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yu-Jing He
- School of Pharmaceutical Sciences & Institute of Materia Medica Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; College of Pharmacy, Yanbian University, Yanji 133002, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
7
|
Uhl K, Paithankar S, Leshchiner D, Jager TE, Abdelgied M, Dixit B, Marashdeh R, Luo-Li D, Tripp K, Peraino AM, Tamae Kakazu M, Lawson C, Chesla DW, Luo-Li N, Murphy ET, Prokop J, Chen B, Girgis RE, Li X. Differential Transcriptomic Signatures of Small Airway Cell Cultures Derived from IPF and COVID-19-Induced Exacerbation of Interstitial Lung Disease. Cells 2023; 12:2501. [PMID: 37887346 PMCID: PMC10605205 DOI: 10.3390/cells12202501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a pathological condition wherein lung injury precipitates the deposition of scar tissue, ultimately leading to a decline in pulmonary function. Existing research indicates a notable exacerbation in the clinical prognosis of IPF patients following infection with COVID-19. This investigation employed bulk RNA-sequencing methodologies to describe the transcriptomic profiles of small airway cell cultures derived from IPF and post-COVID fibrosis patients. Differential gene expression analysis unveiled heightened activation of pathways associated with microtubule assembly and interferon signaling in IPF cell cultures. Conversely, post-COVID fibrosis cell cultures exhibited distinctive characteristics, including the upregulation of pathways linked to extracellular matrix remodeling, immune system response, and TGF-β1 signaling. Notably, BMP signaling levels were elevated in cell cultures derived from IPF patients compared to non-IPF control and post-COVID fibrosis samples. These findings underscore the molecular distinctions between IPF and post-COVID fibrosis, particularly in the context of signaling pathways associated with each condition. A better understanding of the underlying molecular mechanisms holds the promise of identifying potential therapeutic targets for future interventions in these diseases.
Collapse
Affiliation(s)
- Katie Uhl
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA (D.L.); (M.A.); (B.D.); (R.M.); (J.P.)
| | - Shreya Paithankar
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA (D.L.); (M.A.); (B.D.); (R.M.); (J.P.)
| | - Dmitry Leshchiner
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA (D.L.); (M.A.); (B.D.); (R.M.); (J.P.)
| | - Tara E. Jager
- Corewell Health Medical Group, Grand Rapids, MI 49503, USA (A.M.P.); (M.T.K.)
| | - Mohamed Abdelgied
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA (D.L.); (M.A.); (B.D.); (R.M.); (J.P.)
| | - Bhavna Dixit
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA (D.L.); (M.A.); (B.D.); (R.M.); (J.P.)
| | - Raya Marashdeh
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA (D.L.); (M.A.); (B.D.); (R.M.); (J.P.)
| | - Dewen Luo-Li
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA (D.L.); (M.A.); (B.D.); (R.M.); (J.P.)
| | - Kaylie Tripp
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA (D.L.); (M.A.); (B.D.); (R.M.); (J.P.)
| | - Angela M. Peraino
- Corewell Health Medical Group, Grand Rapids, MI 49503, USA (A.M.P.); (M.T.K.)
| | | | - Cameron Lawson
- Corewell Health Medical Group, Grand Rapids, MI 49503, USA (A.M.P.); (M.T.K.)
| | - Dave W. Chesla
- Corewell Health Medical Group, Grand Rapids, MI 49503, USA (A.M.P.); (M.T.K.)
| | - Ningzhi Luo-Li
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA (D.L.); (M.A.); (B.D.); (R.M.); (J.P.)
| | - Edward T. Murphy
- Corewell Health Medical Group, Grand Rapids, MI 49503, USA (A.M.P.); (M.T.K.)
- Richard DeVos Lung Transplant Program, Corewell Health, Grand Rapids, MI 49503, USA
| | - Jeremy Prokop
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA (D.L.); (M.A.); (B.D.); (R.M.); (J.P.)
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Bin Chen
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA (D.L.); (M.A.); (B.D.); (R.M.); (J.P.)
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Reda E. Girgis
- Corewell Health Medical Group, Grand Rapids, MI 49503, USA (A.M.P.); (M.T.K.)
| | - Xiaopeng Li
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA (D.L.); (M.A.); (B.D.); (R.M.); (J.P.)
| |
Collapse
|