1
|
Heiss J, Grün K, Singerer I, Tempel L, Matasci M, Jung C, Pfeil A, Schulze PC, Neri D, Franz M. Expression of Inflammatory Genes in Murine Lungs in a Model of Experimental Pulmonary Hypertension: Effects of an Antibody-Based Targeted Delivery of Interleukin-9. Adv Respir Med 2024; 92:27-35. [PMID: 38247549 PMCID: PMC10801467 DOI: 10.3390/arm92010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Pathogenesis of pulmonary hypertension (PH) is a multifactorial process driven by inflammation and pulmonary vascular remodeling. To target these two aspects of PH, we recently tested a novel treatment: Interleukin-9 (IL9) fused to F8, an antibody that binds to the extra-domain A of fibronectin (EDA+ Fn). As EDA+ Fn is not found in healthy adult tissue but is expressed during PH, IL9 is delivered specifically to the tissue affected by PH. We found that F8IL9 reduced pulmonary vascular remodeling and attenuated PH compared with sham-treated mice. PURPOSE To evaluate possible F8IL9 effects on PH-associated inflammatory processes, we analysed the expression of genes involved in pulmonary immune responses. METHODS We applied the monocrotaline (MCT) model of PH in mice (n = 44). Animals were divided into five experimental groups: sham-induced animals without PH (control, n = 4), MCT-induced PH without treatment (PH, n = 8), dual endothelin receptor antagonist treatment (dual ERA, n = 8), F8IL9 treatment (n = 12, 2 formats with n = 6 each), or with KSFIL9 treatment (KSFIL9, n = 12, 2 formats with n = 6 each, KSF: control antibody with irrelevant antigen specificity). After 28 days, a RT-PCR gene expression analysis of inflammatory response (84 genes) was performed in the lung. RESULTS Compared with the controls, 19 genes exhibited relevant (+2.5-fold) upregulation in the PH group without treatment. Gene expression levels in F8IL9-treated lung tissue were reduced compared to the PH group without treatment. This was the case especially for CCL20, CXCL5, C-reactive protein, pentraxin related (CRPPR), and Kininogen-1 (KNG1). CONCLUSION In accordance with the hypothesis stated above, F8IL9 treatment diminished the upregulation of some genes associated with inflammation in a PH animal model. Therefore, we hypothesize that IL9-based immunocytokine treatment will likely modulate various inflammatory pathways.
Collapse
Affiliation(s)
- Judith Heiss
- Department of Internal Medicine I, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (J.H.); (K.G.); (I.S.); (L.T.); (P.C.S.)
- Else Kröner Graduate School for Medical Students “JSAM”, Jena University Hospital, 07747 Jena, Germany
| | - Katja Grün
- Department of Internal Medicine I, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (J.H.); (K.G.); (I.S.); (L.T.); (P.C.S.)
| | - Isabell Singerer
- Department of Internal Medicine I, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (J.H.); (K.G.); (I.S.); (L.T.); (P.C.S.)
| | - Laura Tempel
- Department of Internal Medicine I, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (J.H.); (K.G.); (I.S.); (L.T.); (P.C.S.)
| | | | - Christian Jung
- Medical Faculty, Division of Cardiology, Pulmonology and Vascular Medicine, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Alexander Pfeil
- Department of Internal Medicine III, University Hospital Jena, 07747 Jena, Germany;
| | - P. Christian Schulze
- Department of Internal Medicine I, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (J.H.); (K.G.); (I.S.); (L.T.); (P.C.S.)
| | - Dario Neri
- Philochem AG, 8112 Otelfingen, Switzerland; (M.M.)
| | - Marcus Franz
- Department of Internal Medicine I, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (J.H.); (K.G.); (I.S.); (L.T.); (P.C.S.)
| |
Collapse
|
2
|
Fließer E, Lins T, Berg JL, Kolb M, Kwapiszewska G. The endothelium in lung fibrosis: a core signaling hub in disease pathogenesis? Am J Physiol Cell Physiol 2023; 325:C2-C16. [PMID: 37184232 DOI: 10.1152/ajpcell.00097.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023]
Abstract
Pulmonary fibrosis (PF) is a progressive chronic lung disease characterized by excessive deposition of extracellular matrix (ECM) and structural destruction, associated with a severe 5-year mortality rate. The onset of the disease is thought to be triggered by chronic damage to the alveolar epithelium. Since the pulmonary endothelium is an important component of the alveolar-capillary niche, it is also affected by the initial injury. In addition to ensuring proper gas exchange, the endothelium has critical functional properties, including regulation of vascular tone, inflammatory responses, coagulation, and maintenance of vascular homeostasis and integrity. Recent single-cell analyses have shown that shifts in endothelial cell (EC) subtypes occur in PF. Furthermore, the increased vascular remodeling associated with PF leads to deteriorated outcomes for patients, underscoring the importance of the vascular bed in PF. To date, the causes and consequences of endothelial and vascular involvement in lung fibrosis are poorly understood. Therefore, it is of great importance to investigate the involvement of EC and the vascular system in the pathogenesis of the disease. In this review, we will outline the current knowledge on the role of the pulmonary vasculature in PF, in terms of abnormal cellular interactions, hyperinflammation, vascular barrier disorders, and an altered basement membrane composition. Finally, we will summarize recent advances in extensive therapeutic research and discuss the significant value of novel therapies targeting the endothelium.
Collapse
Affiliation(s)
- Elisabeth Fließer
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Thomas Lins
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Johannes Lorenz Berg
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Division of Physiology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Martin Kolb
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Division of Physiology and Pathophysiology, Medical University of Graz, Graz, Austria
- Institute for Lung Health, Member of the German Lung Center (DZL), Cardiopulmonary Institute (CPI), Giessen, Germany
| |
Collapse
|
3
|
Coal dust nanoparticles induced pulmonary fibrosis by promoting inflammation and epithelial-mesenchymal transition via the NF-κB/NLRP3 pathway driven by IGF1/ROS-mediated AKT/GSK3β signals. Cell Death Dis 2022; 8:500. [PMID: 36581638 PMCID: PMC9800584 DOI: 10.1038/s41420-022-01291-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022]
Abstract
Pneumoconiosis is the most common and serious disease among coal miners. In earlier work on this subject, we documented that coal dust (CD) nanoparticles (CD-NPs) induced pulmonary fibrosis (PF) more profoundly than did CD micron particles (CD-MPs), but the mechanism has not been thoroughly studied. Based on the GEO database, jveen, STRING, and Cytoscape tools were used to screen hub genes regulating PF. Particle size distribution of CD were analyzed with Malvern nanoparticle size potentiometer. Combining 8 computational methods, we found that IGF1, POSTN, MMP7, ASPN, and CXCL14 may act as hub genes regulating PF. Based on the high score of IGF1 and its important regulatory role in various tissue fibrosis, we selected it as the target gene in this study. Activation of the IGF1/IGF1R axis promoted CD-NPs-induced PF, and inhibition of the axis activation had the opposite effect in vitro and in vivo. Furthermore, activation of the IGF1/IGF1R axis induced generation of reactive oxygen species (ROS) to promote epithelial-mesenchymal transition (EMT) in alveolar epithelial cells (AECs) to accelerate PF. High-throughput gene sequencing based on lung tissue suggested that cytokine-cytokine receptor interaction and the NF-kB signaling pathway play a key role in PF. Also, ROS induced inflammation and EMT by the activation of the NF-kB/NLRP3 axis to accelerate PF. ROS can induce the activation of AKT/GSK3β signaling, and inhibition of it can inhibit ROS-induced inflammation and EMT by the NF-kB/NLRP3 axis, thereby inhibiting PF. CD-NPs induced PF by promoting inflammation and EMT via the NF-κB/NLRP3 pathway driven by IGF1/ROS-mediated AKT/GSK3β signals. This study provides a valuable experimental basis for the prevention and treatment of coal workers' pneumoconiosis. Illustration of the overall research idea of this study: IGF1 stimulates coal dust nanoparticles induced pulmonary fibrosis by promoting inflammation and EMT via the NF-κB/NLRP3 pathway driven by ROS-mediated AKT/GSK3β signals.
Collapse
|
4
|
Guo X, Meng Y, Wang Y, Nan S, Lu Y, Lu D, Yin Y. Mice lacking 1,4,5-triphosphate inositol type III receptor demonstrate inhibition of hypoxic pulmonary hypertension. Biochem Biophys Res Commun 2022; 629:165-170. [PMID: 36122454 DOI: 10.1016/j.bbrc.2022.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 11/02/2022]
Abstract
Hypoxic pulmonary hypertension (HPH) is a respiratory disease characterized by increased pulmonary vascular resistance and pulmonary arterial pressure. Persistent hypoxia alters the metabolic and transport functions of endothelial cells and promotes thrombosis and inflammation. Type 3 inositol-1,4,5-trisphosphate receptor (IP3R3) controls the release of calcium ions from the endoplasmic reticulum to the cytoplasm and mitochondria and is involved in cell proliferation, migration, and protein synthesis. In this study, we investigated the role and function of IP3R3 in HPH. The results showed that the expression level of IP3R3 was increased in pulmonary artery endothelial cells (PAECs) in a rat HPH model. The pulmonary artery pressure indices of IP3R3(-/-) mice with persistent hypoxia were significantly lower than those of HPH mice. The expression level of IP3R3 was significantly increased in hypoxia-treated PAECs. Knockdown of IP3R3 significantly inhibited the proliferation, migration and mesenchymal transition of PAECs induced by hypoxia. In conclusion, knockdown of IP3R3 can inhibit hypoxia-induced dysfunctions in PAECs, thus enabling IP3R3(-/-) mice to avoid HPH development. IP3R3 plays a key role in HPH and can be used as a potential target for the prevention and treatment of HPH.
Collapse
Affiliation(s)
- Xinyue Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yinan Meng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yumiao Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Shifa Nan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yuchen Lu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Dezhang Lu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yupeng Yin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
5
|
Inflammation in Pulmonary Hypertension and Edema Induced by Hypobaric Hypoxia Exposure. Int J Mol Sci 2022; 23:ijms232012656. [PMID: 36293512 PMCID: PMC9604159 DOI: 10.3390/ijms232012656] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/06/2022] Open
Abstract
Exposure to high altitudes generates a decrease in the partial pressure of oxygen, triggering a hypobaric hypoxic condition. This condition produces pathophysiologic alterations in an organism. In the lung, one of the principal responses to hypoxia is the development of hypoxic pulmonary vasoconstriction (HPV), which improves gas exchange. However, when HPV is exacerbated, it induces high-altitude pulmonary hypertension (HAPH). Another important illness in hypobaric hypoxia is high-altitude pulmonary edema (HAPE), which occurs under acute exposure. Several studies have shown that inflammatory processes are activated in high-altitude illnesses, highlighting the importance of the crosstalk between hypoxia and inflammation. The aim of this review is to determine the inflammatory pathways involved in hypobaric hypoxia, to investigate the key role of inflammation in lung pathologies, such as HAPH and HAPE, and to summarize different anti-inflammatory treatment approaches for these high-altitude illnesses. In conclusion, both HAPE and HAPH show an increase in inflammatory cell infiltration (macrophages and neutrophils), cytokine levels (IL-6, TNF-α and IL-1β), chemokine levels (MCP-1), and cell adhesion molecule levels (ICAM-1 and VCAM-1), and anti-inflammatory treatments (decreasing all inflammatory components mentioned above) seem to be promising mitigation strategies for treating lung pathologies associated with high-altitude exposure.
Collapse
|
6
|
Trotsyuk AA, Chen K, Hyung S, Ma KC, Henn D, Mermin-Bunnell AM, Mittal S, Padmanabhan J, Larson MR, Steele SR, Sivaraj D, Bonham CA, Noishiki C, Rodrigues M, Jiang Y, Jing S, Niu S, Chattopadhyay A, Perrault DP, Leeolou MC, Fischer KS, Gurusankar G, Choi Kussie H, Wan DC, Januszyk M, Longaker MT, Gurtner GC. Inhibiting Fibroblast Mechanotransduction Modulates Severity of Idiopathic Pulmonary Fibrosis. Adv Wound Care (New Rochelle) 2022; 11:511-523. [PMID: 34544267 DOI: 10.1089/wound.2021.0077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Objective: Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease that affects 63 in every 100,000 Americans. Its etiology remains unknown, although inflammatory pathways appear to be important. Given the dynamic environment of the lung, we examined the significance of mechanotransduction on both inflammatory and fibrotic signaling during IPF. Innovation: Mechanotransduction pathways have not been thoroughly examined in the context of lung disease, and pharmacologic approaches for IPF do not currently target these pathways. The interplay between mechanical strain and inflammation in pulmonary fibrosis remains incompletely understood. Approach: In this study, we used conditional KO mice to block mechanotransduction by knocking out Focal Adhesion Kinase (FAK) expression in fibroblasts, followed by induction of pulmonary fibrosis using bleomycin. We examined both normal human and human IPF fibroblasts and used immunohistochemistry, quantitative real-time polymerase chain reaction, and Western Blot to evaluate the effects of FAK inhibitor (FAK-I) on modulating fibrotic and inflammatory genes. Results: Our data indicate that the deletion of FAK in mice reduces expression of fibrotic and inflammatory genes in lungs. Similarly, mechanical straining in normal human lung fibroblasts activates inflammatory and fibrotic pathways. The FAK inhibition decreases these signals but has a less effect on IPF fibroblasts as compared with normal human fibroblasts. Conclusion: Administering FAK-I at early stages of fibrosis may attenuate the FAK-mediated fibrotic response pathway in IPF, potentially mediating disease progression.
Collapse
Affiliation(s)
- Artem A Trotsyuk
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Kellen Chen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Sun Hyung
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Kun Cathy Ma
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Dominic Henn
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Alana M Mermin-Bunnell
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Smiti Mittal
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Jagannath Padmanabhan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Madelyn R Larson
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Sydney R Steele
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Dharshan Sivaraj
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Clark A Bonham
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Chikage Noishiki
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Melanie Rodrigues
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Yuanwen Jiang
- Department of Chemical Engineering, Stanford University, Stanford, California, USA
| | - Serena Jing
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Simiao Niu
- Department of Chemical Engineering, Stanford University, Stanford, California, USA
| | - Arhana Chattopadhyay
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - David P Perrault
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Melissa C Leeolou
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Katharina S Fischer
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | | | - Hudson Choi Kussie
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Derrick C Wan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Michael Januszyk
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Michael T Longaker
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Palo Alto, California, USA
| | - Geoffrey C Gurtner
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
7
|
Yang K, Huang N, Sun J, Dai W, Chen M, Zeng J. Transforming growth factor-β induced protein regulates pulmonary fibrosis via the G-protein signaling modulator 2 /Snail axis. Peptides 2022; 155:170842. [PMID: 35872259 DOI: 10.1016/j.peptides.2022.170842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 12/01/2022]
Abstract
Pulmonary fibrosis, a severe condition that can progress to respiratory failure and death, is characterized by aberrant activation/proliferation of fibroblasts and excessive extracellular matrix (ECM) deposition and has limited therapeutic options. Identifying novel mediators of pulmonary fibrosis is currently needed to facilitate the development of more effective therapeutic strategies targeting pulmonary fibrosis. The present study was designed to investigate whether transforming growth factor-β (TGF-β) induced protein (TGFBI), an extracellular matrix protein, regulates pulmonary fibrosis in vitro and in vivo and the possible mechanism of actions. It was found that protein expressions of TGFBI were significantly upregulated and G-protein signaling modulator 2 (GPSM2) expression downregulated in fibrotic lung tissues from bleomycin (BLM)-induced rats and TGF-β1-stimulated human lung IMR-90 fibroblasts. Either silencing TGFBI with specific siRNA or treatment with the TGF-β signaling inhibitor SB431542 significantly inhibited TGF-β1-induced fibrotic effects and dysregulation of GPSM2 and Snail expressions in IMR-90 fibroblasts. Moreover, GPSM2 overexpression also inhibited TGF-β1-induced fibrotic effects and Snail upregulation in IMR-90 fibroblasts. Silencing Snail with specific siRNA attenuated TGF-β1-induced fibrotic effects. Therefore, our findings suggest that the extracellular matrix protein TGFBI mediates pulmonary fibrosis through regulation of the GPSM2/Snail axis, which identifies TGFBI as a novel mediator of pulmonary fibrosis and may be a potential therapeutic target for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Kai Yang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Avenue, Xindu District, Chengdu, Sichuan 610500, China; Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu, Sichuan 610500, China
| | - Na Huang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Avenue, Xindu District, Chengdu, Sichuan 610500, China; Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu, Sichuan 610500, China
| | - Jian Sun
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Avenue, Xindu District, Chengdu, Sichuan 610500, China
| | - Wenjing Dai
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Avenue, Xindu District, Chengdu, Sichuan 610500, China
| | - Meifeng Chen
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Avenue, Xindu District, Chengdu, Sichuan 610500, China
| | - Jun Zeng
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Avenue, Xindu District, Chengdu, Sichuan 610500, China; Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu, Sichuan 610500, China.
| |
Collapse
|
8
|
Tabeling C, González Calera CR, Lienau J, Höppner J, Tschernig T, Kershaw O, Gutbier B, Naujoks J, Herbert J, Opitz B, Gruber AD, Hocher B, Suttorp N, Heidecke H, Burmester GR, Riemekasten G, Siegert E, Kuebler WM, Witzenrath M. Endothelin B Receptor Immunodynamics in Pulmonary Arterial Hypertension. Front Immunol 2022; 13:895501. [PMID: 35757687 PMCID: PMC9221837 DOI: 10.3389/fimmu.2022.895501] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/09/2022] [Indexed: 01/08/2023] Open
Abstract
Introduction Inflammation is a major pathological feature of pulmonary arterial hypertension (PAH), particularly in the context of inflammatory conditions such as systemic sclerosis (SSc). The endothelin system and anti-endothelin A receptor (ETA) autoantibodies have been implicated in the pathogenesis of PAH, and endothelin receptor antagonists are routinely used treatments for PAH. However, immunological functions of the endothelin B receptor (ETB) remain obscure. Methods Serum levels of anti-ETB receptor autoantibodies were quantified in healthy donors and SSc patients with or without PAH. Age-dependent effects of overexpression of prepro-endothelin-1 or ETB deficiency on pulmonary inflammation and the cardiovascular system were studied in mice. Rescued ETB-deficient mice (ETB-/-) were used to prevent congenital Hirschsprung disease. The effects of pulmonary T-helper type 2 (Th2) inflammation on PAH-associated pathologies were analyzed in ETB-/- mice. Pulmonary vascular hemodynamics were investigated in isolated perfused mouse lungs. Hearts were assessed for right ventricular hypertrophy. Pulmonary inflammation and collagen deposition were assessed via lung microscopy and bronchoalveolar lavage fluid analyses. Results Anti-ETB autoantibody levels were elevated in patients with PAH secondary to SSc. Both overexpression of prepro-endothelin-1 and rescued ETB deficiency led to pulmonary hypertension, pulmonary vascular hyperresponsiveness, and right ventricular hypertrophy with accompanying lymphocytic alveolitis. Marked perivascular lymphocytic infiltrates were exclusively found in ETB-/- mice. Following induction of pulmonary Th2 inflammation, PAH-associated pathologies and perivascular collagen deposition were aggravated in ETB-/- mice. Conclusion This study provides evidence for an anti-inflammatory role of ETB. ETB seems to have protective effects on Th2-evoked pathologies of the cardiovascular system. Anti-ETB autoantibodies may modulate ETB-mediated immune homeostasis.
Collapse
Affiliation(s)
- Christoph Tabeling
- Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Carla R González Calera
- Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jasmin Lienau
- Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jakob Höppner
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Tschernig
- Institute of Anatomy and Cell Biology, University of Saarland, Homburg, Germany
| | - Olivia Kershaw
- Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Birgitt Gutbier
- Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jan Naujoks
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia Herbert
- Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bastian Opitz
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Achim D Gruber
- Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University of Heidelberg, University Medical Centre Mannheim, Heidelberg, Germany.,Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Norbert Suttorp
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,German Center for Lung Research (DZL), Partner Site Charité, Berlin, Germany
| | | | - Gerd-R Burmester
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Elise Siegert
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Wolfgang M Kuebler
- German Center for Lung Research (DZL), Partner Site Charité, Berlin, Germany.,Institute of Physiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site, Berlin, Germany.,St. Michael's Hospital, Keenan Research Centre for Biomedical Science, Toronto, ON, Canada.,Departments of Physiology and Surgery, University of Toronto, Toronto, ON, Canada
| | - Martin Witzenrath
- Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,German Center for Lung Research (DZL), Partner Site Charité, Berlin, Germany
| |
Collapse
|
9
|
Animal Models of Systemic Sclerosis: Using Nailfold Capillaroscopy as a Potential Tool to Evaluate Microcirculation and Microangiopathy: A Narrative Review. Life (Basel) 2022; 12:life12050703. [PMID: 35629370 PMCID: PMC9147447 DOI: 10.3390/life12050703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/18/2022] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease with three pathogenic hallmarks, i.e., inflammation, vasculopathy, and fibrosis. A wide plethora of animal models have been developed to address the complex pathophysiology and for the development of possible anti-fibrotic treatments. However, no current model comprises all three pathological mechanisms of the disease. To highlight the lack of a complete model, a review of some of the most widely used animal models for SSc was performed. In addition, to date, no model has accomplished the recreation of primary or secondary Raynaud’s phenomenon, a key feature in SSc. In humans, nailfold capillaroscopy (NFC) has been used to evaluate secondary Raynaud’s phenomenon and microvasculature changes in SSc. Being a non-invasive technique, it is widely used both in clinical studies and as a tool for clinical evaluation. Because of this, its potential use in animal models has been neglected. We evaluated NFC in guinea pigs to investigate the possibility of applying this technique to study microcirculation in the nailfold of animal models and in the future, development of an animal model for Raynaud’s phenomenon. The applications are not only to elucidate the pathophysiological mechanisms of vasculopathy but can also be used in the development of novel treatment options.
Collapse
|
10
|
Shi X, Chen Y, Liu Q, Mei X, Liu J, Tang Y, Luo R, Sun D, Ma Y, Wu W, Tu W, Zhao Y, Xu W, Ke Y, Jiang S, Huang Y, Zhang R, Wang L, Chen Y, Xia J, Pu W, Zhu H, Zuo X, Li Y, Xu J, Gao F, Wei D, Chen J, Yin W, Wang Q, Dai H, Yang L, Guo G, Cui J, Song N, Zou H, Zhao S, Distler JH, Jin L, Wang J. LDLR dysfunction induces LDL accumulation and promotes pulmonary fibrosis. Clin Transl Med 2022; 12:e711. [PMID: 35083881 PMCID: PMC8792399 DOI: 10.1002/ctm2.711] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/27/2021] [Accepted: 01/05/2022] [Indexed: 12/15/2022] Open
Abstract
Treatments for pulmonary fibrosis (PF) are ineffective because its molecular pathogenesis and therapeutic targets are unclear. Here, we show that the expression of low-density lipoprotein receptor (LDLR) was significantly decreased in alveolar type II (ATII) and fibroblast cells, whereas it was increased in endothelial cells from systemic sclerosis-related PF (SSc-PF) patients and idiopathic PF (IPF) patients compared with healthy controls. However, the plasma levels of low-density lipoprotein (LDL) increased in SSc-PF and IPF patients. The disrupted LDL-LDLR metabolism was also observed in four mouse PF models. Upon bleomycin (BLM) treatment, Ldlr-deficient (Ldlr-/-) mice exhibited remarkably higher LDL levels, abundant apoptosis, increased fibroblast-like endothelial and ATII cells and significantly earlier and more severe fibrotic response compared to wild-type mice. In vitro experiments revealed that apoptosis and TGF-β1 production were induced by LDL, while fibroblast-like cell accumulation and ET-1 expression were induced by LDLR knockdown. Treatment of fibroblasts with LDL or culture medium derived from LDL-pretreated endothelial or epithelial cells led to obvious fibrotic responses in vitro. Similar results were observed after LDLR knockdown operation. These results suggest that disturbed LDL-LDLR metabolism contributes in various ways to the malfunction of endothelial and epithelial cells, and fibroblasts during pulmonary fibrogenesis. In addition, pharmacological restoration of LDLR levels by using a combination of atorvastatin and alirocumab inhibited BLM-induced LDL elevation, apoptosis, fibroblast-like cell accumulation and mitigated PF in mice. Therefore, LDL-LDLR may serve as an important mediator in PF, and LDLR enhancing strategies may have beneficial effects on PF.
Collapse
Affiliation(s)
- Xiangguang Shi
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
| | - Yahui Chen
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
| | - Qingmei Liu
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
| | - Xueqian Mei
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
| | - Jing Liu
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
- Division of RheumatologyHuashan hospital, Fudan UniversityShanghaiP. R. China
| | - Yulong Tang
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
| | - Ruoyu Luo
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
| | - Dayan Sun
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
| | - Yanyun Ma
- MOE Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life SciencesFudan UniversityShanghaiP. R. China
- Institute for Six‐sector EconomyFudan UniversityShanghaiP. R. China
| | - Wenyu Wu
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
| | - Wenzhen Tu
- Division of RheumatologyShanghai TCM‐Integrated HospitalShanghaiP. R. China
| | - Yinhuan Zhao
- Division of RheumatologyShanghai TCM‐Integrated HospitalShanghaiP. R. China
| | - Weihong Xu
- The Clinical Laboratory of Tongren HosipitalShanghai Jiaotong UniversityShanghaiP. R. China
| | - Yuehai Ke
- Department of Pathology and PathophysiologyZhejiang University School of MedicineHangzhouZhejiang ProvinceP. R. China
| | - Shuai Jiang
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
| | - Yan Huang
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
| | - Rui Zhang
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
- Institute for Six‐sector EconomyFudan UniversityShanghaiP. R. China
| | - Lei Wang
- Division of RheumatologyShanghai TCM‐Integrated HospitalShanghaiP. R. China
| | - Yuanyuan Chen
- Division of RheumatologyShanghai TCM‐Integrated HospitalShanghaiP. R. China
| | - Jingjing Xia
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
| | - Weilin Pu
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
| | - Honglin Zhu
- Department of Internal Medicine 3 and Institute for Clinical ImmunologyUniversity of ErlangenNurembergGermany
- Department of Rheumatology, Xiangya HospitalCentral South UniversityChangshaHunan ProvinceP. R. China
| | - Xiaoxia Zuo
- Department of Rheumatology, Xiangya HospitalCentral South UniversityChangshaHunan ProvinceP. R. China
| | - Yisha Li
- Department of Rheumatology, Xiangya HospitalCentral South UniversityChangshaHunan ProvinceP. R. China
| | - Jinhua Xu
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
| | - Fei Gao
- Wuxi Lung Transplant CenterWuxi People's Hospital affiliated to Nanjing Medical UniversityWuxiP. R. China
| | - Dong Wei
- Wuxi Lung Transplant CenterWuxi People's Hospital affiliated to Nanjing Medical UniversityWuxiP. R. China
| | - Jingyu Chen
- Wuxi Lung Transplant CenterWuxi People's Hospital affiliated to Nanjing Medical UniversityWuxiP. R. China
| | - Wenguang Yin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongP. R. China
| | - Qingwen Wang
- Rheumatology and Immunology DepartmentPeking University Shenzhen HospitalShenzhenP. R. China
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, China‐Japan Friendship Hospital; National Clinical Research Center for Respiratory Diseases, Institute of Respiratory MedicineChinese Academy of Medical ScienceBeijingP. R. China
| | - Libing Yang
- Department of Pulmonary and Critical Care Medicine, China‐Japan Friendship Hospital; National Clinical Research Center for Respiratory Diseases, Institute of Respiratory MedicineChinese Academy of Medical ScienceBeijingP. R. China
- School of MedicineTsinghua UniversityBeijingP. R. China
| | - Gang Guo
- Department of Rheumatology and ImmunologyYiling Hospital Affiliated to Hebei Medical UniversityShijiazhuangHebei ProvinceP. R. China
| | - Jimin Cui
- Department of Rheumatology and ImmunologyYiling Hospital Affiliated to Hebei Medical UniversityShijiazhuangHebei ProvinceP. R. China
| | - Nana Song
- Department of Nephrology, Zhongshan Hospital, Fudan UniversityFudan Zhangjiang InstituteShanghaiP. R. China
| | - Hejian Zou
- Division of RheumatologyHuashan hospital, Fudan UniversityShanghaiP. R. China
- Institute of Rheumatology, Immunology and AllergyFudan UniversityShanghaiP. R. China
| | - Shimin Zhao
- Institute of Metabolism and Integrative BiologyFudan UniversityShanghaiP. R. China
| | - Jörg H.W. Distler
- Department of Internal Medicine 3 and Institute for Clinical ImmunologyUniversity of ErlangenNurembergGermany
| | - Li Jin
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
- Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058)Chinese Academy of Medical SciencesShanghaiP. R. China
| | - Jiucun Wang
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
- Institute of Rheumatology, Immunology and AllergyFudan UniversityShanghaiP. R. China
- Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058)Chinese Academy of Medical SciencesShanghaiP. R. China
| |
Collapse
|
11
|
Nabeh OA, Matter LM, Khattab MA, Esraa Menshawey. "The possible implication of endothelin in the pathology of COVID-19-induced pulmonary hypertension". Pulm Pharmacol Ther 2021; 71:102082. [PMID: 34601121 PMCID: PMC8483983 DOI: 10.1016/j.pupt.2021.102082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 12/21/2022]
Abstract
COVID-19 pandemic has changed the world dramatically since was first reported in Wuhan city, China [1]. Not only as a respiratory illness that could lead to fatal respiratory failure, but also some evidences suggest that it can propagate as a chronic disease associated with a variety of persistent post COVID-19 pathologies that affect patients' life [2,3]. Pulmonary hypertension (PH) is one of the challenging diseases that may develop as a consequence of SARS-COV-2 infection in some COVID-19 survivors [4,5]. The vasopressor, proliferative, proinflammatory, and prothrombotic actions of endothelin [6] may be encountered in the COVID-19-induced PH pathology. And so, endothelin blockers may have an important role to restrict the development of serious PH outcomes with special precautions considering patients with significant hypoxemia.
Collapse
Affiliation(s)
- Omnia Azmy Nabeh
- M.Sc/ Assistant Lecturer, Department of Medical Pharmacology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt; M.Sc, Cardiovascular Medicine, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Lamiaa Mohammed Matter
- MD/Lecturer, Department of Medical Pharmacology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt; Professional Diploma of Family Medicine, Arab Institute for Continuing Professional Development, Arab Medical Union, Egypt.
| | - Mahmoud Ahmed Khattab
- M.Sc/ Assistant Lecturer, Department of Medical Pharmacology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt; M.Sc Internal Medicine, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Esraa Menshawey
- Medical Student, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
12
|
De Pieri A, Korman BD, Jüngel A, Wuertz-Kozak K. Engineering Advanced In Vitro Models of Systemic Sclerosis for Drug Discovery and Development. Adv Biol (Weinh) 2021; 5:e2000168. [PMID: 33852183 PMCID: PMC8717409 DOI: 10.1002/adbi.202000168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 12/19/2022]
Abstract
Systemic sclerosis (SSc) is a complex multisystem disease with the highest case-specific mortality among all autoimmune rheumatic diseases, yet without any available curative therapy. Therefore, the development of novel therapeutic antifibrotic strategies that effectively decrease skin and organ fibrosis is needed. Existing animal models are cost-intensive, laborious and do not recapitulate the full spectrum of the disease and thus commonly fail to predict human efficacy. Advanced in vitro models, which closely mimic critical aspects of the pathology, have emerged as valuable platforms to investigate novel pharmaceutical therapies for the treatment of SSc. This review focuses on recent advancements in the development of SSc in vitro models, sheds light onto biological (e.g., growth factors, cytokines, coculture systems), biochemical (e.g., hypoxia, reactive oxygen species) and biophysical (e.g., stiffness, topography, dimensionality) cues that have been utilized for the in vitro recapitulation of the SSc microenvironment, and highlights future perspectives for effective drug discovery and validation.
Collapse
Affiliation(s)
- Andrea De Pieri
- Dr. A. De Pieri, Prof. K. Wuertz-Kozak, Department of Biomedical Engineering, Rochester Institute of Technology (RIT), 106 Lomb Memorial Rd., Rochester, NY, 14623, USA
| | - Benjamin D Korman
- Prof. B. D. Korman, Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY, 14623, USA
| | - Astrid Jüngel
- Prof. A. Jüngel, Center of Experimental Rheumatology, University Clinic of Rheumatology, Balgrist University Hospital, University Hospital Zurich, Zurich, 8008, Switzerland
- Prof. A. Jüngel, Department of Physical Medicine and Rheumatology, Balgrist University Hospital, University of Zurich, Zurich, 8008, Switzerland
| | - Karin Wuertz-Kozak
- Dr. A. De Pieri, Prof. K. Wuertz-Kozak, Department of Biomedical Engineering, Rochester Institute of Technology (RIT), 106 Lomb Memorial Rd., Rochester, NY, 14623, USA
- Prof. K. Wuertz-Kozak, Schön Clinic Munich Harlaching, Spine Center, Academic Teaching Hospital and Spine Research Institute of the Paracelsus Medical University Salzburg (Austria), Munich, 81547, Germany
| |
Collapse
|
13
|
Abstract
Systemic sclerosis (SSc) is a rare autoimmune disorder with a high mortality rate. There are still many unknowns concerning the pathophysiology of this disease, due to its clinical heterogeneity. Since there is still no curative treatment, researchers focus on finding novel methods to help the patients. One of the valid options is cellular therapy, and mesenchymal stem cells (MSCs)-based therapy yields great expectations. These cells possess especially valuable attributes regarding key points of SSc. Nevertheless, the effectiveness and safety of this therapy must undergo a rigorous process of verification. In preclinical trials, animal models proved to be a valuable source of scientific knowledge regarding SSc. Because of that, it has been possible to test autologous or allogeneic MSCs from various sources in many clinical trials. A lot of aspects still have to be determined to assess their potential in the management of SSc, probably in association with other therapies.
Collapse
|
14
|
Arfian N, Suzuki Y, Hartopo AB, Anggorowati N, Nugrahaningsih DAA, Emoto N. Endothelin converting enzyme-1 (ECE-1) deletion in association with Endothelin-1 downregulation ameliorates kidney fibrosis in mice. Life Sci 2020; 258:118223. [PMID: 32768584 DOI: 10.1016/j.lfs.2020.118223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 01/16/2023]
Abstract
Kidney fibrosis is a common final pathway of chronic kidney diseases, which are characterized by renal architecture damage, inflammation, fibroblast expansion and myofibroblast formation. Endothelin converting enzyme-1 (ECE-1) contributes to activation of Endothelin-1 (ET-1), a potent vasoconstrictor and pro-fibrotic substance. This study elucidated the effect of ECE-1 knockout in kidney fibrosis model in mice in association of ET-1 downregulation. Kidney fibrosis was performed in ECE-1 knockout (ECE-1 KO) and vascular endothelial derived ET-1 KO (VEETKO) mice (2 months, 20-30 g, n = 30) and their wild type (WT) littermates using unilateral ureteral obstruction (UUO) procedure. Mice were euthanized on day-7 and day-14 after UUO. Histopathological analysis was conducted for fibrosis and tubular injury. Immunostainings were done to quantify macrophages (F4/80), fibroblasts (FSP-1) and myofibroblasts (α-SMA). Monocyte Chemoattractant Protein-1 (MCP-1), ECE-1 and preproET-1 (ppET-1) mRNA expression were quantified with qRT-PCR, while Transforming Growth Factor-β1 (TGF-β1) and α-SMA protein level were quantified with Western blot. ECE-1 KO mice demonstrated reduction of ECE-1 and ppET-1 mRNA expression, attenuation of kidney fibrosis, tubular injury, MCP-1 mRNA expression and macrophage number compared to WT. Double immunostaining revealed fibroblast to myofibroblast formation after UUO, while ECE-1 KO mice had significantly lower fibroblast number and myofibroblast formation compared to WT, which were associated with significantly lower TGF-β1 and α-SMA protein levels in day-14 of UUO. VEETKO mice also demonstrated attenuation of ET-1 protein level, fibrosis and myofibroblast formation. In conclusion, ECE-1 knockout and ET-1 downregulation attenuated kidney fibrosis.
Collapse
Affiliation(s)
- Nur Arfian
- Department of Anatomy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Yoko Suzuki
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, Kobe, Japan.
| | - Anggoro Budi Hartopo
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Nungki Anggorowati
- Department of Anatomical Pathology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Dwi Aris Agung Nugrahaningsih
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Noriaki Emoto
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, Kobe, Japan; Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.
| |
Collapse
|
15
|
Abstract
Cardiovascular disease is a major contributor to global morbidity and mortality and is the common end point of many chronic diseases. The endothelins comprise three structurally similar peptides of 21 amino acids in length. Endothelin 1 (ET-1) and ET-2 activate two G protein-coupled receptors - endothelin receptor type A (ETA) and endothelin receptor type B (ETB) - with equal affinity, whereas ET-3 has a lower affinity for ETA. ET-1 is the most potent vasoconstrictor in the human cardiovascular system and has remarkably long-lasting actions. ET-1 contributes to vasoconstriction, vascular and cardiac hypertrophy, inflammation, and to the development and progression of cardiovascular disease. Endothelin receptor antagonists have revolutionized the treatment of pulmonary arterial hypertension. Clinical trials continue to explore new applications of endothelin receptor antagonists, particularly in treatment-resistant hypertension, chronic kidney disease and patients receiving antiangiogenic therapies. Translational studies have identified important roles for the endothelin isoforms and new therapeutic targets during development, in fluid-electrolyte homeostasis, and in cardiovascular and neuronal function. Novel pharmacological strategies are emerging in the form of small-molecule epigenetic modulators, biologics (such as monoclonal antibodies for ETB) and possibly signalling pathway-biased agonists and antagonists.
Collapse
|
16
|
Sánchez-Molano E, Bay V, Smith RF, Oikonomou G, Banos G. Quantitative Trait Loci Mapping for Lameness Associated Phenotypes in Holstein-Friesian Dairy Cattle. Front Genet 2019; 10:926. [PMID: 31636655 PMCID: PMC6787292 DOI: 10.3389/fgene.2019.00926] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 09/05/2019] [Indexed: 01/08/2023] Open
Abstract
Lameness represents a significant challenge for the dairy cattle industry, resulting in economic losses and reduced animal health and welfare. The existence of underlying genomic variation for lameness associated traits has the potential to improve selection strategies by using genomic markers. Therefore, the aim of this study was to identify genomic regions and potential candidate genes associated with lameness traits. Lameness related lesions and digital cushion thickness were studied using records collected by our research team, farm records, and a combination of both. Genome-wide analyses were performed to identify significant genomic effects, and a combination of single SNP association analysis and regional heritability mapping was used to identify associated genomic regions. Significant genomic effects were identified for several lameness related traits: Two genomic regions were identified on chromosome 3 associated with digital dermatitis and interdigital hyperplasia, one genomic region on chromosome 23 associated with interdigital hyperplasia, and one genomic region on chromosome 2 associated with sole haemorrhage. Candidate genes in those regions are mainly related to immune response and fibroblast proliferation. Quantitative trait loci (QTL) identified in this study could enlighten the understanding of lameness pathogenesis, providing an opportunity to improve health and welfare in dairy cattle with the addition of these regions into selection programs.
Collapse
Affiliation(s)
- Enrique Sánchez-Molano
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Veysel Bay
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom.,Bandirma Sheep Research Institute, The Ministry of Agriculture and Forestry, Balikesir, Turkey
| | - Robert F Smith
- Institute of Veterinary Science, University of Liverpool, Leahurst Campus, Liverpool, United Kingdom
| | - Georgios Oikonomou
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom.,Institute of Veterinary Science, University of Liverpool, Leahurst Campus, Liverpool, United Kingdom
| | - Georgios Banos
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom.,The Roslin Institute Building, Scotland's Rural College, Easter Bush, Edinburgh, United Kingdom
| |
Collapse
|
17
|
Chowdhury MA, Moukarbel GV, Gupta R, Frank SM, Anderson AM, Liu LC, Khouri SJ. Endothelin 1 Is Associated with Heart Failure Hospitalization and Long-Term Mortality in Patients with Heart Failure with Preserved Ejection Fraction and Pulmonary Hypertension. Cardiology 2019; 143:124-133. [PMID: 31514181 DOI: 10.1159/000501100] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/21/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND The prevalence of pulmonary hypertension (PH) in heart failure with preserved ejection fraction (HFpEF) is increasing. We aim to study the role of big endothelin 1 (Big ET1), endothelin 1 (ET1), and neprilysin (NE) in HFpEF with PH. METHOD This was a single center prospective cohort study including 90 HFpEF patients; 30 with no PH, 30 with postcapillary PH, and 30 with combined post- and precapillary PH. After enrollment, pulmonary venous and pulmonary arterial samples of Big ET1, ET1, and NE were collected during right heart catheterization. Subjects were then followed long term for adverse outcomes which included echocardiographic evidence of right ventricular dysfunction, heart failure hospitalization, and all-cause mortality. RESULTS Patients with HFpEF-PH were found to have increased ET1 in pulmonary veins (endothelin from the wedge; ET1W) compared to controls (2.3 ± 1.4 and 1.6 ± 0.9 pg/mL, respectively). ET1W levels were associated with both PH (OR 2.7, 95% CI 1.5-4.7, p = 0.01) and pulmonary vascular resistance (OR 1.6, 95% CI 1.04-2.3, p = 0.03). No evidence of right ventricular dysfunction was observed after 1 year of follow-up. ET1W (OR 1.8, 95% CI 1.2-2.6, p = 0.01) and ET1 gradient (ET1G; OR 1.4, 95% CI 1.04-2, p = 0.03) were predictive of 1-year hospitalization. ET1G ≥0.2 pg/mL was associated with long-term mortality (log-rank 4.8, p = 0.03). CONCLUSION In HFpEF patients, ET1W and ET1G are predictive of 1-year heart failure hospitalization, while elevated ET1G levels were found to be associated with long-term mortality in HFpEF. This study highlights the role of ET1 in developing PH in HFpEF patients and also explores the potential of ET1 as a prognostic biomarker.
Collapse
Affiliation(s)
| | - George V Moukarbel
- Division of Cardiovascular Medicine, University of Toledo Medical Center, Toledo, Ohio, USA
| | - Rajesh Gupta
- Division of Cardiovascular Medicine, University of Toledo Medical Center, Toledo, Ohio, USA
| | - Stephanie Marie Frank
- Division of Cardiovascular Medicine, University of Toledo Medical Center, Toledo, Ohio, USA
| | - Ann M Anderson
- Division of Cardiovascular Medicine, University of Toledo Medical Center, Toledo, Ohio, USA
| | - Lijun C Liu
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, USA
| | - Samer J Khouri
- Division of Cardiovascular Medicine, University of Toledo Medical Center, Toledo, Ohio, USA,
| |
Collapse
|
18
|
Zhang C, Wang X, Zhang H, Yao C, Pan H, Guo Y, Fan K, Jing S. Therapeutic Monoclonal Antibody Antagonizing Endothelin Receptor A for Pulmonary Arterial Hypertension. J Pharmacol Exp Ther 2019; 370:54-61. [PMID: 30992315 DOI: 10.1124/jpet.118.252700] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 04/09/2019] [Indexed: 03/08/2025] Open
Abstract
Endothelin receptor A (ETA) is a G protein-coupled receptor and a major therapeutic target for pulmonary arterial hypertension (PAH). We took a novel approach and developed an antagonistic monoclonal antibody, getagozumab, specifically against ETA. Getagozumab displayed a K d value of 8.7 nM and an IC50 value of 37.9 nM in the cell-based assays. Getagozumab could significantly lower pulmonary arterial pressure in both hypoxia-induced and monocrotaline (MCT)-induced PAH monkey models and further attenuate the pulmonary arterial and right ventricular hypertrophy in MCT-induced PAH monkeys. The preclinical studies demonstrated that getagozumab is safe, long lasting, and efficacious. Getagozumab may provide a new and effective treatment for PAH patients.
Collapse
Affiliation(s)
- Cheng Zhang
- Gmax Biopharm LLC., Binjiang District, Hangzhou, Zhejiang, China
| | - Xiaofeng Wang
- Gmax Biopharm LLC., Binjiang District, Hangzhou, Zhejiang, China
| | - Hua Zhang
- Gmax Biopharm LLC., Binjiang District, Hangzhou, Zhejiang, China
| | - Chenjiang Yao
- Gmax Biopharm LLC., Binjiang District, Hangzhou, Zhejiang, China
| | - Hao Pan
- Gmax Biopharm LLC., Binjiang District, Hangzhou, Zhejiang, China
| | - Yong Guo
- Gmax Biopharm LLC., Binjiang District, Hangzhou, Zhejiang, China
| | - Kesuo Fan
- Gmax Biopharm LLC., Binjiang District, Hangzhou, Zhejiang, China
| | - Shuqian Jing
- Gmax Biopharm LLC., Binjiang District, Hangzhou, Zhejiang, China
| |
Collapse
|
19
|
B Ramachandra A, Humphrey JD. Biomechanical characterization of murine pulmonary arteries. J Biomech 2019; 84:18-26. [PMID: 30598195 PMCID: PMC6361676 DOI: 10.1016/j.jbiomech.2018.12.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/11/2018] [Accepted: 12/05/2018] [Indexed: 12/20/2022]
Abstract
The biomechanical properties of the major pulmonary arteries play critical roles in normal physiology as well as in diverse pathophysiologies and clinical interventions. Importantly, advances in medical imaging enable simulations of pulmonary hemodynamics, but such models cannot reach their full potential until they are informed with region-specific material properties. In this paper, we present passive and active biaxial biomechanical data for the right and left main pulmonary arteries from wild-type mice. We also evaluate the suitability of a four-fiber family constitutive model as a descriptor of the passive behavior. Despite regional differences in size, the biaxial mechanical properties, including passive stiffness and elastic energy storage, the biaxial wall stresses at in vivo pressures, and the overall contractile capacity in response to smooth muscle cell stimulation under in vivo conditions are remarkably similar between the right and left branches. The proposed methods and results can serve as baseline protocols and measurements for future biaxial experiments on murine models of pulmonary pathologies, and the constitutive model can inform computational models of normal pulmonary growth and remodeling. Our use of consistent experimental protocols and data analyses can also facilitate comparative studies in health and disease across the systemic and pulmonary circulations as well as studies seeking to understand remodeling in surgeries such as the Fontan procedure, which involves different types of vessels.
Collapse
Affiliation(s)
- Abhay B Ramachandra
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, United States.
| |
Collapse
|
20
|
Ewees MG, Messiha BAS, Abdel-Bakky MS, Bayoumi AMA, Abo-Saif AA. Tempol, a superoxide dismutase mimetic agent, reduces cisplatin-induced nephrotoxicity in rats. Drug Chem Toxicol 2018; 42:657-664. [PMID: 30067109 DOI: 10.1080/01480545.2018.1485688] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cisplatin (CP) is one of the most potent anti-cancer drugs used against different types of cancer. Its use is limited due to its nephrotoxicity. This study is aimed to evaluate the role of a super oxide dismutase (SOD) mimetic agent, tempol, in protection against CP nephrotoxicity in rats. Animals were divided into four groups: Group-1: Normal control group, Group-2: CP group (single dose of CP 6 mg/kg, i.p.), Group-3 and Group-4: Tempol-treated groups (50 mg/kg p.o. and 100 mg/kg p.o. respectively) daily for a week before CP injection and continued for an additional four days after CP injection. Urine and blood samples were collected for the evaluation of kidney function including serum creatinine, BUN, cystatin-c, and creatinine clearance. In addition, western blotting was used to determine urine lipocalin-2 content. Furthermore, kidney tissue was collected for the determination of oxidative stress markers, caspase-3 expression, and histopathological examination. We noticed that both doses of tempol significantly improved kidney function, which was deteriorated by CP injection. Tempol significantly elevated kidney glutathione (GSH) content and SOD activity, and decreased kidney lipid peroxidation and NOx production. Tempol also significantly decreased kidney caspase-3 expression which was elevated by CP toxicity. Thus, we conclude that tempol can protect against CP nephrotoxicity. We noticed that both doses of tempol are effective in ameliorating CP-nephrotoxicity.
Collapse
Affiliation(s)
- Mohamed G Ewees
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Basim A S Messiha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed S Abdel-Bakky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alazhar University, Cairo, Egypt
| | - Asmaa M A Bayoumi
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Ali A Abo-Saif
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt.,Department of Pharmacology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
21
|
Characterisation of preproendothelin-1 derived peptides identifies Endothelin-Like Domain Peptide as a modulator of Endothelin-1. Sci Rep 2017; 7:4956. [PMID: 28694457 PMCID: PMC5503984 DOI: 10.1038/s41598-017-05365-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/26/2017] [Indexed: 02/06/2023] Open
Abstract
Endothelin-1 (ET-1) is involved in the pathogenesis of cardiac and renal diseases, and in the progression of tumour growth in cancer, but current diagnosis and treatment remain inadequate. Peptides derived from the 212 amino acid precursor preproendothelin-1 (ppET-1) may have utility as biomarkers, or cause biological effects that are unaffected by endothelin receptor antagonists. Here, we used specific immunoassays and LC-MS/MS to identify NT-proET-1 (ppET-1[18–50]), Endothelin-Like Domain Peptide (ELDP, ppET-1[93–166]) and CT-proET-1 (ppET-1[169–212]) in conditioned media from cultured endothelial cells. Synthesis of these peptides correlated with ET-1, and plasma ELDP and CT-proET-1 were elevated in patients with chronic heart failure. Clearance rates of NT-proET-1, ELDP and CT-proET-1 were determined after i.v. injection in anaesthetised rats. CT-proET-1 had the slowest systemic clearance, hence providing a biological basis for it being a better biomarker of ET-1 synthesis. ELDP contains the evolutionary conserved endothelin-like domain sequence, which potentially confers biological activity. On isolated arteries ELDP lacked direct vasoconstrictor effects. However, it enhanced ET-1 vasoconstriction and prolonged the increase in blood pressure in anaesthetised rats. ELDP may therefore contribute to disease pathogenesis by augmenting ET-1 responses.
Collapse
|
22
|
Characterization of Eptesipoxvirus, a novel poxvirus from a microchiropteran bat. Virus Genes 2017; 53:856-867. [PMID: 28685222 PMCID: PMC6504846 DOI: 10.1007/s11262-017-1485-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/30/2017] [Indexed: 01/14/2023]
Abstract
The genome of Eptesipoxvirus (EPTV) is the first poxvirus genome isolated from a microbat. The 176,688 nt sequence, which is believed to encompass the complete coding region of the virus, is 67% A+T and is predicted to encode 191 genes. 11 of these genes have no counterpart in GenBank and are therefore unique to EPTV. The presence of a distantly related ortholog of Vaccinia virus F5L in EPTV uncovered a link with fragmented F5L orthologs in Molluscum contagiosum virus/squirrelpox and clade II viruses. Consistent with the unique position of EPTV approximately mid-point between the orthopoxviruses and the clade II viruses, EPTV has 11 genes that are specific to the orthopoxviruses and 13 genes that are typical, if not exclusive, to the clade II poxviruses. This mosaic nature of EPTV blurs the distinction between the old description of the orthopoxvirus and clade II groups. Genome annotation and characterization failed to find any common virulence genes shared with the other poxvirus isolated from bat (pteropoxvirus); however, EPTV encodes 3 genes that may have been transferred to or from deerpox and squirrelpox viruses; 2 of these, a putative endothelin-like protein and a MHC class I-like protein are likely to have immunomodulatory roles.
Collapse
|
23
|
Liu X, Khadtare N, Patel H, Stephani R, Cantor J. Time-dependent effects of HJP272, an endothelin receptor antagonist, in bleomycin-induced pulmonary fibrosis. Pulm Pharmacol Ther 2017; 45:164-169. [PMID: 28619646 DOI: 10.1016/j.pupt.2017.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 05/05/2017] [Accepted: 06/12/2017] [Indexed: 10/19/2022]
Abstract
Using a lipopolysaccharide (LPS) model of acute lung injury, we have previously shown that endothelin-1 (ET-1), a potent mediator of vasoconstriction, may act as a "gatekeeper" for the influx of inflammatory cells into the lung. To further investigate the potential of ET-1 to limit the progression of lung injury, hamsters were treated with an endothelin receptor antagonist (ERA), HJP272, either 1 h prior to intratracheal instillation of bleomycin (BLM) or 24 h afterwards. Lung injury and repair were examined by measuring the following parameters: 1) histopathological changes; 2) neutrophil content in bronchoalveolar lavage fluid (BALF); 3) lung collagen content; 4) tumor necrosis factor receptor 1 (TNFR1) expression by BALF macrophages; 5) BALF levels of: a) transforming growth factor beta-1 (TGF-β1), b) stromal cell-derived factor 1 (commonly referred to as CXCL12), and c) platelet-derived growth factor BB (PDGF-BB); 6) alveolar septal cell apoptosis (as measured by the TUNEL assay). For each of these parameters, animals pretreated with HJP272 showed significant reductions compared to those receiving BLM alone. In contrast, post-treatment with HJP272 was either ineffective or produced only marginally significant changes. The efficacy of a single pretreatment with HJP272 prior to induction of lung injury suggests that subsequent features of the disease are determined at a very early stage. This may explain why ERAs are not an effective treatment for human pulmonary fibrosis. Nevertheless, our findings suggest that they may be useful as prophylactic agents when given in combination with drugs that have fibrogenic potential.
Collapse
Affiliation(s)
- Xingjian Liu
- College of Pharmacy and Health Sciences, St John's University, Queens, NY, USA
| | - Nikhil Khadtare
- College of Pharmacy and Health Sciences, St John's University, Queens, NY, USA
| | - Hardek Patel
- College of Pharmacy and Health Sciences, St John's University, Queens, NY, USA
| | - Ralph Stephani
- College of Pharmacy and Health Sciences, St John's University, Queens, NY, USA
| | - Jerome Cantor
- College of Pharmacy and Health Sciences, St John's University, Queens, NY, USA
| |
Collapse
|
24
|
Pan X, Wang Y, Lübke T, Hinek A, Pshezhetsky AV. Mice, double deficient in lysosomal serine carboxypeptidases Scpep1 and Cathepsin A develop the hyperproliferative vesicular corneal dystrophy and hypertrophic skin thickenings. PLoS One 2017; 12:e0172854. [PMID: 28234994 PMCID: PMC5325571 DOI: 10.1371/journal.pone.0172854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/17/2017] [Indexed: 01/04/2023] Open
Abstract
Vasoactive and mitogenic peptide, endothelin-1 (ET-1) plays an important role in physiology of the ocular tissues by regulating the growth of corneal epithelial cells and maintaining the hemodynamics of intraocular fluids. We have previously established that ET-1 can be degraded in vivo by two lysosomal/secreted serine carboxypeptidases, Cathepsin A (CathA) and Serine Carboxypeptidase 1 (Scpep1) and that gene-targeted CathAS190A/Scpep1-/- mice, deficient in CathA and Scpep1 have a prolonged half-life of circulating ET-1 associated with systemic hypertension. In the current work we report that starting from 6 months of age, ~43% of CathAS190A/Scpep1-/- mice developed corneal clouding that eventually caused vision impairment. Histological evaluation of these mice demonstrated a selective fibrotic thickening and vacuolization of the corneas, resembling human hyperproliferative vesicular corneal stromal dystrophy and coexisting with a peculiar thickening of the skin epidermis. Moreover, we found that cultured corneal epithelial cells, skin fibroblasts and vascular smooth muscle cells derived from CathA/Scpep1-deficient mice, demonstrated a significantly higher proliferative response to treatment with exogenous ET-1, as compared with cells from wild type mice. We also detected increased activation level of ERK1/2 and AKT kinases involved in cell proliferation in the ET-1-treated cultured cells from CathA/Scpep1 deficient mice. Together, results from our experimental model suggest that; in normal tissues the tandem of serine carboxypeptidases, Scpep1 and CathA likely constitutes an important part of the physiological mechanism responsible for the balanced elimination of heightened levels of ET-1 that otherwise would accumulate in tissues and consequently contribute to development of the hyper-proliferative corneal dystrophy and abnormal skin thickening.
Collapse
Affiliation(s)
- Xuefang Pan
- Department of Medical Genetics, CHU Sainte-Justine Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Yanting Wang
- Cardiovascular Research Program, the Hospital for Sick Children and Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | - Torben Lübke
- Department of Chemistry, Biochemistry I, Bielefeld University, Bielefeld, Germany
| | - Aleksander Hinek
- Cardiovascular Research Program, the Hospital for Sick Children and Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | - Alexey V. Pshezhetsky
- Department of Medical Genetics, CHU Sainte-Justine Research Center, University of Montreal, Montreal, Quebec, Canada
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
25
|
Abstract
Exposure to air pollution negatively impacts cardiovascular health. Studies show that increased exposure to a number of airborne pollutants increases the risk for cardiovascular disease progression, myocardial events, and cardiovascular mortality. A hypothesized mechanism linking air pollution and cardiovascular disease is the development of systemic inflammation and endothelium dysfunction, the latter of which can result from an imbalance of vasoactive factors within the vasculature. Endothelin-1 (ET-1) is a potent peptide vasoconstrictor that plays a significant role in regulating vascular homeostasis. It has been reported that the production and function of ET-1 and its receptors are upregulated in a number of disease states associated with endothelium dysfunction including hypertension and atherosclerosis. This mini-review surveys epidemiological and experimental air pollution studies focused on ET-1 dysregulation as a plausible mechanism underlying the development of cardiovascular disease. Although alterations in ET-1 system components are observed in some studies, there remains a need for future research to clarify whether these specific changes are compensatory or causally related to vascular injury and dysfunction. Moreover, further research may test the efficacy of selective ET-1 pharmacological interventions (e.g., ETA receptor inhibitors) to determine whether these treatments could impede the deleterious impact of air pollution exposure on cardiovascular health.
Collapse
|
26
|
Interstitial lung disease in systemic sclerosis: current and future treatment. Rheumatol Int 2017; 37:853-863. [PMID: 28063071 DOI: 10.1007/s00296-016-3636-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 12/19/2016] [Indexed: 12/28/2022]
Abstract
Systemic sclerosis (SSc) has the highest fatality rate among connective tissue diseases and is characterized by vascular damage, inflammation and fibrosis of the skin and various internal organs. Interstitial lung disease (ILD) frequently complicates SSc and can be a debilitating disorder with a poor prognosis. ILD is the most frequent cause of death in SSc, and the management of SSc-ILD patients is a great challenge. Early detection of pulmonary involvement based on a recent decline of lung function tests and on the extent of lung involvement at high-resolution computed tomography is critical for the best management of these patients. This article summarizes classification, pathogenesis, diagnosis, prognosis, survival and finally current and future treatment options in SSc-ILD.
Collapse
|
27
|
|
28
|
Effect of endothelin-1 receptor antagonists on skin fibrosis in scleroderma patients from the EUSTAR database. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2016. [DOI: 10.5301/jsrd.5000204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Introduction The aim of the study was to evaluate the effect of endothelin-1 receptor antagonists (ETRAs) on skin fibrosis in systemic sclerosis (SSc) patients from the (EULAR Scleroderma Trials and Research) EUSTAR cohort. Methods SSc patients from the EUSTAR cohort with at least three visits (pre-study visit without ETRA treatment, baseline and follow-up visit with ETRA treatment) were included. The control group consisted of SSc patients with the same inclusion criteria, but without ETRA treatment. The primary endpoint was the comparison of the delta change of the modified Rodnan skin score (mRSS) between baseline and follow-up in the ETRA versus the control group. Results Data on 75 ETRA treated (68 bosentan, 1 sitaxentan, 6 ambrisentan) and 969 control patients were included. The delta change of mRSS was not significantly different between the ETRA group and the control group (n = 969; 0 (-2-1) vs. n = 75; 0 (-2-1); p = 0.4). Similarly, subgroup analysis on patients with diffuse, extended SSc disease (mRSS ≥16) did not show differences in the delta change of mRSS between the ETRA group and the control group (n = 125; −1 [-7-0] vs. n = 23; −1 [-7-2], p = 0.8). Likewise, diffuse SSc patients with mRSS 7-21 at baseline, reflecting recently identified enrichment criteria for clinical trials, did not show any difference between the ETRA and the control group (n = 219; −1 [-3-1] vs. n = 27; −1 [-3-2]; p = 0.5). Conclusions This controlled, observational, real-life cohort study with a large sample size did not show effects of ETRAs on skin fibrosis in patients with SSc.
Collapse
|
29
|
Baretella O, Vanhoutte P. Endothelium-Dependent Contractions. ADVANCES IN PHARMACOLOGY 2016; 77:177-208. [DOI: 10.1016/bs.apha.2016.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Selej M, Romero AJ, Channick RN, Clozel M. Development of macitentan for the treatment of pulmonary arterial hypertension. Ann N Y Acad Sci 2015; 1358:68-81. [PMID: 26291180 DOI: 10.1111/nyas.12856] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a serious, chronic condition that, without early recognition and treatment, leads to progressive right heart failure and death. The dual endothelin receptor antagonist macitentan was designed through a deliberate discovery process to maximize endothelin-axis blockade while improving adverse-effect profiles compared with previous compounds. Macitentan's efficacy was demonstrated in an event-driven morbidity and mortality study of treatment-naive and background PAH therapy-treated symptomatic patients. Compared to placebo, 10 mg of macitentan significantly reduced the relative risk of morbidity and mortality by 45%, primarily by delaying PAH worsening, most prominently in World Health Organization (WHO) functional class II and III PAH patients. Macitentan reduced the incidence of the composite end point of PAH-related hospitalizations and mortality and improved WHO FC and exercise capacity (6-min walk distance). Furthermore, it significantly improved cardiopulmonary hemodynamics and quality of life, and had a favorable safety and tolerability profile. To date, this was the largest and longest prospective trial for PAH. Macitentan, currently the only approved oral PAH treatment shown to be safe and effective in delaying long-term progression and reducing PAH-related hospitalizations, has changed treatment paradigms from goal-directed to long-term outcome-oriented therapy.
Collapse
Affiliation(s)
- Mona Selej
- Actelion Pharmaceuticals, US, Inc, South San Francisco, California
| | - Alain J Romero
- Actelion Pharmaceuticals, US, Inc, South San Francisco, California
| | - Richard N Channick
- Pulmonary and Critical Care, Massachusetts General Hospital, Boston, Massachusetts
| | | |
Collapse
|
31
|
Satwiko MG, Ikeda K, Nakayama K, Yagi K, Hocher B, Hirata KI, Emoto N. Targeted activation of endothelin-1 exacerbates hypoxia-induced pulmonary hypertension. Biochem Biophys Res Commun 2015; 465:356-62. [PMID: 26275708 DOI: 10.1016/j.bbrc.2015.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 08/01/2015] [Indexed: 01/05/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a fatal disease that eventually results in right heart failure and death. Current pharmacologic therapies for PAH are limited, and there are no drugs that could completely cure PAH. Enhanced activity of endothelin system has been implicated in PAH severity and endothelin receptor antagonists have been used clinically to treat PAH. However, there is limited experimental evidence on the direct role of enhanced endothelin system activity in PAH. Here, we investigated the correlation between endothelin-1 (ET-1) and PAH using ET-1 transgenic (ETTG) mice. Exposure to chronic hypoxia increased right ventricular pressure and pulmonary arterial wall thickness in ETTG mice compared to those in wild type mice. Of note, ETTG mice exhibited modest but significant increase in right ventricular pressure and vessel wall thickness relative to wild type mice even under normoxic conditions. To induce severe PAH, we administered SU5416, a vascular endothelial growth factor receptor inhibitor, combined with exposure to chronic hypoxia. Treatment with SU5416 modestly aggravated hypoxia-induced pulmonary hypertension, right ventricular hypertrophy, and pulmonary arterial vessel wall thickening in ETTG mice in association with increased interleukin-6 expression in blood vessels. However, there was no sign of obliterative endothelial cell proliferation and plexiform lesion formation in the lungs. These results demonstrated that enhanced endothelin system activity could be a causative factor in the development of PAH and provided rationale for the inhibition of endothelin system to treat PAH.
Collapse
Affiliation(s)
- Muhammad Gahan Satwiko
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Koji Ikeda
- Department of Clinical Pharmacy, Kobe Pharmaceutical University, Kobe, Japan
| | - Kazuhiko Nakayama
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Keiko Yagi
- Department of Clinical Pharmacy, Kobe Pharmaceutical University, Kobe, Japan
| | - Berthold Hocher
- Institute for Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Ken-ichi Hirata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Noriaki Emoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan; Department of Clinical Pharmacy, Kobe Pharmaceutical University, Kobe, Japan.
| |
Collapse
|
32
|
Chilakapati SR, Serasanambati M, Vissavajjhala P, Kanala JR, Chilakapati DR. Amelioration of bleomycin-induced pulmonary fibrosis in a mouse model by a combination therapy of bosentan and imatinib. Exp Lung Res 2015; 41:173-88. [PMID: 25844688 DOI: 10.3109/01902148.2014.939312] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is characterized by alveolitis, progressing into fibrosis. Due to the involvement of both endothelin and platelet-derived growth factor signaling in IPF, combination effects of a bosentan and imatinib were studied in mouse model of bleomycin-induced pulmonary fibrosis. METHODS Mice subjected to bleomycin instillation (0.05 U) and were administered with either bosentan (100 mg/kg) and/or imatinib (50 mg/kg). Inflammatory cell count, total protein estimation in bronchoalveolar lavage fluid, lung edema, superoxide dismutase, catalase, myeloperoxidase activities, and Hematoxylin & Eosin staining were performed on day 7. Hydroxyproline content, α-smooth muscle actin (SMA), collagens I and III gene expression analysis, immunohistochemistry, matrix metalloproteinases-9 and -2 activities, trichrome and sirius red staining were performed on day 21. RESULTS Combination treatment with bosentan and imatinib prevented bleomycin-induced mortality and loss of body weight more than the individual agents. On day 7, the combination therapy attenuated bleomycin-induced increase of total and differential inflammatory cell counts, total proteins, lung wet/dry weight ratio, myeloperoxidase activity, lung inflammatory cell infiltration more than individual agents alone. Bosentan but not imatinib ameliorated superoxide dismutase and catalase activities, which were lowered following bleomycin instillation. On day 21, combination therapy ameliorated bleomycin-induced increase of fibrosis score, collagen deposition, protein and gene expression of SMA, mRNA levels of collagens-I and -III, matrix metalloproteinase-9 and -2 activities more than monotherapy. CONCLUSION Combination of bosentan and imatinib exerted more enhanced protection against bleomycin-induced inflammation and fibrosis than either of the agents alone.
Collapse
|
33
|
The Tsk2/+ mouse fibrotic phenotype is due to a gain-of-function mutation in the PIIINP segment of the Col3a1 gene. J Invest Dermatol 2014; 135:718-27. [PMID: 25330296 PMCID: PMC4324084 DOI: 10.1038/jid.2014.455] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/09/2014] [Accepted: 09/22/2014] [Indexed: 12/28/2022]
Abstract
Systemic sclerosis (SSc) is a polygenic, autoimmune disorder of unknown etiology, characterized by the excessive accumulation of extracellular matrix (ECM) proteins, vascular alterations, and autoantibodies. The tight skin (Tsk)2/+ mouse model of SSc demonstrates signs similar to SSc including tight skin and excessive deposition of dermal ECM proteins. By linkage analysis, we mapped the Tsk2 gene mutation to <3 megabases on chromosome 1. We performed both RNA sequencing of skin transcripts and genome capture DNA sequencing of the region spanning this interval in Tsk2/+ and wild-type littermates. A missense point mutation in the procollagen III amino terminal propeptide segment (PIIINP) of collagen, type III, alpha 1 (Col3a1) was found to be the best candidate for Tsk2; hence, both in vivo and in vitro genetic complementation tests were used to prove that this Col3a1 mutation is the Tsk2 gene. All previously documented mutations in the human Col3a1 gene are associated with the Ehlers-Danlos syndrome, a connective tissue disorder that leads to a defect in type III collagen synthesis. To our knowledge, the Tsk2 point mutation is the first documented gain-of-function mutation associated with Col3a1, which leads instead to fibrosis. This discovery provides insight into the mechanism of skin fibrosis manifested by Tsk2/+ mice.
Collapse
|
34
|
Abstract
Without doubt, animal models have provided significant insights into our understanding of the rheumatological diseases; however, no model has accurately replicated all aspects of any autoimmune disease. Recent years have seen a plethora of knockouts and transgenics that have contributed to our knowledge of the initiating events of systemic sclerosis, an autoimmune disease. In this review, the focus is on models of systemic sclerosis and how they have progressed our understanding of fibrosis and vasculopathy, and whether they are relevant to the pathogenesis of systemic sclerosis.
Collapse
Affiliation(s)
- Carol M Artlett
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
35
|
Richard V. [Endothelin: From discovery to pharmacotherapeutic innovations]. Presse Med 2014; 43:742-55. [PMID: 24797866 DOI: 10.1016/j.lpm.2014.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/25/2013] [Accepted: 01/20/2014] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES Endothelin (ET) is a major therapeutic target in cardiopulmonary diseases. The purpose of this review is to present the main concepts concerning ET biology, its pathophysiological roles and the major pharmacological and medical advances recently developed around the concept of ET receptor blockade. METHODS Analysis of PubMed database (keywords: endothelin, endothelin receptor antagonists, pulmonary hypertension, etc.), and of abstract originating from recent international meetings. RESULTS ET is a peptide produced by vascular endothelial cells as well as by many other tissues. Both its production and its effects are activated in pathological situations associated with endothelial dysfunction. ET is characterized by a strong tropism toward tissues because of its polarized release, the strong tissue receptor density and high affinity of the receptors for the peptide. ET exerts several vascular effects, including vasoconstriction, proliferation and hypertrophy, as well as non-vascular effects, notably stimulation of cardiac hypertrophy, tissue fibrosis and inflammation. Both vascular and non-vascular effects depend on the stimulation of two receptor subtypes, ETA and ETB. ET receptor antagonists (ERA) demonstrated beneficial effects in many different pre-clinical models of cardiovascular and pulmonary diseases, and constitute a first-line treatment of patients with pulmonary arterial hypertension (PAH). Recently, the targeted search for a novel ERA led to the development of macitentan which, compared to existing ERA, show optimized tissue penetration, increased receptor affinity and in vivo pharmacological efficacy in pre-clinical models, associated with a favorable profile, in terms of hepatic safety and drug interactions. The clinical efficacy of macitentan in the treatment of PAH was recently demonstrated in the SERAPHIN trial, which contrasts with previous PAH trials because of its long duration, the high number of patients enrolled, and its primary endpoint evaluating morbidity/mortality. Results show a significant reduction of the primary composite morbidity/mortality endpoint (taking into account both progression of PAH and death) by 30 and 45% with macitentan 3 and 10mg, respectively, compared to placebo, and confirm on the large scale the favorable tolerance profile, especially at the hepatic level. CONCLUSION The extensive knowledge on the complexity of the ET system allowed the synthesis of a new antagonist optimized, in terms of pharmacological efficacy and safety, which also show promising therapeutic effects in PAH patients, with demonstrated results in a prospective study using a composite primary endpoint of morbidity-mortality.
Collapse
Affiliation(s)
- Vincent Richard
- CHU de Rouen, service de pharmacologie, unité Inserm U1096, UFR médecine pharmacie de Rouen, 76183 Rouen cedex, France.
| |
Collapse
|
36
|
Tsou PS, Haak AJ, Khanna D, Neubig RR. Cellular mechanisms of tissue fibrosis. 8. Current and future drug targets in fibrosis: focus on Rho GTPase-regulated gene transcription. Am J Physiol Cell Physiol 2014; 307:C2-13. [PMID: 24740541 DOI: 10.1152/ajpcell.00060.2014] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tissue fibrosis occurs with excessive extracellular matrix deposition from myofibroblasts, resulting in tissue scarring and inflammation. It is driven by multiple mediators, such as the G protein-coupled receptor ligands lysophosphatidic acid and endothelin, as well as signaling by transforming growth factor-β, connective tissue growth factor, and integrins. Fibrosis contributes to 45% of deaths in the developed world. As current therapeutic options for tissue fibrosis are limited and organ transplantation is the only effective treatment for end-stage disease, there is an imminent need for efficacious antifibrotic therapies. This review discusses the various molecular pathways involved in fibrosis. It highlights the Rho GTPase signaling pathway and its downstream gene transcription output through myocardin-related transcription factor and serum response factor as a convergence point for targeting this complex set of diseases.
Collapse
Affiliation(s)
- Pei-Suen Tsou
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Scleroderma Program, Ann Arbor, Michigan
| | - Andrew J Haak
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, Michigan; and
| | - Dinesh Khanna
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Scleroderma Program, Ann Arbor, Michigan
| | - Richard R Neubig
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
37
|
Serine carboxypeptidase SCPEP1 and Cathepsin A play complementary roles in regulation of vasoconstriction via inactivation of endothelin-1. PLoS Genet 2014; 10:e1004146. [PMID: 24586188 PMCID: PMC3937211 DOI: 10.1371/journal.pgen.1004146] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 12/13/2013] [Indexed: 11/19/2022] Open
Abstract
The potent vasoconstrictor peptides, endothelin 1 (ET-1) and angiotensin II control adaptation of blood vessels to fluctuations of blood pressure. Previously we have shown that the circulating level of ET-1 is regulated through its proteolytic cleavage by secreted serine carboxypeptidase, cathepsin A (CathA). However, genetically-modified mouse expressing catalytically inactive CathA S190A mutant retained about 10-15% of the carboxypeptidase activity against ET-1 in its tissues suggesting a presence of parallel/redundant catabolic pathway(s). In the current work we provide direct evidence that the enzyme, which complements CathA action towards ET-1 is a retinoid-inducible lysosomal serine carboxypeptidase 1 (Scpep1), a CathA homolog with previously unknown biological function. We generated a mouse strain devoid of both CathA and Scpep1 activities (DD mice) and found that in response to high-salt diet and systemic injections of ET-1 these animals showed significantly increased blood pressure as compared to wild type mice or those with single deficiencies of CathA or Scpep1. We also found that the reactivity of mesenteric arteries from DD mice towards ET-1 was significantly higher than that for all other groups of mice. The DD mice had a reduced degradation rate of ET-1 in the blood whereas their cultured arterial vascular smooth muscle cells showed increased ET-1-dependent phosphorylation of myosin light chain 2. Together, our results define the biological role of mammalian serine carboxypeptidase Scpep1 and suggest that Scpep1 and CathA together participate in the control of ET-1 regulation of vascular tone and hemodynamics.
Collapse
|
38
|
Sakai N, Tager AM. Fibrosis of two: Epithelial cell-fibroblast interactions in pulmonary fibrosis. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1832:911-21. [PMID: 23499992 PMCID: PMC4041487 DOI: 10.1016/j.bbadis.2013.03.001] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 03/03/2013] [Accepted: 03/04/2013] [Indexed: 12/12/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by the progressive and ultimately fatal accumulation of fibroblasts and extracellular matrix in the lung that distorts its architecture and compromises its function. IPF is now thought to result from wound-healing processes that, although initiated to protect the host from injurious environmental stimuli, lead to pathological fibrosis due to these processes becoming aberrant or over-exuberant. Although the environmental stimuli that trigger IPF remain to be identified, recent evidence suggests that they initially injure the alveolar epithelium. Repetitive cycles of epithelial injury and resultant alveolar epithelial cell death provoke the migration, proliferation, activation and myofibroblast differentiation of fibroblasts, causing the accumulation of these cells and the extracellular matrix that they synthesize. In turn, these activated fibroblasts induce further alveolar epithelial cell injury and death, thereby creating a vicious cycle of pro-fibrotic epithelial cell-fibroblast interactions. Though other cell types certainly make important contributions, we focus here on the "pas de deux" (steps of two), or perhaps more appropriate to IPF pathogenesis, the "folie à deux" (madness of two) of epithelial cells and fibroblasts that drives the progression of pulmonary fibrosis. We describe the signaling molecules that mediate the interactions of these cell types in their "fibrosis of two", including transforming growth factor-β, connective tissue growth factor, sonic hedgehog, prostaglandin E2, angiotensin II and reactive oxygen species. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.
Collapse
Affiliation(s)
- Norihiko Sakai
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114
| | - Andrew M. Tager
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114
- Pulmonary and Critical Care Unit, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114
| |
Collapse
|
39
|
Hartopo AB, Emoto N, Vignon-Zellweger N, Suzuki Y, Yagi K, Nakayama K, Hirata KI. Endothelin-converting enzyme-1 gene ablation attenuates pulmonary fibrosis via CGRP-cAMP/EPAC1 pathway. Am J Respir Cell Mol Biol 2013; 48:465-76. [PMID: 23306833 DOI: 10.1165/rcmb.2012-0354oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Endothelin-1 (ET-1) has been shown to be involved in human pulmonary fibrosis. However, recent clinical trials targeting the ET-1 pathway with ET-1 receptor antagonists failed to achieve beneficial outcomes. Another strategy opposing the actions of ET-1 involves the inhibition of endothelin-converting enzyme-1 (ECE-1). We hypothesize that ECE-1 inhibition exerts beneficial effects on pulmonary fibrosis. Pulmonary fibrosis was induced by instilling bleomycin intratracheally into ECE-1 heterozygous knockout mice (ECE-1(+/-)) and their wild-type control mice (ECE-1(+/+)). Lung inflammation and fibrosis were assessed on Days 7, 14, and 28 after bleomycin instillation. The activity of ECE-1 and the concentrations of its related peptides, ET-1, bradykinin, atrial natriuretic peptide (ANP), and calcitonin gene-related peptide (CGRP), were determined. ECE-1(+/-) mice demonstrated less lung inflammation and limited fibrosis compared with control mice. ECE-1 activity was half-reduced in ECE-1(+/-) mice, and this activity also altered ET-1 and CGRP concentrations, but not concentrations of bradykinin and ANP. ET-1 concentrations were found to be lower in ECE-1(+/-) mice after the development of fibrosis, in contrast to the unaltered concentrations during inflammation. Reduced ECE-1 activity resulted in higher CGRP concentrations, which altered the pathological functionality of the lung, indicating the activation of the CGRP pathway involving cyclic adenosine monophosphate (cAMP)/exchange protein directly activated by cAMP and cAMP/protein kinase A in ECE-1(+/-) mice. Bleomycin instillation on Day 14 induced the accumulation of M2 macrophages expressing CGRP receptors in ECE-1(+/-) mice. Our results emphasize that the in vivo ECE-1-mediated degradation of CGRP promotes the transition from lung inflammation to fibrosis. Further, our study identified M2 macrophages as the target cells of CGRP action during this transition.
Collapse
Affiliation(s)
- Anggoro Budi Hartopo
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Pulmonary arterial hypertension: new insights into the optimal role of current and emerging prostacyclin therapies. Am J Cardiol 2013; 111:1A-16A; quiz 17A-19A. [PMID: 23414683 DOI: 10.1016/j.amjcard.2012.12.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Pulmonary arterial hypertension (PAH), which is a subset of pulmonary hypertension, is a group of diseases distinguished by vascular remodeling of the small pulmonary arteries with associated elevated pulmonary arterial pressure and right ventricular failure. This progressive and sometimes fatal disease occurs as an idiopathic disease or as a component of other disease states. Estimates of the incidence of PAH have varied from 5 to 52 cases/1 million population. Symptoms begin with shortness of breath with exertion and progress to dyspnea with normal activities and, finally, dyspnea at rest. Untreated patients with PAH have a 1-, 3-, and 5-year survival rate of 68%, 48%, and 34%, respectively. Treated, the survival rates improve to 91% to 97% after 1 year and 84% to 91% after 2 years. The current definition of PAH consists of 3 specific hemodynamic assessments confirmed by right heart catheterization findings. One of several important pathophysiologic mechanisms involved in PAH is pulmonary vascular remodeling, which is caused by endothelial and smooth muscle cell hyperproliferation. This is coincident with overexpression of the vasoconstrictor endothelin-1 and a reduction in the vasodilators nitric oxide and prostacyclin, which further impedes proper vasomotor tone, among other effects. Prostacyclin therapies augment the decreased prostacyclin levels in patients with PAH. The currently approved prostacyclins for the treatment of PAH include epoprostenol, iloprost, and treprostinil. Among the 3 medications, the delivery options include intravenous infusion, subcutaneous infusion, and inhaled formulations. Epoprostenol has been shown to have a positive effect on survival in patients with PAH. All prostacyclins have demonstrated improvements in functional class, exercise tolerance, and hemodynamics in patients with PAH. Intravenously and subcutaneously administered formulations of prostacyclins require continuous infusion pump administration, which presents clinical challenges for both the patient and the care provider. Dosing must be individualized and also presents a clinical challenge. Inhaled formulations seem efficacious in moderately symptomatic patients with PAH and might be appropriate when combined with an oral medication. Combination therapies are commonly used in clinical practice, with the decision to do so based on randomized controlled trial data and case study evidence. The present report provides an overview of PAH, the scientific rationale for treatment with prostacyclin therapy, and the benefits and risks of prostacyclin therapy, both as monotherapy and combined with other medications approved for the treatment of PAH.
Collapse
|
41
|
Abstract
Since its discovery over 20 years ago endothelin-1 (ET-1) has been implicated in a number of physiological and pathophysiological processes. Its role in the development and progression of chronic kidney disease (CKD) is well established and is an area of ongoing intense research. There are now available a number of ET receptor antagonists many of which have been used in trials with CKD patients and shown to reduce BP and proteinuria. However, ET-1 has a number of BP-independent effects. Importantly, and in relation to the kidney, ET-1 has clear roles to play in cell proliferation, podocyte dysfunction, inflammation and fibrosis, and arguably, these actions of ET-1 may be more significant in the progression of CKD than its prohypertensive actions. This review will focus on the potential role of ET-1 in renal disease with an emphasis on its BP-independent actions.
Collapse
Affiliation(s)
- Neeraj Dhaun
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK.
| | | | | |
Collapse
|
42
|
Abstract
INTRODUCTION Activation of the endothelin (ET) system promotes inflammation and fibrosis in various tissues including the kidney. Male ET-1 transgenic mice are characterized by chronic kidney inflammation and renal scarring. We hypothesized that this renal phenotype might be modulated by androgens. Thus the aim of our study was to elucidate the impact of gonadectomy in ET-1 transgenic mice on kidney function and morphology. - METHODS Male ET-1 transgenic mice at the age of 10 weeks were randomly allocated to the following groups: normal ET transgenic mice (ET; n = 17) and ET transgenic mice that underwent castration (ET + cas; n = 12). Study duration was 9 months. Creatinine clearance and protein excretion was monitored. At study end animals were sacrificed and kidneys were harvested for histology/immunhistochemistry. RESULTS Castration significantly ameliorated glomerulosclerosis in ET-1 transgenic mice (ET glomerulosclerosis-score: 3.0 +/- 0.17 vs ET+cas: 2.4 +/- 0.17; p < 0.05) as well as renal perivascular fibrosis (ET fibrosis-score: 3.0 +/- 0.14 vs ET + cas: 2.2 +/- 0.14; p < 0.05). However, interstitial fibrosis and media/lumen-ratio of renal arteries remained unaffected by castration. Regarding inflammation, castration significantly reduced the number of CD4-positive cells in renal tissue of ET-1 transgenic mice (ET CD4-positive cells/10000 cells: 355 +/- 72 vs ET + cas: 147 +/- 28; p < 0.05). Renal tissue contents of CD8 positive cells as well as of macrophages were not affected by castration. Regarding kidney function castration significantly reduced proteinuria in ET-1 transgenic mice whereas creatinine clearance did not differ between study groups. CONCLUSION Our study demonstrates that the renal histopathological phenotype in male ET-1 transgenic mice with regard to glomerulosclerosis, proteinuria, perivascular fibrosis and immune cell immigration is ameliorated by castration. We thus conclude that the effects of ET-1 overexpression on renal tissue injury are modulated by androgens.
Collapse
|
43
|
Wagenaar GTM, Laghmani EH, de Visser YP, Sengers RMA, Steendijk P, Baelde HJ, Walther FJ. Ambrisentan reduces pulmonary arterial hypertension but does not stimulate alveolar and vascular development in neonatal rats with hyperoxic lung injury. Am J Physiol Lung Cell Mol Physiol 2013; 304:L264-75. [PMID: 23292811 DOI: 10.1152/ajplung.00073.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ambrisentan, an endothelin receptor type A antagonist, may be a novel therapeutic agent in neonatal chronic lung disease (CLD) by blocking the adverse effects of the vasoconstrictor endothelin-1, especially pulmonary arterial hypertension (PAH)-induced right ventricular hypertrophy (RVH). We determined the cardiopulmonary effects of ambrisentan treatment (1-20 mg·kg(-1)·day(-1)) in neonatal rats with CLD in 2 models: early treatment during continuous exposure to hyperoxia for 10 days and late treatment starting on day 6 in rat pups exposed postnatally to hyperoxia for 9 days, followed by a 9-day recovery period in room air. Parameters investigated included survival, lung and heart histopathology, right ventricular function, fibrin deposition, and differential mRNA expression in the lungs. In the early treatment model, we investigated the role of nitric oxide synthase (NOS) inhibition with N(ω)-nitro-L-arginine methyl ester (L-NAME; 25 mg·kg(-1)·day(-1)) during ambrisentan treatment. In the early treatment model, ambrisentan improved survival with reduced lung fibrin and collagen III deposition, arterial medial wall thickness, and RVH. These changes were not affected by L-NAME administration. Ambrisentan did not reduce the influx of macrophages and neutrophils or prevent reduced irregular elastin expression. In the late treatment model, ambrisentan diminished PAH, RVH, and right ventricular peak pressure, demonstrating that RVH is reversible in the neonatal period. Alveolarization and vascularization were not affected by ambrisentan. In conclusion, ambrisentan prolongs survival and reduces lung injury, PAH, and RVH via a NOS-independent mechanism but does not affect inflammation and alveolar and vascular development in neonatal rats with CLD.
Collapse
Affiliation(s)
- Gerry T M Wagenaar
- Department of Pediatrics, Division of Neonatology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease with a variable natural history. Pulmonary hypertension (PH) is frequently found in patients with IPF and is associated with an almost 3-fold increase in the risk of death. Pulmonary hypoxic vasoconstriction plays an important role in the pathogenesis of PH in IPF (PH-IPF), although it has become clear that it is not the only mechanism involved. While invasive right heart catheterization is the gold standard modality of hemodynamic assessment, there has been increasing interest in noninvasive testing, such as Doppler echocardiogram, as complementary methods of assessing right ventricular function in these patients. While the expanding array of pharmacologic options for the treatment of pulmonary arterial hypertension has engendered increased interest in the application of these therapies for PH-IPF, supportive evidence for benefit is lacking.
Collapse
|
45
|
Ventetuolo CE, Kawut SM, Lederer DJ. Plasma endothelin-1 and vascular endothelial growth factor levels and their relationship to hemodynamics in idiopathic pulmonary fibrosis. Respiration 2012; 84:299-305. [PMID: 22869459 DOI: 10.1159/000339105] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 04/24/2012] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is associated with a poor prognosis in idiopathic pulmonary fibrosis (IPF). Endothelin-1 (ET-1) and vascular endothelial growth factor (VEGF) are important in both fibrosis and vascular remodeling. OBJECTIVES We sought to determine the relationship between ET-1 and VEGF levels and hemodynamics in patients with IPF. We hypothesized that higher levels of ET-1 and VEGF would be associated with higher pulmonary artery pressures (PAP) and pulmonary vascular resistance (PVR) in patients with IPF. METHODS We performed a cross-sectional analysis of 52 adults with IPF enrolled in a prospective cohort with available clinical data, platelet-free plasma, and hemodynamics. ET-1 and VEGF levels were measured via immunoassay. The associations of ET-1 and VEGF with PAP and PVR were examined using generalized additive models adjusted for age, gender, race/ethnicity, and forced vital capacity (% predicted). RESULTS Sixteen of 52 (30.8%) had PH (mean PAP ≥25 mm Hg). After multivariable adjustment, higher ET-1 levels were significantly associated with higher systolic (p = 0.01), diastolic (p = 0.02), and mean (p = 0.01) PAP and possibly higher PVR (p = 0.09). There were no significant associations between VEGF levels and hemodynamics. CONCLUSIONS Higher levels of ET-1 were associated with higher PAP and possibly higher PVR in participants with IPF. In a subgroup of patients, ET-1 may be a contributor to pulmonary vascular disease burden in IPF.
Collapse
Affiliation(s)
- Corey E Ventetuolo
- Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | | | | |
Collapse
|
46
|
|
47
|
Cho SC, Rhim JH, Choi HR, Son YH, Lee SJ, Song KY, Park SC. Protective effect of 4,4'-diaminodiphenylsulfone against paraquat-induced mouse lung injury. Exp Mol Med 2012; 43:525-37. [PMID: 21765237 DOI: 10.3858/emm.2011.43.9.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Although 4,4'-diaminodiphenylsulfone (DDS, dapsone) has been used to treat several dermatologic conditions, including Hansen disease, for the past several decades, its mode of action has remained a topic of debate. We recently reported that DDS treatment significantly extends the lifespan of the nematode C. elegans by decreasing the generation of reactive oxygen species. Additionally, in in vitro experiments using non-phagocytic human fibroblasts, we found that DDS effectively counteracted the toxicity of paraquat (PQ). In the present study, we extended our work to test the protective effect of DDS against PQ in vivo using a mouse lung injury model. Oral administration of DDS to mice significantly attenuated the lung tissue damage caused by subsequent administration of PQ. Moreover, DDS reduced the local expression of mRNA transcripts encoding inflammation-related molecules, including endothelin-1 (ET-1), macrophage inflammatory protein-1α (MIP-1α), and transforming growth factor-β (TGF-β). In addition, DDS decreased the PQ-induced expression of NADPH oxidase mRNA and activation of protein kinase Cμ (PKCμ). DDS treatment also decreased the PQ-induced generation of superoxide anions in mouse lung fibroblasts. Taken together, these data suggest the novel efficacy of DDS as an effective protective agent against oxidative stress-induced tissue damages.
Collapse
Affiliation(s)
- Sung Chun Cho
- Department of Biochemistry and Molecular Biology, Institute on Aging, Seoul National University College of Medicine, Seoul 110-799, Korea
| | | | | | | | | | | | | |
Collapse
|
48
|
Antivascular therapy for multidrug-resistant ovarian tumors by macitentan, a dual endothelin receptor antagonist. Transl Oncol 2012; 5:39-47. [PMID: 22348175 DOI: 10.1593/tlo.11286] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 10/03/2011] [Accepted: 10/20/2011] [Indexed: 11/18/2022] Open
Abstract
Endothelin receptors (ETRs) are often overexpressed in ovarian tumors, which can be resistant to conventional therapies. Thus, we investigated whether blockage of the ETR pathways using the dual ETR antagonist macitentan combined with taxol or cisplatinum can produce therapy for orthotopically growing multidrug-resistant (MDR) human ovarian carcinoma. In several studies, nude mice were injected in the peritoneal cavity with HeyA8-MDR human ovarian cancer cells. Ten days later, mice were randomized to receive vehicle (saline), macitentan (oral, daily), taxol (intraperitoneal, weekly), cisplatinum (intraperitoneal, weekly), macitentan plus taxol, or macitentan plus cisplatinum. Moribund mice were killed, and tumors were collected, weighed, and prepared for immunohistochemical analysis. The HeyA8-MDR tumors did not respond to taxol, cisplatinum, or macitentan administered as single agents. In contrast, combination therapy with macitentan and taxol or macitentan and cisplatinum significantly decreased the tumor incidence and weight and significantly increased the survival of mice and their general condition. Multiple immunohistochemical analyses revealed that treatment with macitentan and macitentan plus taxol or cisplatinum inhibited the phosphorylation of ETRs, decreased the levels of pVEGFR2, pAkt, and pMAPK in tumor cells after 2 weeks of treatment and induced a first wave of apoptosis in tumor-associated endothelial cells followed by apoptosis in surrounding tumor cells. Our study shows that ovarian cancer cells, which express the endothelin axis and are multidrug resistant, are exquisitely sensitive to treatment with a dual ET antagonist and can be resensitized to both taxol and cisplatinum. This combined therapy led to a significant reduction in tumor weight.
Collapse
|
49
|
Leung JWC, Wong WT, Koon HW, Mo FM, Tam S, Huang Y, Vanhoutte PM, Chung SSM, Chung SK. Transgenic mice over-expressing ET-1 in the endothelial cells develop systemic hypertension with altered vascular reactivity. PLoS One 2011; 6:e26994. [PMID: 22096514 PMCID: PMC3214015 DOI: 10.1371/journal.pone.0026994] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 10/07/2011] [Indexed: 11/18/2022] Open
Abstract
Endothelin-1 (ET-1) is a potent vasoconstrictor involved in the regulation of vascular tone and implicated in hypertension. However, the role of small blood vessels endothelial ET-1 in hypertension remains unclear. The present study investigated the effect of chronic over-expression of endothelial ET-1 on arterial blood pressure and vascular reactivity using transgenic mice approach. Transgenic mice (TET-1) with endothelial ET-1 over-expression showed increased in ET-1 level in the endothelial cells of small pulmonary blood vessels. Although TET-1 mice appeared normal, they developed mild hypertension which was normalized by the ET(A) receptor (BQ123) but not by ET(B) receptor (BQ788) antagonist. Tail-cuff measurements showed a significant elevation of systolic and mean blood pressure in conscious TET-1 mice. The mice also exhibited left ventricular hypertrophy and left axis deviation in electrocardiogram, suggesting an increased peripheral resistance. The ionic concentrations in the urine and serum were normal in 8-week old TET-1 mice, indicating that the systemic hypertension was independent of renal function, although, higher serum urea levels suggested the occurrence of kidney dysfunction. The vascular reactivity of the aorta and the mesenteric artery was altered in the TET-1 mice indicating that chronic endothelial ET-1 up-regulation leads to vascular tone imbalance in both conduit and resistance arteries. These findings provide evidence for the role of spatial expression of ET-1 in the endothelium contributing to mild hypertension was mediated by ET(A) receptors. The results also suggest that chronic endothelial ET-1 over-expression affects both cardiac and vascular functions, which, at least in part, causes blood pressure elevation.
Collapse
Affiliation(s)
| | - Wing Tak Wong
- Department of Physiology, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hon Wai Koon
- Department of Anatomy, The University of Hong Kong, Hong Kong SAR, China
| | - Fong Ming Mo
- Department of Anatomy, The University of Hong Kong, Hong Kong SAR, China
| | - Sidney Tam
- Department of Clinical Biochemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yu Huang
- Department of Physiology, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Paul M. Vanhoutte
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | | | - Sookja Kim Chung
- Department of Anatomy, The University of Hong Kong, Hong Kong SAR, China
- Research Center of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
50
|
Abstract
BACKGROUND The cardiac nitric oxide and endothelin-1 (ET-1) systems are closely linked and play a critical role in cardiac physiology. The balance between both systems is often disturbed in cardiovascular diseases. To define the cardiac effect of excessive ET-1 in a status of nitric oxide deficiency, we compared left ventricular function and morphology in wild-type mice, ET-1 transgenic (ET(+/+)) mice, endothelial nitric oxide synthase knockout (eNOS(-/-)) mice, and ET(+/+)eNOS(-/-) mice. METHODS AND RESULTS eNOS(-/-) and ET(+/+)eNOS(-/-) mice developed high blood pressure compared with wild-type and ET(+/+) mice. Left ventricular catheterization showed that eNOS(-/-) mice, but not ET(+/+)eNOS(-/-) , developed diastolic dysfunction characterized by increased end-diastolic pressure and relaxation constant tau. To elucidate the causal molecular mechanisms driving the rescue of diastolic function in ET(+/+)eNOS(-/-) mice, the cardiac proteome was analyzed. Two-dimensional gel electrophoresis coupled to mass spectrometry offers an appropriate hypothesis-free approach. ET-1 overexpression on an eNOS(-/-) background led to an elevated abundance and change in posttranslational state of antioxidant enzymes (e.g., peroxiredoxin-6, glutathione S-transferase mu 2, and heat shock protein beta 7). In contrast to ET(+/+)eNOS(-/-) mice, eNOS(-/-) mice showed an elevated abundance of proteins responsible for sarcomere disassembly (e.g., cofilin-1 and cofilin-2). In ET(+/+)eNOS(-/-) mice, glycolysis was favored at the expense of fatty acid oxidation. CONCLUSION eNOS(-/-) mice developed diastolic dysfunction; this was rescued by ET-1 transgenic overexpression. This study furthermore suggests that cardiac ET-1 overexpression in case of eNOS deficiency causes specifically the regulation of proteins playing a role in oxidative stress, myocytes contractility, and energy metabolism.
Collapse
|