1
|
Abstract
The physiology of the fetus is fundamentally different from the neonate, with both structural and functional distinctions. The fetus is well-adapted to the relatively hypoxemic intrauterine environment. The transition from intrauterine to extrauterine life requires rapid, complex, and well-orchestrated steps to ensure neonatal survival. This article explains the intrauterine physiology that allows the fetus to survive and then reviews the physiologic changes that occur during the transition to extrauterine life. Asphyxia fundamentally alters the physiology of transition and necessitates a thoughtful approach in the management of affected neonates.
Collapse
Affiliation(s)
- Sarah Morton
- Fellow, Harvard Neonatal-Perinatal Medicine Training Program, Boston, MA
| | - Dara Brodsky
- Assistant Professor of Pediatrics, Harvard Medical School, Associate Director of the NICU, Beth Israel Deaconess Medical Center, Boston, MA
| |
Collapse
|
2
|
Mahajan CN, Afolayan AJ, Eis A, Teng RJ, Konduri GG. Altered prostanoid metabolism contributes to impaired angiogenesis in persistent pulmonary hypertension in a fetal lamb model. Pediatr Res 2015; 77:455-462. [PMID: 25521916 PMCID: PMC4346417 DOI: 10.1038/pr.2014.209] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 09/30/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Persistent pulmonary hypertension of the newborn (PPHN) is associated with decreased lung angiogenesis and impaired pulmonary vasodilatation at birth. Prostanoids are important modulators of vascular tone and angiogenesis. We hypothesized that altered levels of prostacyclin (PGI₂), a potent vasodilator, and thromboxane A₂ (TXA₂), a vasoconstrictor, contribute to impaired angiogenesis of pulmonary artery endothelial cells (PAEC) in PPHN. METHODS PAEC were isolated from fetal lambs with PPHN induced by prenatal ductus arteriosus constriction or from sham operated controls. Expression and activity of PGI₂ synthase (PGIS) and TXA₂ synthase (TXAS), expression of cyclooxygenases 1 and 2 (COX-1 and COX-2), and the role of PGIS/TXAS alterations in angiogenesis were investigated in PAEC from PPHN and control lambs. RESULTS PGIS protein and activity were decreased and PGIS protein tyrosine nitration was increased in PPHN PAEC. In contrast, TXAS protein and its stimulated activity were increased in PPHN PAEC. COX-1 and COX-2 proteins were decreased in PPHN PAEC. Addition of PGI₂ improved in vitro tube formation by PPHN PAEC, whereas indomethacin decreased tube formation by control PAEC. PGIS knockdown decreased the in vitro angiogenesis in control PAEC, whereas TXAS knockdown increased the in vitro angiogenesis in PPHN PAEC. CONCLUSION Reciprocal alterations in PGI₂ and TXA₂ may contribute to impaired angiogenesis in PPHN.
Collapse
Affiliation(s)
- Chaitali N. Mahajan
- Department of Pediatrics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Adeleye J. Afolayan
- Department of Pediatrics and Children’s Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Annie Eis
- Department of Pediatrics and Children’s Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Ru-Jeng Teng
- Department of Pediatrics and Children’s Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Girija G. Konduri
- Department of Pediatrics and Children’s Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
3
|
Abstract
During the development of the pulmonary vasculature in the fetus, many structural and functional changes occur to prepare the lung for the transition to air breathing. The development of the pulmonary circulation is genetically controlled by an array of mitogenic factors in a temporo-spatial order. With advancing gestation, pulmonary vessels acquire increased vasoreactivity. The fetal pulmonary vasculature is exposed to a low oxygen tension environment that promotes high intrinsic myogenic tone and high vasocontractility. At birth, a dramatic reduction in pulmonary arterial pressure and resistance occurs with an increase in oxygen tension and blood flow. The striking hemodynamic differences in the pulmonary circulation of the fetus and newborn are regulated by various factors and vasoactive agents. Among them, nitric oxide, endothelin-1, and prostaglandin I2 are mainly derived from endothelial cells and exert their effects via cGMP, cAMP, and Rho kinase signaling pathways. Alterations in these signaling pathways may lead to vascular remodeling, high vasocontractility, and persistent pulmonary hypertension of the newborn.
Collapse
Affiliation(s)
- Yuansheng Gao
- Department of Physiology and Pathophysiology, Peking University, Health Science Center, Beijing, China; and Department of Pediatrics, University of Illinois, College of Medicine at Chicago, Chicago, Illinois
| | - J. Usha Raj
- Department of Physiology and Pathophysiology, Peking University, Health Science Center, Beijing, China; and Department of Pediatrics, University of Illinois, College of Medicine at Chicago, Chicago, Illinois
| |
Collapse
|
4
|
Goyal R, Creel KD, Chavis E, Smith GD, Longo LD, Wilson SM. Maturation of intracellular calcium homeostasis in sheep pulmonary arterial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2008; 295:L905-14. [PMID: 18776056 DOI: 10.1152/ajplung.00053.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cytosolic Ca(2+) signaling dynamics are important to pulmonary arterial reactivity, and alterations are implicated in pulmonary vascular disorders. Yet, adaptations in cellular Ca(2+) homeostasis and receptor-mediated Ca(2+) signaling with maturation from fetal to adult life in pulmonary arterial smooth muscle cells (PASMCs) are not known. The present study tested the hypothesis that cytosolic Ca(2+) homeostasis and receptor-generated Ca(2+) signaling adapt with maturation in sheep PASMCs. Digitalized fluorescence microscopy was performed using isolated PASMCs from fetal and adult sheep that were loaded with the Ca(2+) indicator fura 2. The results show that basal cytosolic and sarcoplasmic reticulum Ca(2+) levels are attained before birth. Similarly, Ca(2+) efflux pathways from the cytosol and basal as well as capacitative Ca(2+) entry (CCE) are also developed before birth. However, receptor-mediated Ca(2+) signaling adapts with maturation. Prominently, serotonin stimulation elicited Ca(2+) elevations in very few fetal compared with adult PASMCs; in contrast, phenylephrine elevated Ca(2+) in a similar percentage of fetal and adult PASMCs. Serotonin and phenylephrine elicited Ca(2+) increases of a similar magnitude in reactive cells of fetus and adult, supporting the assertion that inositol trisphosphate signaling is intact. Caffeine and ATP elevated Ca(2+) in equivalent numbers of fetal and adult PASMCs. However, the caffeine-induced cytosolic Ca(2+) increase was significantly greater in fetal PASMCs, whereas the ATP-elicited increase was greater in adult cells. Overall, the results of this study demonstrate selective adaptations in receptor-mediated Ca(2+) signaling, but not in cellular Ca(2+) homeostasis.
Collapse
Affiliation(s)
- Ravi Goyal
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | | | | | | | | | | |
Collapse
|
5
|
Chicoine LG, Paffett ML, Girton MR, Metropoulus MJ, Joshi MS, Bauer JA, Nelin LD, Resta TC, Walker BR. Maturational changes in the regulation of pulmonary vascular tone by nitric oxide in neonatal rats. Am J Physiol Lung Cell Mol Physiol 2007; 293:L1261-70. [PMID: 17827249 DOI: 10.1152/ajplung.00235.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nitric oxide (NO) is an important regulator of vasomotor tone in the pulmonary circulation. We tested the hypothesis that the role NO plays in regulating vascular tone changes during early postnatal development. Isolated, perfused lungs from 7- and 14-day-old Sprague-Dawley rats were studied. Baseline total pulmonary vascular resistance (PVR) was not different between age groups. The addition of KCl to the perfusate caused a concentration-dependent increase in PVR that did not differ between age groups. However, the nitric oxide synthase (NOS) inhibitor N(omega)-nitro-L-arginine augmented the K(+)-induced increase in PVR in both groups, and the effect was greater in lungs from 14-day-old rats vs. 7-day-old rats. Lung levels of total endothelial, inducible, and neuronal NOS proteins were not different between groups; however, the production rate of exhaled NO was greater in lungs from 14-day-old rats compared with those of 7-day-old rats. Vasodilation to 0.1 microM of the NO donor spermine NONOate was greater in 14-day lungs than in 7-day lungs, and lung levels of both soluble guanylyl cyclase and cGMP were greater at 14 days than at 7 days. Vasodilation to 100 microM of the cGMP analog 8-(4-chlorophenylthio)guanosine-3',5'-cyclic monophosphate was greater in 7-day lungs than in 14-day lungs. Our results demonstrate that the pulmonary vascular bed depends more on NO production to modulate vascular tone at 14 days than at 7 days of age. The observed differences in NO sensitivity may be due to maturational increases in soluble guanylyl cyclase protein levels.
Collapse
Affiliation(s)
- Louis G Chicoine
- Center for Gene Therapy, Columbus Children's Research Institute, The Ohio State University, Columbus, Ohio, Columbus, OH 43205, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Haworth SG. Role of the endothelium in pulmonary arterial hypertension. Vascul Pharmacol 2006; 45:317-25. [PMID: 17005453 DOI: 10.1016/j.vph.2006.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2006] [Accepted: 08/05/2006] [Indexed: 11/21/2022]
Abstract
Pulmonary hypertension represents a significant disease burden in both the developed and developing worlds. Certain forms of pulmonary hypertension are more common in some countries than others but people of all races, all ages and both sexes are affected. Treatment options are limited and expensive. The development of new therapies will be determined by improved understanding of endothelial cell biology.
Collapse
Affiliation(s)
- S G Haworth
- Department of Vascular Biology, Institute of Child Health, University College London, London, WC1N 1EH, UK.
| |
Collapse
|
7
|
Wojciak-Stothard B, Haworth SG. Perinatal changes in pulmonary vascular endothelial function. Pharmacol Ther 2006; 109:78-91. [PMID: 16054700 DOI: 10.1016/j.pharmthera.2005.06.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Accepted: 06/07/2005] [Indexed: 12/30/2022]
Abstract
The pulmonary endothelium plays a crucial role in lung development and function during the perinatal period. Its 2 most important functions at this time are to help reduce pulmonary vascular resistance (PVR) in order to permit the entire cardiac output to pass through the lungs for the first time and to facilitate the clearance of lung fluid. In response to changes in environmental factors such as oxygen tension, blood flow, circulating cytokines, and growth factors, the endothelium synthesizes and/or extracts many vasoactive mediators such as endothelin-1 (ET-1), norepinephrine, angiotensin 1, thromboxane, prostacyclin (PGI(2)), and the endothelial-derived relaxing factor nitric oxide (NO). The endothelium acts as a transducer conveying information about environmental changes to the underlying smooth muscle cells (SMCs), which helps regulate their reactivity and pulmonary vascular tone. The endothelial layer also acts as a barrier, regulating the exchange of fluids and nutrients between blood components and the surrounding tissues. The purpose of this review is to demonstrate the importance of structural and functional changes in the pulmonary endothelium during the perinatal period and explain their role in the regulation of the pulmonary circulation in health and disease. We also highlight signalling pathways of some of the most important endothelium-derived factors and indicate potential targets for pharmacological intervention.
Collapse
Affiliation(s)
- Beata Wojciak-Stothard
- British Heart Foundation Laboratories, Department of Medicine, University College London, 5 University Street, London WC1E6JJ, England, UK
| | | |
Collapse
|
8
|
Gibson LL, Hahner L, Osborne-Lawrence S, German Z, Wu KK, Chambliss KL, Shaul PW. Molecular basis of estrogen-induced cyclooxygenase type 1 upregulation in endothelial cells. Circ Res 2005; 96:518-25. [PMID: 15705965 DOI: 10.1161/01.res.0000158967.96231.88] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Estrogen upregulates cyclooxygenase-1 (COX-1) expression in endothelial cells. To determine the basis of this process, studies were performed in ovine endothelial cells transfected with the human COX-1 promoter fused to luciferase. Estradiol (E2) caused activation of the COX-1 promoter with maximal stimulation at 10(-8) mol/L E2, and the response was mediated by either ERalpha or ERbeta. Mutagenesis revealed a primary role for a putative Sp1 binding motif at -89 (relative to the ATG codon) and lesser involvement of a consensus Sp1 site at -111. Electrophoretic mobility shift assays yielded a single complex with the site at -89, and supershift analyses implicated AP-2alpha and ERalpha, and not Sp1, in protein-DNA complex formation. In endothelial cells with minimal endogenous ER, the transfection of ERalpha mutants lacking the DNA binding domain or primary nuclear localization signals caused 4-fold greater stimulation of promoter activity with E2 than wild-type ERalpha. In contrast, mutant ERalpha lacking the A-B domains was inactive. Thus, estrogen-mediated upregulation of COX-1 in endothelium is uniquely independent of direct ERalpha-DNA binding and instead entails protein-DNA interaction involving AP-2alpha and ERalpha at a proximal regulatory element. In addition, the process may be initiated by cytoplasmic ERalpha, and critical receptor elements reside within the amino terminus.
Collapse
Affiliation(s)
- Linda L Gibson
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, TX 75390, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Walch L, Norel X, Bäck M, Gascard JP, Dahlén SE, Brink C. Pharmacological evidence for a novel cysteinyl-leukotriene receptor subtype in human pulmonary artery smooth muscle. Br J Pharmacol 2002; 137:1339-45. [PMID: 12466244 PMCID: PMC1573615 DOI: 10.1038/sj.bjp.0704991] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. To characterize the cysteinyl-leukotriene receptors (CysLT receptors) in isolated human pulmonary arteries, ring preparations were contracted with leukotriene C(4) (LTC(4)) and leukotriene D(4) (LTD(4)) in either the absence or presence of the selective CysLT(1) receptor antagonists, ICI 198615, MK 571 or the dual CysLT(1)/CysLT(2) receptor antagonist, BAY u9773. 2. Since the contractions induced by the cysteinyl-leukotrienes (cysLTs) in intact preparations failed to attain a plateau response over the concentration range studied, the endothelium was removed and the tissue treated continuously with indomethacin (Rubbed+INDO). In these latter preparations, the pEC(50) for LTC(4) and LTD(4) were not significantly different (7.61+/-0.07, n=20 and 7.96+/-0.09, n=22, respectively). However, the LTC(4) and LTD(4) contractions were markedly potentiated when compared with data from intact tissues. 3. Leukotriene E(4) (LTE(4)) did not contract human isolated pulmonary arterial preparations. In addition, treatment of preparations with LTE(4) (1 microM; 30 min) did not modify either the LTC(4) or LTD(4) contractions. 4. Treatment of preparations with the S-conjugated glutathione (S-hexyl-GSH; 100 microM, 30 min), an inhibitor of the metabolism of LTC(4) to LTD(4), did not modify LTC(4) contractions. 5. The pEC(50) values for LTC(4) were significantly reduced by treatment of the preparations with either ICI 198615, MK 571 or BAY u9773 and the pK(B) values were: 7.20, 7.02 and 6.26, respectively. In contrast, these antagonists did not modify the LTD(4) pEC(50) values. 6. These findings suggest the presence of two CysLT receptors on human pulmonary arterial vascular smooth muscle. A CysLT(1) receptor with a low affinity for CysLT(1) antagonists and a novel CysLT receptor subtype, both responsible for vasoconstriction. Activation of this latter receptor by LTC(4) and LTD(4) induced a contractile response which was resistant to the selective CysLT(1) antagonists (ICI 198615 and MK 571) as well as the non-selective (CysLT(1)/CysLT(2)) antagonist, BAY u9773.
Collapse
Affiliation(s)
- Laurence Walch
- CNRS FRE 2536, Hôpital Broussais, Bâtiment: René Leriche, 102 rue Didot, 75014 Paris, France
| | - Xavier Norel
- CNRS FRE 2536, Hôpital Broussais, Bâtiment: René Leriche, 102 rue Didot, 75014 Paris, France
| | - Magnus Bäck
- Experimental Asthma and Allergy Research, The National Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Jean-Pierre Gascard
- CNRS ESA 8078, Centre Chirurgical Marie Lannelongue, 133 av. de la Résistance, 92350 Le Plessis Robinson, France
| | - Sven-Erik Dahlén
- Experimental Asthma and Allergy Research, The National Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Charles Brink
- CNRS FRE 2536, Hôpital Broussais, Bâtiment: René Leriche, 102 rue Didot, 75014 Paris, France
- Author for correspondence:
| |
Collapse
|
10
|
|
11
|
Rosenbloom J, Saitta B, Gaidarova S, Sandorfi N, Rosenbloom JC, Abrams WR, Hamilton AD, Sebti SM, Kucich U, Jimenez SA. Inhibition of type I collagen gene expression in normal and systemic sclerosis fibroblasts by a specific inhibitor of geranylgeranyl transferase I. ARTHRITIS AND RHEUMATISM 2000; 43:1624-32. [PMID: 10902768 DOI: 10.1002/1529-0131(200007)43:7<1624::aid-anr28>3.0.co;2-e] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To examine the effects of specific inhibition of geranylgeranyl transferase I on the expression of types I and III collagen genes in normal and systemic sclerosis (SSc) dermal fibroblasts in vitro. METHODS Fibroblasts from 2 normal subjects and 4 SSc patients were incubated with 2-10 microM of GGTI-298, a specific geranylgeranyl transferase inhibitor. Type I collagen and fibronectin production were determined by enzyme-linked immunosorbent assay. Steady-state messenger RNA (mRNA) levels for alpha1(I), alpha2(I), and alpha1(III) collagens and fibronectin were assessed by Northern hybridization, and the transcription of the alpha1(I) collagen gene was examined by transient transfections with a reporter construct containing -5.3 kb of the gene. RESULTS GGTI-298 caused a dose-dependent inhibition of type I collagen production and a reduction in the steady-state levels of alpha1(I), alpha2(I), and alpha1(III) mRNA in normal and SSc cells. A 60-70% inhibition of type I collagen production and a 70-80% reduction in the mRNA levels for alpha1(I), alpha2(I), and alpha1(III) were observed at 10 microM GGTI-298. In contrast, the expression of fibronectin, cyclooxygenase 1, and GAPDH was not affected. The effects on alpha1(I) collagen mRNA resulted from a profound reduction in transcription of the alpha1(I) collagen gene promoter. GGTI-298 did not affect cellular viability or morphology. CONCLUSION These results demonstrate that specific inhibition of geranylgeranyl prenylation causes a potent and selective inhibition of expression of the genes encoding types I and III collagens, without affecting cellular viability. The findings indicate that inhibition of geranylgeranyl prenylation should be further studied as a potential therapeutic approach for SSc and other fibrosing diseases.
Collapse
Affiliation(s)
- J Rosenbloom
- University of Pennsylvania School of Dental Medicine, Philadelphia, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Vågnes O, Feng JJ, Iversen BM, Arendshorst WJ. Upregulation of V(1) receptors in renal resistance vessels of rats developing genetic hypertension. Am J Physiol Renal Physiol 2000; 278:F940-8. [PMID: 10836981 DOI: 10.1152/ajprenal.2000.278.6.f940] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies have demonstrated that arginine vasopressin (AVP) produces exaggerated renal vasoconstriction in young spontaneously hypertensive rats (SHR) relative to normotensive rats. The exaggerated renal vascular reactivity does not appear to be due to a primary defect in postreceptor calcium signal transduction. Although the magnitudes of vascular responses differ, the relative proportions of calcium entry and mobilization pathways evoked by AVP in renal resistance vessels are similar in these rat strains. The purpose of the present study was to evaluate possible differences in V(1) mRNA and receptor density and affinity in preglomerular resistance vessels (<50 microm) obtained from young Wistar-Kyoto (WKY) and SHR. Quantitative RT-PCR analysis revealed twofold greater expression of the V(1a) receptor gene in preglomerular arterioles of 7-wk-old SHR compared with WKY. In vitro radiolabeled ligand binding studies were performed under equilibrium conditions on preglomerular resistance arterioles freshly isolated from kidneys of 7-wk-old rats. The results indicate that AVP receptor density (B(max)) is two to three times greater in SHR than in WKY (248 +/- 24 vs. 91 +/- 11 fmol/mg protein, P < 0.001). The affinity does not differ between strains (K(d) = 0.5 nM). Displacement studies yielded similar results for SHR and WKY. Unlabeled AVP completely displaced [(3)H]AVP binding, with an IC(50) of 2.5 x 10(-10) M. Expression of AVP receptor types in afferent arterioles was evaluated using the V(1) receptor agonist, [Phe(2), Ile(3),Org(8)]vasopressin, the V(1) receptor antagonist, [d(CH(2))(5), Tyr(Me)(2), Tyr(NH(2))(9)]Arg(8)-vasopressin, and the V(2) receptor agonist, desamino-[D-Arg(8)]vasopressin. Both the V(1) agonist and antagonist displaced up to 90% of the AVP binding with IC(50) values of 4 x 10(-8) and 8 x 10(-7) M, respectively. The V(2) receptor agonist was a weak inhibitor, displacing less than 15% of AVP binding at a high concentration of 10(-4) M. These results demonstrate that virtually all AVP receptors in the preglomerular arterioles are of the V(1) type. Collectively, our results provide evidence that the enhanced renal reactivity to AVP is mediated by a higher density of V(1) receptors associated with increased gene expression in renal resistance vessels of SHR developing genetic hypertension.
Collapse
Affiliation(s)
- O Vågnes
- Renal Research Group, Institute of Medicine, University of Bergen, Norway
| | | | | | | |
Collapse
|
13
|
Abstract
The endothelium-derived vasodilator molecules prostaglandin I2 (PGI2) and nitric oxide (NO) are critically involved in the dramatic increase in pulmonary blood flow that occurs during cardiopulmonary transition at birth. Studies in animal and cell culture models have revealed that there is increased PGI2 and NO production in the pulmonary circulation of the late fetus in direct response to increased oxygenation, and that this response is unique to the pulmonary endothelium. Additional work has demonstrated that there is normally marked upregulation in the expression of the key synthetic enzymes cyclooxygenase type I and endothelial NO synthase in the lung during late gestation, thereby maximizing the capacity for vasodilator production at the time of birth. Furthermore, studies in animal models of neonatal pulmonary hypertension indicate that attenuated expression of these genes may frequently contribute to the pathogenesis of the disorder. A greater understanding of the mechanisms regulating PGI2 and NO synthesis in the developing lung will potentially lead to novel therapies for neonatal pulmonary hypertension aimed at optimizing endogenous vasodilator production.
Collapse
Affiliation(s)
- P W Shaul
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas 75235-9063, USA.
| |
Collapse
|