1
|
Huang Q, Kang T, Shen S, Liu L, Zhang L, Zou X, Wu J. Extracellular vesicular delivery of ceramides from pulmonary macrophages to endothelial cells facilitates chronic obstructive pulmonary disease. Cell Commun Signal 2025; 23:124. [PMID: 40055817 PMCID: PMC11887234 DOI: 10.1186/s12964-025-02125-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/24/2025] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND Ceramides are known for their harmful, cell-autonomous effects in cigarette smoke (CS)-triggered chronic obstructive pulmonary disease (COPD), yet their potential role as intercellular signals in COPD pathogenesis remains unclear. This study aims to investigate whether ceramides act as cell-nonautonomous mediators of COPD development by transmitting metabolic stress from pulmonary macrophages to endothelial cells (ECs), compromising endothelial function and thereby orchestrating the pulmonary inflammation. METHODS We analyzed single-cell RNA sequencing data from human lung tissues and bulk RNA sequencing data from alveolar macrophages (AMs) in COPD patients to investigate the transcriptomic profiles of ceramide biosynthesis enzymes. The expression changes of several key enzymes were validated in human lung sections, AMs isolated from CS-exposed mice, and cigarette smoke extract (CSE)-treated macrophages. Ceramide levels in macrophages and their extracellular vesicles (EVs) were quantified using mass spectroscopy lipidomics. EVs were further characterized by transmission electron microscopy and nanoparticle tracking analysis. The uptake of macrophage-derived EVs by ECs and their effects on endothelial barriers were evaluated in vitro using a co-culture system and in vivo using a CS-exposed COPD mouse model. RESULTS CS exposure upregulated enzymes involved in de novo ceramide biosynthesis in pulmonary macrophages, increasing levels of long- and very long-chain ceramides. These ceramides were packaged into EVs and delivered to ECs, where they disrupted gap junctions, increased endothelial permeability, and impaired EC migration. Silencing these enzymes involved in de novo ceramide biosynthesis in pulmonary macrophages could block this metabolic communication between macrophages and ECs mediated by EV-delivered ceramides, protecting EC function from CS exposure. When intratracheally administered to CS-exposed mice, these ceramide-rich macrophage-derived EVs exacerbated COPD by facilitating endothelial barrier disruption. CONCLUSION Our study uncovered a novel mechanism in COPD pathogenesis, where pulmonary macrophages propagate CS-induced metabolic stress to ECs via ceramide-laden EVs, leading to endothelial barrier dysfunction. This intercellular pathway represents a potential target for therapeutic intervention in COPD.
Collapse
Affiliation(s)
- Qiqing Huang
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Tutu Kang
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Shaoran Shen
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Lele Liu
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Lili Zhang
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Xiaoli Zou
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Jianqing Wu
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
2
|
Zheng Y, Wang Y, Li J, Zheng S, Zhang L, Li Q, Ling F, Nie Q, Feng Q, Wang J, Jin C. PGAM5 Modulates Macrophage Polarization, Aggravating Inflammation in COPD via the NF-κB Pathway. Int J Chron Obstruct Pulmon Dis 2025; 20:551-564. [PMID: 40078929 PMCID: PMC11897911 DOI: 10.2147/copd.s492627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/22/2025] [Indexed: 03/14/2025] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) has emerged as a very consequential issue threatening human life and health; therefore, research on its pathogenesis is urgently needed. A prior investigation discovered a significant elevation in the phosphoglycerate mutase 5 (PGAM5) expression in the lung tissue of COPD smoking patients. This rise in expression is closely associated with COPD severity. Nevertheless, the precise molecular processes by which PGAM5 influences the COPD initiation and advancement remain unknown. Materials and Methods A COPD model was created using murine alveolar macrophages (MH-S). Flow cytometry, enzyme-linked immunosorbent assay, Western blotting, and other methods were used to detect macrophage polarization, inflammatory factor secretion levels, and changes in PGAM5 and the nuclear factor-κB (NF-κB) pathway. Results PGAM5 stimulated macrophage M1 polarization and secretion of the proinflammatory factors interleukin-1β (IL-1β) and tumor necrosis factor-alpha (TNF-α). PGAM5 bound and activated apoptotic signaling-regulated kinase 1 (ASK1), further activating the NF-κB pathway. These implications were reversed when PGAM5 expression was silenced. Conclusion PGAM5 can cause an increase in p-ASK1T838, trigger the NF-κB pathway activation, and stimulate the M1 macrophage polarization and production of proinflammatory factors. This finding has significant implications for preventing and treating COPD.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Respiratory Medicine, The second Affiliated Hospital, Hainan Medical University, Haikou, 570100, People’s Republic of China
- The Second School of Clinical Medicine, Hainan Medical University, Haikou, 570100, People’s Republic of China
| | - Yujie Wang
- Department of Respiratory Medicine, The second Affiliated Hospital, Hainan Medical University, Haikou, 570100, People’s Republic of China
| | - Jia Li
- The Second School of Clinical Medicine, Hainan Medical University, Haikou, 570100, People’s Republic of China
| | - Shaomao Zheng
- Department of Respiratory Medicine, The second Affiliated Hospital, Hainan Medical University, Haikou, 570100, People’s Republic of China
| | - Lipeng Zhang
- The Second School of Clinical Medicine, Hainan Medical University, Haikou, 570100, People’s Republic of China
| | - Qiaoyu Li
- The Second School of Clinical Medicine, Hainan Medical University, Haikou, 570100, People’s Republic of China
| | - Fayu Ling
- Department of Thoracic Surgery, The second Affiliated Hospital, Hainan Medical University, Haikou, 570100, People’s Republic of China
| | - Qiuli Nie
- The Second School of Clinical Medicine, Hainan Medical University, Haikou, 570100, People’s Republic of China
| | - Qiong Feng
- Department of Respiratory Medicine, The second Affiliated Hospital, Hainan Medical University, Haikou, 570100, People’s Republic of China
| | - Jing Wang
- Department of Respiratory Medicine, The second Affiliated Hospital, Hainan Medical University, Haikou, 570100, People’s Republic of China
- NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, 571199, People’s Republic of China
| | - Chengji Jin
- Department of Respiratory Medicine, The second Affiliated Hospital, Hainan Medical University, Haikou, 570100, People’s Republic of China
| |
Collapse
|
3
|
Jang J, Lee J, Park J, Cha S, Lee SB, Park SM, Hong SH, Kim WJ, Lee M, Yang SR. Recombinant RAGE antagonist peptide promotes alveolar epithelial cell regeneration via the RAGE/MAPKs/MMP2 pathway in emphysema. Biochem Pharmacol 2025; 231:116668. [PMID: 39608502 DOI: 10.1016/j.bcp.2024.116668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/25/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
The progression of chronic obstructive pulmonary disease (COPD) results in irreversible pulmonary damage and sustained inflammatory responses. While alternative approaches have been explored, the specific role of alveolar epithelial cells in the pathogenesis of COPD remains unclear. Additionally, the association between emphysema and DAMP-RAGE signaling in COPD patients are not understood. Therefore, this study demonstrates to determine the therapeutic effect of a RAGE antagonist peptide (RAP), which we previously identified on the pathogenesis of COPD. We assessed the expression of RAGE ligands and RAGE binding signaling in COPD patients using GEO data. PPE-induced emphysema mouse model and AGER-/- mouse were employed, along treated with RAP. The association between RAGE and the development of emphysema was examined in H&E staining and western blot analysis in mouse lung tissue and BALF. We next analyzed the damage caused by oxidative stress and inflammation through CSE and RAP in human alveolar epithelial cell line A549. Our results show that inhibiting of RAGE alleviates emphysema by suppressing inflammation and MMP activity. Inhibition of RAGE in alveolar epithelial cells significantly induced the mitigation of lung injury, independent of macrophage infiltration. Furthermore, it was confirmed that RAP ameliorated CSE-induced oxidative stress, inflammation, and cell cycle arrest in human alveolar epithelial cells. These findings demonstrate that inhibiting RAGE in alveolar epithelial cells suppress lung injury and emphysema by inhibiting oxidative stress-induced inflammation and MMPs, while promoting alveolar epithelial cell proliferation. Furthermore, blocking of the DAMP-RAGE interaction through RAP offers a promising therapeutic approach for mitigating emphysema.
Collapse
Affiliation(s)
- Jimin Jang
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon State 24341, Republic of Korea
| | - Jooyeon Lee
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon State 24341, Republic of Korea
| | - Jaehyun Park
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon State 24341, Republic of Korea
| | - Sangryul Cha
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon State 24341, Republic of Korea
| | - Se Bi Lee
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon State 24341, Republic of Korea
| | - Sung-Min Park
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon State 24341, Republic of Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, Kangwon National University, Chuncheon, Gangwon State 24341, Republic of Korea
| | - Woo Jin Kim
- Department of Internal Medicine, Kangwon National University, Chuncheon, Gangwon State 24341, Republic of Korea
| | - Minhyung Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon State 24341, Republic of Korea; Institute of Medical Science, School of Medicine, Kangwon National University, Chuncheon, Gangwon State, South Korea.
| |
Collapse
|
4
|
Shen S, Huang Q, Liu L, Zou X, Kang T, Wu J. GATA2 downregulation contributes to pro-inflammatory phenotype and defective phagocytosis of pulmonary macrophages in chronic obstructive pulmonary disease. Aging (Albany NY) 2024; 16:12928-12951. [PMID: 39379099 PMCID: PMC11501382 DOI: 10.18632/aging.206129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024]
Abstract
Pulmonary macrophages from COPD patients are characterized by lower phagocytic and bactericidal activity whereas there is hypersecretion of pro-inflammatory cytokines. The prominent decline of GATA2 expression in pulmonary macrophages from COPD patients inspired us to figure out its role during COPD development. The expression levels of GATA2 were decreased in alveolar macrophages isolated from cigarette smoke (CS)-induced COPD mice and cigarette smoke extract (CSE)-treated macrophages. In vitro, both CSE and GATA2 knockdown via siRNAs elevated pro-inflammatory cytokines expression whereas inhibiting phagocytosis in macrophages. Integrated analysis of transcriptomics of GATA2-knockdown macrophages and the results of ChIP sequencing of GATA2 together with dual-luciferase reporter assay identified Abca1 and Pacsin1 as functional target genes of GATA2. Mechanistically, ABCA1 mediates the pro-inflammatory secretion phenotype and the dysfunction in early stage of phagocytosis of macrophages through TLR4/MyD88 and MEGF10/GULP1 pathways, respectively. PACSIN1/SUNJ1 partially mediates the disruption effects of GATA2 downregulation on maturation of phagolysosomes in macrophages. Together, our study suggests that GATA2 influences multiple functions of pulmonary macrophages by simultaneous transcriptional regulation of several target genes, contributing to the dysfunctions of pulmonary macrophages in response to CS, which provides an impetus for further investigations of GATA2 or other underappreciated transcription factors as regulatory hubs in COPD pathogenesis.
Collapse
Affiliation(s)
- Shaoran Shen
- Department of Geriatrics, Key Laboratory of Geriatrics of Jiangsu Province, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Qiqing Huang
- Department of Geriatrics, Key Laboratory of Geriatrics of Jiangsu Province, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lele Liu
- Department of Geriatrics, Key Laboratory of Geriatrics of Jiangsu Province, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiaoli Zou
- Department of Geriatrics, Key Laboratory of Geriatrics of Jiangsu Province, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Tutu Kang
- Department of Geriatrics, Key Laboratory of Geriatrics of Jiangsu Province, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jianqing Wu
- Department of Geriatrics, Key Laboratory of Geriatrics of Jiangsu Province, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
5
|
Wang PS, Liu Z, Sweef O, Saeed AF, Kluz T, Costa M, Shroyer KR, Kondo K, Wang Z, Yang C. Hexavalent chromium exposure activates the non-canonical nuclear factor kappa B pathway to promote immune checkpoint protein programmed death-ligand 1 expression and lung carcinogenesis. Cancer Lett 2024; 589:216827. [PMID: 38527692 PMCID: PMC11375691 DOI: 10.1016/j.canlet.2024.216827] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Lung cancer is the leading cause of cancer-related death worldwide; however, the mechanism of lung carcinogenesis has not been clearly defined. Chronic exposure to hexavalent chromium [Cr(VI)], a common environmental and occupational pollutant, causes lung cancer, representing an important lung cancer etiology factor. The mechanism of how chronic Cr(VI) exposure causes lung cancer remains largely unknown. By using cell culture and mouse models and bioinformatics analyses of human lung cancer gene expression profiles, this study investigated the mechanism of Cr(VI)-induced lung carcinogenesis. A new mouse model of Cr(VI)-induced lung carcinogenesis was developed as evidenced by the findings showing that a 16-week Cr(VI) exposure (CaCrO4, 100 μg per mouse once per week) via oropharyngeal aspiration induced lung adenocarcinomas in male and female A/J mice, whereas none of the sham-exposed control mice had lung tumors. Mechanistic studies revealed that chronic Cr(VI) exposure activated the non-canonical NFκB pathway through the long non-coding RNA (lncRNA) ABHD11-AS1/deubiquitinase USP15-mediated tumor necrosis factor receptor-associated factor 3 (TRAF3) down-regulation. The non-canonical NFκB pathway activation increased the interleukin 6 (IL-6)/Janus kinase (Jak)/signal transducer and activator of transcription 3 (Stat3) signaling. The activation of the IL-6/Jak signaling axis by Cr(VI) exposure not only promoted inflammation but also stabilized the immune checkpoint molecule programmed death-ligand 1 (PD-L1) protein in the lungs, reducing T lymphocyte infiltration to the lungs. Given the well-recognized critical role of PD-L1 in inhibiting anti-tumor immunity, these findings suggested that the lncRNA ABHD11-AS1-mediated non-canonical NFκB pathway activation and PD-L1 up-regulation may play important roles in Cr(VI)-induced lung carcinogenesis.
Collapse
Affiliation(s)
- Po-Shun Wang
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Zulong Liu
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Osama Sweef
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Abdullah Farhan Saeed
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Thomas Kluz
- Department of Environment Medicine, New York University School of Medicine, New York, NY, USA
| | - Max Costa
- Department of Environment Medicine, New York University School of Medicine, New York, NY, USA
| | - Kenneth R Shroyer
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Kazuya Kondo
- Department of Oncological Medical Services, Graduate School of Biomedical Sciences, Tokushima University Graduate School, Tokushima City, 770-8509, Japan
| | - Zhishan Wang
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Chengfeng Yang
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
6
|
Guan L, Zhang Z, Gao T, Fu S, Mu W, Liang S, Liu Y, Chu Q, Fang Y, Liu Y, Zhang N. Depleting Tumor Infiltrating B Cells to Boost Antitumor Immunity with Tumor Immune-Microenvironment Reshaped Hybrid Nanocage. ACS NANO 2022; 16:4263-4277. [PMID: 35179349 DOI: 10.1021/acsnano.1c10283] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tumor infiltrating B cells (TIBs)-dependent immunotherapy has emerged as a promising method for tumor treatment. Depleting TIBs to boost antitumor immunity is a highly desirable yet challenging approach to TIBs-dependent immunotherapy. Herein, a tumor immune-microenvironment reshaped hybrid nanocage CPN-NLI/MLD coloaded with the Bruton's tyrosine kinase inhibitor ibrutinib, and cytotoxic drug docetaxel was developed for stepwise targeting TIBs and tumor cells, respectively. The tumor microenvironment responsive CPN-NLI/MLD promoted charge reversal and size reduction under acidic conditions (pH < 6.5). The accumulation of CPN-NLI/MLD in tumor tissues was achieved through CD13 targeting, and cellular uptake was increased due to the differ-targeting delivery. Targeting of docetaxel to tumor cells was achieved by the interaction of α-MSH modified on inner docetaxel-particle MLD and melanocortin-1 receptor on the surface of tumor cells. Targeting of ibrutinib to TIBs was achieved by the interaction of Neu5Ac modified on inner ibrutinib-particle NLI and CD22 on the surface of TIBs. The boosted antitumor immunity was achieved mainly by the inhibition of Bruton's tyrosine kinase activation mediated by ibrutinib, which reduced the proportion of TIBs, enhanced infiltration of CD8+ and CD4+ T cells, increased the secretion of immunogenic cytokines including IL-2 and IFN-γ, and inhibited the proliferation of regulatory T cells and secretion of immunosuppressive cytokines including IL-10, IL-4, and TGF-β. Furthermore, CPN-NLI/MLD improved the antitumor efficiency of chemoimmunotherapy by reshaping tumor immune-microenvironment by TIBs depletion. Taken together, CPN-NLI/MLD represents a promising method for effective tumor treatment and combination therapy by TIBs-dependent immunotherapy.
Collapse
Affiliation(s)
- Li Guan
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences Shandong University, 44 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Zipeng Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences Shandong University, 44 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Tong Gao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences Shandong University, 44 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Shunli Fu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences Shandong University, 44 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Weiwei Mu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences Shandong University, 44 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Shuang Liang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences Shandong University, 44 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Yang Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences Shandong University, 44 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Qihui Chu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences Shandong University, 44 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Yuxiao Fang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences Shandong University, 44 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Yongjun Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences Shandong University, 44 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Na Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences Shandong University, 44 Wenhuaxi Road, Jinan, Shandong 250012, China
| |
Collapse
|
7
|
Xu J, Li L, Ren J, Zhong X, Xie C, Zheng A, Abudukadier A, Tuerxun M, Zhang S, Tang L, Hairoula D, Zou X. Whole-Exome Sequencing Implicates the USP34 rs777591A > G Intron Variant in Chronic Obstructive Pulmonary Disease in a Kashi Cohort. Front Cell Dev Biol 2022; 9:792027. [PMID: 35198563 PMCID: PMC8859106 DOI: 10.3389/fcell.2021.792027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/08/2021] [Indexed: 12/17/2022] Open
Abstract
Genetic factors are important factors in chronic obstructive pulmonary disease (COPD) onset. Plenty of risk and new causative genes for COPD have been identified in patients of the Chinese Han population. In contrast, we know considerably little concerning the genetics in the Kashi COPD population (Uyghur). This study aims at clarifying the genetic maps regarding COPD susceptibility in Kashi (China). Whole-exome sequencing (WES) was used to analyze three Uyghur families with COPD in Kashi (eight patients and one healthy control). Sanger sequencing was also used to verify the WES results in 541 unrelated Uyghur COPD patients and 534 Uyghur healthy controls. WES showed 72 single nucleotide variants (SNVs), two deletions, and small insertions (InDels), 26 copy number variants (CNVs), and 34 structural variants (SVs), including g.71230620T > A (rs12449210T > A, NC_000,016.10) in the HYDIN axonemal central pair apparatus protein (HYDIN) gene and g.61190482A > G (rs777591A > G, NC_000002.12) in the ubiquitin-specific protease 34 (USP34) gene. After Sanger sequencing, we found that rs777591“AA” under different genetic models except for the dominant model (adjusted OR = 0.8559, 95%CI 0.6568–1.115, p > .05), could significantly reduce COPD risk, but rs12449210T > A was not related to COPD. In stratified analysis of smoking status, rs777591“AA” reduced COPD risk significantly among the nonsmoker group. Protein and mRNA expression of USP34 in cigarette smoke extract-treated BEAS-2b cells increased significantly compared with those in the control group. Our findings associate the USP34 rs777591“AA” genotype as a protector factor in COPD.
Collapse
Affiliation(s)
- Jingran Xu
- Department of Medical College, Shihezi University, Shihezi, China
| | - Li Li
- Department of Respiratory and Critical Care Medicine, First People’s Hospital of Kashi, Kashi, China
| | - Jie Ren
- Department of Respiratory and Critical Care Medicine, First People’s Hospital of Kashi, Kashi, China
| | - Xuemei Zhong
- Department of Respiratory and Critical Care Medicine, First People’s Hospital of Kashi, Kashi, China
| | - Chengxin Xie
- Department of Respiratory and Critical Care Medicine, First People’s Hospital of Kashi, Kashi, China
| | - Aifang Zheng
- Department of Respiratory and Critical Care Medicine, First People’s Hospital of Kashi, Kashi, China
| | - Ayiguzali Abudukadier
- Department of Respiratory and Critical Care Medicine, First People’s Hospital of Kashi, Kashi, China
| | - Maimaitiaili Tuerxun
- Department of Respiratory and Critical Care Medicine, First People’s Hospital of Kashi, Kashi, China
| | - Sujie Zhang
- Department of Medical College, Shihezi University, Shihezi, China
| | - Lifeng Tang
- Department of Medical College, Shihezi University, Shihezi, China
- Department of Respiratory and Critical Care Medicine, First People’s Hospital of Kashi, Kashi, China
| | - Dilare Hairoula
- Department of Medical College, Shihezi University, Shihezi, China
- Department of Respiratory and Critical Care Medicine, First People’s Hospital of Kashi, Kashi, China
| | - Xiaoguang Zou
- Department of Medical College, Shihezi University, Shihezi, China
- Department of Respiratory and Critical Care Medicine, First People’s Hospital of Kashi, Kashi, China
- *Correspondence: Xiaoguang Zou,
| |
Collapse
|
8
|
Liu T, Liu S, Zhou X. Innate Immune Responses and Pulmonary Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:53-71. [PMID: 34019263 DOI: 10.1007/978-3-030-68748-9_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Innate immunity is the first defense line of the host against various infectious pathogens, environmental insults, and other stimuli causing cell damages. Upon stimulation, pattern recognition receptors (PRRs) act as sensors to activate innate immune responses, containing NF-κB signaling, IFN response, and inflammasome activation. Toll-like receptors (TLRs), retinoic acid-inducible gene I-like receptors (RLRs), NOD-like receptors (NLRs), and other nucleic acid sensors are involved in innate immune responses. The activation of innate immune responses can facilitate the host to eliminate pathogens and maintain tissue homeostasis. However, the activity of innate immune responses needs to be tightly controlled to ensure the optimal intensity and duration of activation under various contexts. Uncontrolled innate immune responses can lead to various disorders associated with aberrant inflammatory response, including pulmonary diseases such as COPD, asthma, and COVID-19. In this chapter, we will have a broad overview of how innate immune responses function and the regulation and activation of innate immune response at molecular levels as well as their contribution to various pulmonary diseases. A better understanding of such association between innate immune responses and pulmonary diseases may provide potential therapeutic strategies.
Collapse
Affiliation(s)
- Tao Liu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Siqi Liu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Truong L, Zheng YM, Kandhi S, Wang YX. Overview on Interactive Role of Inflammation, Reactive Oxygen Species, and Calcium Signaling in Asthma, COPD, and Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:147-164. [PMID: 34019268 DOI: 10.1007/978-3-030-68748-9_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Inflammatory signaling is a major component in the development and progression of many lung diseases, including asthma, chronic obstructive pulmonary disorder (COPD), and pulmonary hypertension (PH). This chapter will provide a brief overview of asthma, COPD, and PH and how inflammation plays a vital role in these diseases. Specifically, we will discuss the role of reactive oxygen species (ROS) and Ca2+ signaling in inflammatory cellular responses and how these interactive signaling pathways mediate the development of asthma, COPD, and PH. We will also deliberate the key cellular responses of pulmonary arterial (PA) smooth muscle cells (SMCs) and airway SMCs (ASMCs) in these devastating lung diseases. The analysis of the importance of inflammation will shed light on the key questions remaining in this field and highlight molecular targets that are worth exploring. The crucial findings will not only demonstrate the novel roles of essential signaling molecules such as Rieske iron-sulfur protein and ryanodine receptor in the development and progress of asthma, COPD, and PH but also offer advanced insight for creating more effective and new therapeutic targets for these devastating inflammatory lung diseases.
Collapse
Affiliation(s)
- Lillian Truong
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Yun-Min Zheng
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Sharath Kandhi
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
10
|
Wang X, Huang L, Jiang S, Cheng K, Wang D, Luo Q, Wu X, Zhu L. Testosterone attenuates pulmonary epithelial inflammation in male rats of COPD model through preventing NRF1-derived NF-κB signaling. J Mol Cell Biol 2021; 13:128-140. [PMID: 33475136 PMCID: PMC8104951 DOI: 10.1093/jmcb/mjaa079] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/09/2020] [Accepted: 11/25/2020] [Indexed: 12/31/2022] Open
Abstract
Testosterone deficiency is common in male patients with chronic obstructive pulmonary disease (COPD) and may correlate with the deterioration of COPD. Clinical research suggests that testosterone replacement therapy may slow the COPD progression, but the specific biological pathway remains unclear. In this study, we explored the effect of testosterone on pulmonary inflammation in male COPD rats. The animals were co-treated with lipopolysaccharide (LPS) and cigarette to induce COPD. In COPD rats, nuclear respiratory factor 1 (NRF1) and NF-κB p65 were upregulated. In cigarette smoke extract (CSE)-, LPS-, or the combination of CSE and LPS-treated L132 cells, NRF1 and p65 were also upregulated. Silencing NRF1 resulted in the downregulation of p65. ChIP‒seq, ChIP‒qPCR, and luciferase results showed that NRF1 transcriptionally regulated p65. Both male and female COPD rats showed an upregulated NRF1 level and similar pulmonary morphology. But NRF1 was further upregulated in male castrated rats. Further supplementing testosterone in castrated male rats significantly reduced NRF1, pulmonary lesions, and inflammation. Supplementation of testosterone also reduced the phosphorylation of p65 and IKKβ induced by LPS or CSE in L132 cells. Our results suggest that testosterone plays a protective role in pulmonary epithelial inflammation of COPD through inhibition of NRF1-derived NF-κB signaling and the phosphorylation of p65.
Collapse
Affiliation(s)
- Xueting Wang
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Linlin Huang
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Shan Jiang
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Kang Cheng
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Dan Wang
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Qianqian Luo
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Xiaomei Wu
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Li Zhu
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| |
Collapse
|
11
|
Wang M, Zhao J, Wang Y, Mao Y, Zhao X, Huang P, Liu Q, Ma Y, Yao Y, Yang Z, Yuan W, Cui W, Payne TJ, Li MD. Genome-wide DNA methylation analysis reveals significant impact of long-term ambient air pollution exposure on biological functions related to mitochondria and immune response. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114707. [PMID: 32388307 DOI: 10.1016/j.envpol.2020.114707] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/15/2020] [Accepted: 04/29/2020] [Indexed: 05/28/2023]
Abstract
Exposure to long-term ambient air pollution is believed to have adverse effects on human health. However, the mechanisms underlying these impacts are poorly understood. DNA methylation, a crucial epigenetic modification, is susceptible to environmental factors and likely involved in these processes. We conducted a whole-genome bisulfite sequencing study on 120 participants from a highly polluted region (HPR) and a less polluted region (LPR) in China, where the HPR had much higher concentrations of five air pollutants (PM2.5, PM10, SO2, NO2, and CO) (fold difference 1.6 to 6.6 times; P value 1.80E-07 to 3.19E-23). Genome-wide methylation analysis revealed 371 DMRs in subjects from the two areas and these DMRs were located primarily in gene regulatory elements such as promoters and enhancers. Gene enrichment analysis showed that DMR-related genes were significantly enriched in diseases related to pulmonary disorders and cancers and in biological processes related to mitochondrial assembly and cytokine production. Further, HPR participants showed a higher mtDNA copy number. Of those identified DMRs, 15 were significantly correlated with mtDNA copy number. Finally, cytokine assay indicated that an increased plasma interleukin-5 level was associated with greater air pollution. Taken together, our findings suggest that exposure to long-term ambient air pollution can lead to alterations in DNA methylation whose functions relate to mitochondria and immune responses.
Collapse
Affiliation(s)
- Maiqiu Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Junsheng Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Mao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyi Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunlong Ma
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Yinghao Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenji Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenyan Cui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Thomas J Payne
- ACT Center for Tobacco Treatment, Education and Research, Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China; Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China.
| |
Collapse
|
12
|
Cao Y, He S, Tao Z, Chen W, Xu Y, Liu P, Wang R, Wu J, Li L, Chen X. Macrophage-Specific IκB Kinase α Contributes to Ventricular Remodelling and Dysfunction After Myocardial Infarction. Can J Cardiol 2019; 35:490-500. [DOI: 10.1016/j.cjca.2019.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 12/26/2022] Open
|
13
|
Regulatory role of IKKɑ in myocardial ischemia/reperfusion injury by the determination of M1 versus M2 polarization of macrophages. J Mol Cell Cardiol 2018; 123:1-12. [PMID: 30153439 DOI: 10.1016/j.yjmcc.2018.08.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 12/24/2022]
Abstract
The IκB kinase (IKK) complex plays a well-documented role in cancer and immune system. This function has been widely attributed to its role as the master regulator of the NF-κB family. Particularly, IKKɑ, a member of IKK complex, is reported to have various regulating effects in inflammatory and malignant diseases. However, its role as well as its mechanism of function in macrophages following myocardial ischemia and reperfusion (I/R) injury remains unexplored. In vivo, sham or I/R operations were performed on macrophage-specific IKKɑ knockout (mIKKɑ-/-) mice and their IKKɑflox/flox littermates. We ligated the left anterior descending (LAD) coronary artery of I/R groups simulating ischemia for 30 min, followed by a reperfusion period of 3 days and 7 days, respectively. The hearts of mIKKɑ-/- mice exhibited significantly increased inflammation and macrophage aggregation as compared to their IKKɑflox/flox littermates. Moreover, in the mIKKɑ-/- group subjected to I/R macrophages had a tendency to polarize to M1 phenotype. In vitro, we stimulated RAW264.7 cells with Lipopolysaccharides (LPS) after infection by the lentivirus, either knocking-down or overexpressing IKKɑ. We discovered that a deficiency of IKKɑ in RAW264.7 caused increased expression of pro-inflammatory markers compared to normal RAW264.7 after LPS stimulation. Inversely, pro-inflammatory factors were inhibited with IKKɑ overexpression. Mechanistically, IKKɑ directly combined with RelB to regulate macrophage polarization. Furthermore, IKKɑ regulated MEK1/2-ERK1/2 and downstream p65 signaling cascades after LPS stimulation. Overall, our data reveals that IKKɑ is a novel mediator protecting against the development of myocardial I/R injury via negative regulation of macrophage polarization to M1 phenotype. Thus, IKKɑ may serve as a valuable therapeutic target for the treatment of myocardial I/R injury.
Collapse
|
14
|
Huang W, Li ML, Xia MY, Shao JY. Fisetin-treatment alleviates airway inflammation through inhbition of MyD88/NF-κB signaling pathway. Int J Mol Med 2018; 42:208-218. [PMID: 29568921 PMCID: PMC5979929 DOI: 10.3892/ijmm.2018.3582] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/31/2018] [Indexed: 11/23/2022] Open
Abstract
Asthma is a common chronic airway inflammation disease and is considered as a major public health problem. Fisetin (3,3′,4′,7-tetrahydroxyflavone) is a naturally occurring flavonoid abundantly found in different vegetables and fruits. Fisetin has been reported to exhibit various positive biological effects, including anti-proliferative, anticancer, anti-oxidative and neuroprotective effects. We evaluated the effects of fisetin on allergic asthma regulation in mice. Mice were first sensi-tized, then airway-challenged with ovalbumin (OVA). Whether fisetin treatment attenuated OVA-induced airway inflammation was examined via inflammation inhibition through MyD88-related NF-κB (p65) signaling pathway. Mice were divided into the control (Con), OVA-induced asthma (Mod), 40 (FL) and 50 (FH) mg/kg fisetin-treated OVA-induced asthma groups. Our results found that OVA-induced airway inflammation in mice caused a significant inflammatory response via the activation of MyD88 and NF-κB signaling pathways, leading to release of pro-inflammatory cytokines. In contrast, fisetin-treated mice after OVA induction inhibited activation of MyD88 and NF-κB signaling pathways, resulting in downregulation of pro-inflammatory cytokine secretion. Further, fisetin significantly ameliorated the airway hyperresponsiveness (AHR) towards methacholine (Mch). In addition, fisetin reduced the number of eosinophil, monocyte, neutrophil and total white blood cell in the bronchoalveolar lavage fluid (BALF) of OVA-induced mice. The serum and BALF samples obtained from the OVA-induced mice with fisetin showed lower levels of pro-inflammatory cytokines. The results of our study illustrated that fisetin may be a new promising candidate to inhibit airway inflammation response induced by OVA.
Collapse
Affiliation(s)
- Wei Huang
- Department of Pediatrics, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, P.R. China
| | - Ming-Li Li
- Department of Pediatrics, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, P.R. China
| | - Ming-Yue Xia
- Department of Pediatrics, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, P.R. China
| | - Jian-Ying Shao
- Department of Pediatrics, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, P.R. China
| |
Collapse
|
15
|
Ferraro M, Gjomarkaj M, Siena L, Di Vincenzo S, Pace E. Formoterol and fluticasone propionate combination improves histone deacetylation and anti-inflammatory activities in bronchial epithelial cells exposed to cigarette smoke. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1718-1727. [PMID: 28483577 DOI: 10.1016/j.bbadis.2017.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/20/2017] [Accepted: 05/04/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND The addition of long-acting beta2-agonists (LABAs) to corticosteroids improves asthma control. Cigarette smoke exposure, increasing oxidative stress, may negatively affect corticosteroid responses. The anti-inflammatory effects of formoterol (FO) and fluticasone propionate (FP) in human bronchial epithelial cells exposed to cigarette smoke extracts (CSE) are unknown. AIMS This study explored whether FP, alone and in combination with FO, in human bronchial epithelial cellline (16-HBE) and primary bronchial epithelial cells (NHBE), counteracted some CSE-mediated effects and in particular some of the molecular mechanisms of corticosteroid resistance. METHODS 16-HBE and NHBE were stimulated with CSE, FP and FO alone or combined. HDAC3 and HDAC2 activity, nuclear translocation of GR and NF-κB, pERK1/2/tERK1/2 ratio, IL-8, TNF-α, IL-1β mRNA expression, and mitochondrial ROS were evaluated. Actin reorganization in neutrophils was assessed by fluorescence microscopy using the phalloidin method. RESULTS In 16-HBE, CSE decreased expression/activity of HDAC3, activity of HDAC2, nuclear translocation of GR and increased nuclear NF-κB expression, pERK 1/2/tERK1/2 ratio, and mRNA expression of inflammatory cytokines. In NHBE, CSE increased mRNA expression of inflammatory cytokines and supernatants from CSE exposed NHBE increased actin reorganization in neutrophils. FP combined with FO reverted all these phenomena in CSE stimulated 16-HBE cells as well as in NHBE cells. CONCLUSIONS The present study provides compelling evidences that FP combined with FO may contribute to revert some processes related to steroid resistance induced by oxidative stress due to cigarette smoke exposure increasing the anti-inflammatory effects of FP.
Collapse
Affiliation(s)
- M Ferraro
- Istituto di Biomedicina e Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Palermo, Italy.
| | - M Gjomarkaj
- Istituto di Biomedicina e Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - L Siena
- Istituto di Biomedicina e Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - S Di Vincenzo
- Istituto di Biomedicina e Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - E Pace
- Istituto di Biomedicina e Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Palermo, Italy
| |
Collapse
|
16
|
Lee H, Park JR, Kim WJ, Sundar IK, Rahman I, Park SM, Yang SR. Blockade of RAGE ameliorates elastase-induced emphysema development and progression via RAGE-DAMP signaling. FASEB J 2017; 31:2076-2089. [PMID: 28148566 DOI: 10.1096/fj.201601155r] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/17/2017] [Indexed: 12/21/2022]
Abstract
The receptor for advanced glycan end products (RAGE) has been identified as a susceptibility gene for chronic obstructive pulmonary disease (COPD) in genome-wide association studies (GWASs). However, less is known about how RAGE is involved in the pathogenesis of COPD. To determine the molecular mechanism by which RAGE influences COPD in experimental COPD models, we investigated the efficacy of the RAGE-specific antagonist FPS-ZM1 administration in in vivo and in vitro COPD models. We injected elastase intratracheally and the RAGE antagonist FPS-ZM1 in mice, and the infiltrated inflammatory cells and cytokines were assessed by ELISA. Cellular expression of RAGE was determined in protein, serum, and bronchoalveolar lavage fluid of mice and lungs and serum of human donors and patients with COPD. Downstream damage-associated molecular pattern (DAMP) pathway activation in vivo and in vitro and in patients with COPD was assessed by immunofluorescence staining, Western blot analysis, and ELISA. The expression of membrane RAGE in initiating the inflammatory response and of soluble RAGE acting as a decoy were associated with up-regulation of the DAMP-related signaling pathway via Nrf2. FPS-ZM1 administration significantly reversed emphysema in the lung of mice. Moreover, FPS-ZM1 treatment significantly reduced lung inflammation in Nrf2+/+ , but not in Nrf2-/- mice. Thus, our data indicate for the first time that RAGE inhibition has an essential protective role in COPD. Our observation of RAGE inhibition provided novel insight into its potential as a therapeutic target in emphysema/COPD.-Lee, H., Park, J.-R., Kim, W. J., Sundar, I. K., Rahman, I., Park, S.-M., Yang. S.-R. Blockade of RAGE ameliorates elastase-induced emphysema development and progression via RAGE-DAMP signaling.
Collapse
Affiliation(s)
- Hanbyeol Lee
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, South Korea
| | - Jeong-Ran Park
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, South Korea
| | - Woo Jin Kim
- Department of Internal Medicine, Kangwon National University, Chuncheon, South Korea; and
| | - Isaac K Sundar
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Sung-Min Park
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, South Korea
| | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, South Korea;
| |
Collapse
|
17
|
Cigarette smoke-mediated oxidative stress induces apoptosis via the MAPKs/STAT1 pathway in mouse lung fibroblasts. Toxicol Lett 2015; 240:140-8. [PMID: 26546778 DOI: 10.1016/j.toxlet.2015.10.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/28/2015] [Accepted: 10/31/2015] [Indexed: 12/14/2022]
Abstract
Cigarette smoking is the major aetiologic factor in chronic obstructive pulmonary disease (COPD). Lung fibroblasts are key participants in the maintenance of the extracellular matrix within the lung parenchyma. However, it still remains unknown how pulmonary fibroblasts are affected by cigarette smoking. Therefore, in this study, we isolated lung fibroblasts from mice and determined the apoptotic mechanism in response to cigarette smoke extract (CSE). When the lung fibroblasts were exposed to CSE, the generation of ROS was increased as shown by H2-DCFDA staining and Flow Cytometry. By immunocytochemistry, Ki67 expressing cells gradually decreased in a dose-dependent manner. The nitrite concentration in the supernatants increased, while the SOD activity and GSH recycling decreased in response to CSE. CSE increased the mRNA levels of TNF-α and COX-2, and the secretory proteins TNF-α and IL-6 increased as measured by ELISA. We next determined whether this inflammatory process is associated with the Bax/Bcl-2 apoptosis pathway. The Bax/Bcl-2 mRNA ratio increased, and cleaved caspase-3 protein was activated in the lung fibroblasts treated with CSE. Moreover, CSE induced the phosphorylation of STAT1 at Tyr701/Ser727 and increased the activation of ERK1/2, p38, and JNK in the MAPK pathway. Taken together, these data suggest that CSE-mediated inflammation alters the redox regulation via the MAPK-STAT1 pathway, leading to intrinsic apoptosis of lung fibroblasts.
Collapse
|
18
|
Schuliga M. NF-kappaB Signaling in Chronic Inflammatory Airway Disease. Biomolecules 2015; 5:1266-83. [PMID: 26131974 PMCID: PMC4598751 DOI: 10.3390/biom5031266] [Citation(s) in RCA: 332] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 05/31/2015] [Accepted: 06/04/2015] [Indexed: 12/21/2022] Open
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are obstructive airway disorders which differ in their underlying causes and phenotypes but overlap in patterns of pharmacological treatments. In both asthma and COPD, oxidative stress contributes to airway inflammation by inducing inflammatory gene expression. The redox-sensitive transcription factor, nuclear factor (NF)-kappaB (NF-κB), is an important participant in a broad spectrum of inflammatory networks that regulate cytokine activity in airway pathology. The anti-inflammatory actions of glucocorticoids (GCs), a mainstay treatment for asthma, involve inhibition of NF-κB induced gene transcription. Ligand bound GC receptors (GRs) bind NF-κB to suppress the transcription of NF-κB responsive genes (i.e., transrepression). However, in severe asthma and COPD, the transrepression of NF-κB by GCs is negated as a consequence of post-translational changes to GR and histones involved in chromatin remodeling. Therapeutics which target NF-κB activation, including inhibitors of IκB kinases (IKKs) are potential treatments for asthma and COPD. Furthermore, reversing GR/histone acetylation shows promise as a strategy to treat steroid refractory airway disease by augmenting NF-κB transrepression. This review examines NF-κB signaling in airway inflammation and its potential as target for treatment of asthma and COPD.
Collapse
Affiliation(s)
- Michael Schuliga
- Lung Health Research Centre (LHRC), Department Pharmacology and Therapeutics, University of Melbourne, Grattan St., Parkville 3010, Victoria, Australia.
| |
Collapse
|
19
|
Colombo G, Clerici M, Giustarini D, Portinaro NM, Aldini G, Rossi R, Milzani A, Dalle-Donne I. Pathophysiology of tobacco smoke exposure: recent insights from comparative and redox proteomics. MASS SPECTROMETRY REVIEWS 2014; 33:183-218. [PMID: 24272816 DOI: 10.1002/mas.21392] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 05/23/2013] [Accepted: 05/23/2013] [Indexed: 06/02/2023]
Abstract
First-hand and second-hand tobacco smoke are causally linked to a huge number of deaths and are responsible for a broad spectrum of pathologies such as cancer, cardiovascular, respiratory, and eye diseases as well as adverse effects on female reproductive function. Cigarette smoke is a complex mixture of thousands of different chemical species, which exert their negative effects on macromolecules and biochemical pathways, both directly and indirectly. Many compounds can act as oxidants, pro-inflammatory agents, carcinogens, or a combination of these. The redox behavior of cigarette smoke has many implications for smoke related diseases. Reactive oxygen and nitrogen species (both radicals and non-radicals), reactive carbonyl compounds, and other species may induce oxidative damage in almost all the biological macromolecules, compromising their structure and/or function. Different quantitative and redox proteomic approaches have been applied in vitro and in vivo to evaluate, respectively, changes in protein expression and specific oxidative protein modifications induced by exposure to cigarette smoke and are overviewed in this review. Many gel-based and gel-free proteomic techniques have already been used successfully to obtain clues about smoke effects on different proteins in cell cultures, animal models, and humans. The further implementation with other sensitive screening techniques could be useful to integrate the comprehension of cigarette smoke effects on human health. In particular, the redox proteomic approach may also help identify biomarkers of exposure to tobacco smoke useful for preventing these effects or potentially predictive of the onset and/or progression of smoking-induced diseases as well as potential targets for therapeutic strategies.
Collapse
Affiliation(s)
- Graziano Colombo
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Van Dyck E, Nazarov PV, Muller A, Nicot N, Bosseler M, Pierson S, Van Moer K, Palissot V, Mascaux C, Knolle U, Ninane V, Nati R, Bremnes RM, Vallar L, Berchem G, Schlesser M. Bronchial airway gene expression in smokers with lung or head and neck cancer. Cancer Med 2014; 3:322-36. [PMID: 24497500 PMCID: PMC3987082 DOI: 10.1002/cam4.190] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/30/2013] [Accepted: 11/01/2013] [Indexed: 01/10/2023] Open
Abstract
Cigarette smoking is the major cause of cancers of the respiratory tract, including non-small cell lung cancer (NSCLC) and head and neck cancer (HNC). In order to better understand carcinogenesis of the lung and upper airways, we have compared the gene expression profiles of tumor-distant, histologically normal bronchial biopsy specimens obtained from current smokers with NSCLC or HNC (SC, considered as a single group), as well as nonsmokers (NS) and smokers without cancer (SNC). RNA from a total of 97 biopsies was used for gene expression profiling (Affymetrix HG-U133 Plus 2.0 array). Differentially expressed genes were used to compare NS, SNC, and SC, and functional analysis was carried out using Ingenuity Pathway Analysis (IPA). Smoking-related cancer of the respiratory tract was found to affect the expression of genes encoding xenobiotic biotransformation proteins, as well as proteins associated with crucial inflammation/immunity pathways and other processes that protect the airway from the chemicals in cigarette smoke or contribute to carcinogenesis. Finally, we used the prediction analysis for microarray (PAM) method to identify gene signatures of cigarette smoking and cancer, and uncovered a 15-gene signature that distinguished between SNC and SC with an accuracy of 83%. Thus, gene profiling of histologically normal bronchial biopsy specimens provided insight into cigarette-induced carcinogenesis of the respiratory tract and gene signatures of cancer in smokers.
Collapse
Affiliation(s)
- Eric Van Dyck
- Département d'Oncologie, CRP-Santé du Luxembourg, Luxembourg
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Berchtold CM, Coughlin A, Kasper Z, Thibeault SL. Paracrine potential of fibroblasts exposed to cigarette smoke extract with vascular growth factor induction. Laryngoscope 2013; 123:2228-36. [PMID: 23494588 PMCID: PMC4113205 DOI: 10.1002/lary.24052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 01/07/2013] [Accepted: 01/22/2013] [Indexed: 12/27/2022]
Abstract
OBJECTIVES/HYPOTHESIS Nicotine, a major constituent of cigarette smoke, can activate the cholinergic anti-inflammatory pathway by binding to α7-nicotinic acetylcholine receptor (α7nAChR) expressed on the surface of certain cells. Here, we ask whether cigarette smoke extract induced different paracrine factors compared to the in vivo regulator of inflammation, tumor necrosis factor-α, in human vocal fold fibroblasts (hVFFs) shown to express low levels of α7nAChR. STUDY DESIGN In vitro. METHODS α7nAChR was detected by nested polymerase chain reaction and immunohistochemistry. γH2AX, a marker for DNA double-stand breaks, was measured by immunofluorescence. Cigarette smoke extract was prepared in accordance with investigators studying effects of cigarette smoke. hVFFs treated for 3 hours had media replaced for an additional 24 hours. Cytokine, chemokine, and growth factor levels in media were assessed by multiplex analysis. RESULTS α7nAChR expression levels decreased with the passage number of fibroblasts. Tumor necrosis factor-α induced a significantly different profile of cytokines, chemokines, and growth factor compared to cigarette smoke extract exposure. Cigarette smoke extract at a concentration not associated with induction of γH2AX nuclear foci significantly increased vascular endothelial growth factor. CONCLUSIONS Cigarette smoke extract elicited a response important for regulation of angiogenesis and vascular permeability during inflammation, without evidence of DNA double-stand breaks associated with carcinogenesis. hVFFs are capable of participating in paracrine regulation of pathological blood vessel formation associated with cigarette smoking-related diseases (ie, Reinke edema). These cells express α7nAChR, an essential component of the cholinergic anti-inflammatory pathway regulated by the vagus nerve in certain tissues and a target of therapeutic agents.
Collapse
Affiliation(s)
- Craig M Berchtold
- Department of Surgery, University of Wisconsin, Madison, Wisconsin, U.S.A
| | | | | | | |
Collapse
|
22
|
Migliaccio CT, Kobos E, King QO, Porter V, Jessop F, Ward T. Adverse effects of wood smoke PM(2.5) exposure on macrophage functions. Inhal Toxicol 2013; 25:67-76. [PMID: 23363038 DOI: 10.3109/08958378.2012.756086] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Epidemiological studies have shown a correlation between chronic biomass smoke exposure and increased respiratory infection. Pulmonary macrophages are instrumental in both the innate and the adaptive immune responses to respiratory infection. In the present study, in vitro systems were utilized where alveolar macrophages (AM) and bone marrow-derived macrophages (BMdM) were exposed to concentrated wood smoke-derived particulate matter (WS-PM) and mice were exposed in vivo to either concentrated WS-PM or inhaled WS. In vivo studies demonstrated that WS-exposed mice inoculated with Streptococcus pneumoniae had a higher bacterial load 24 h post-exposure, and corresponding AM were found to have decreased lymphocyte activation activity. Additionally, while classic markers of inflammation (cellular infiltration, total protein, neutrophils) were not affected, there were changes in pulmonary macrophages populations, including significant decreases in macrophages expressing markers of activation in WS-exposed mice. The lymphocyte activation activity of WS-PM-exposed AM was significantly suppressed, but the phagocytic activity appeared unchanged. In an effort to determine a pathway for WS-induced suppression, RelB activation, assessed by nuclear translocation, was observed in AM exposed to either inhaled WS or instilled WS-PM. Finally, an analysis of WS-PM fractions determined the presence of 4-5 polycyclic aromatic hydrocarbons (PAHs), and preliminary work suggests a potential role for these PAHs to alter macrophage functions. These studies show a decreased ability of WS-exposed pulmonary macrophages to effectively mount a defense against infection, the effect lasts at least a week post-exposure, and appears to be mediated via RelB activation.
Collapse
|
23
|
Sundar IK, Yao H, Rahman I. Oxidative stress and chromatin remodeling in chronic obstructive pulmonary disease and smoking-related diseases. Antioxid Redox Signal 2013; 18:1956-71. [PMID: 22978694 PMCID: PMC3624634 DOI: 10.1089/ars.2012.4863] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Chronic obstructive pulmonary disease (COPD) is predominantly a tobacco smoke-triggered disease with features of chronic low-grade systemic inflammation and aging (inflammaging) of the lung associated with steroid resistance induced by cigarette smoke (CS)-mediated oxidative stress. Oxidative stress induces various kinase signaling pathways leading to chromatin modifications (histone acetylation/deacetylation and histone methylation/demethylation) in inflammation, senescence, and steroid resistance. RECENT ADVANCES Histone mono-, di-, or tri-methylation at lysine residues result in either gene activation (H3K4, H3K36, and H3K79) or repression (H3K9, H3K27, and H3K20). Cross-talk occurs between various epigenetic marks on histones and DNA methylation. Both CS and oxidants alter histone acetylation/deacetylation and methylation/demethylation leading to enhanced proinflammatory gene expression. Chromatin modifications occur in lungs of patients with COPD. Histone deacetylase 2 (HDAC2) reduction (levels and activity) is associated with steroid resistance in response to oxidative stress. CRITICAL ISSUES Histone modifications are associated with DNA damage/repair and epigenomic instability as well as premature lung aging, which have implications in the pathogenesis of COPD. HDAC2/SIRTUIN1 (SIRT1)-dependent chromatin modifications are associated with DNA damage-induced inflammation and senescence in response to CS-mediated oxidative stress. FUTURE DIRECTIONS Understanding CS/oxidative stress-mediated chromatin modifications and the cross-talk between histone acetylation and methylation will demonstrate the involvement of epigenetic regulation of chromatin remodeling in inflammaging. This will lead to identification of novel epigenetic-based therapies against COPD and other smoking-related lung diseases. Pharmacological activation of HDAC2/SIRT1 or reversal of their oxidative post-translational modifications may offer therapies for treatment of COPD and CS-related diseases based on epigenetic histone modifications.
Collapse
Affiliation(s)
- Isaac K Sundar
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | |
Collapse
|
24
|
Hernandez CP, Morrow K, Velasco C, Wyczechowska DD, Naura A, Rodriguez PC. Effects of cigarette smoke extract on primary activated T cells. Cell Immunol 2013; 282:38-43. [PMID: 23665673 PMCID: PMC3676722 DOI: 10.1016/j.cellimm.2013.04.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 02/15/2013] [Accepted: 04/14/2013] [Indexed: 12/29/2022]
Abstract
Tobacco smoking predisposes the development of diseases characterized by chronic inflammation and T cell dysfunction. In this study, we aimed to determine the direct effects of cigarette smoke on primary T cells and to identify the corresponding molecular mediators. Activated T cells cultured in the presence of cigarette smoke extract (CSE) displayed a dose-dependent decrease in cell proliferation, which associated with the induction of cellular apoptosis. T cell apoptosis by CSE was independent of caspases and mediated through reactive oxygen and nitrogen species endogenously contained within CSE. Additional results showed that exposure of T cells to CSE induced phosphorylation of the stress mediator eukaryotic-translation-initiation-factor 2 alpha (eIF2α). Inhibition of the phosphorylation of eIF2α in T cells prevented the cellular apoptosis induced by CSE. Altogether, the results show the direct effects of CSE on T cells, which advance in the understanding of how cigarette smoking promotes chronic inflammation and immune dysfunction.
Collapse
Affiliation(s)
- Claudia P. Hernandez
- Stanley S. Scott Cancer Center, Louisiana State University-Health Sciences Center, New Orleans, LA, 70112
| | - Kevin Morrow
- Stanley S. Scott Cancer Center, Louisiana State University-Health Sciences Center, New Orleans, LA, 70112
| | - Cruz Velasco
- Stanley S. Scott Cancer Center, Louisiana State University-Health Sciences Center, New Orleans, LA, 70112
| | - Dorota D. Wyczechowska
- Stanley S. Scott Cancer Center, Louisiana State University-Health Sciences Center, New Orleans, LA, 70112
| | - Amarjit Naura
- Stanley S. Scott Cancer Center, Louisiana State University-Health Sciences Center, New Orleans, LA, 70112
| | - Paulo C. Rodriguez
- Stanley S. Scott Cancer Center, Louisiana State University-Health Sciences Center, New Orleans, LA, 70112
- Department of Microbiology Immunology and Parasitology, Louisiana State University-Health Sciences Center, New Orleans, LA, 70112
| |
Collapse
|
25
|
Sundar IK, Chung S, Hwang JW, Lapek JD, Bulger M, Friedman AE, Yao H, Davie JR, Rahman I. Mitogen- and stress-activated kinase 1 (MSK1) regulates cigarette smoke-induced histone modifications on NF-κB-dependent genes. PLoS One 2012; 7:e31378. [PMID: 22312446 PMCID: PMC3270039 DOI: 10.1371/journal.pone.0031378] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 01/08/2012] [Indexed: 11/27/2022] Open
Abstract
Cigarette smoke (CS) causes sustained lung inflammation, which is an important event in the pathogenesis of chronic obstructive pulmonary disease (COPD). We have previously reported that IKKα (I kappaB kinase alpha) plays a key role in CS-induced pro-inflammatory gene transcription by chromatin modifications; however, the underlying role of downstream signaling kinase is not known. Mitogen- and stress-activated kinase 1 (MSK1) serves as a specific downstream NF-κB RelA/p65 kinase, mediating transcriptional activation of NF-κB-dependent pro-inflammatory genes. The role of MSK1 in nuclear signaling and chromatin modifications is not known, particularly in response to environmental stimuli. We hypothesized that MSK1 regulates chromatin modifications of pro-inflammatory gene promoters in response to CS. Here, we report that CS extract activates MSK1 in human lung epithelial (H292 and BEAS-2B) cell lines, human primary small airway epithelial cells (SAEC), and in mouse lung, resulting in phosphorylation of nuclear MSK1 (Thr581), phospho-acetylation of RelA/p65 at Ser276 and Lys310 respectively. This event was associated with phospho-acetylation of histone H3 (Ser10/Lys9) and acetylation of histone H4 (Lys12). MSK1 N- and C-terminal kinase-dead mutants, MSK1 siRNA-mediated knock-down in transiently transfected H292 cells, and MSK1 stable knock-down mouse embryonic fibroblasts significantly reduced CS extract-induced MSK1, NF-κB RelA/p65 activation, and posttranslational modifications of histones. CS extract/CS promotes the direct interaction of MSK1 with RelA/p65 and p300 in epithelial cells and in mouse lung. Furthermore, CS-mediated recruitment of MSK1 and its substrates to the promoters of NF-κB-dependent pro-inflammatory genes leads to transcriptional activation, as determined by chromatin immunoprecipitation. Thus, MSK1 is an important downstream kinase involved in CS-induced NF-κB activation and chromatin modifications, which have implications in pathogenesis of COPD.
Collapse
Affiliation(s)
- Isaac K. Sundar
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Sangwoon Chung
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Jae-woong Hwang
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York, United States of America
| | - John D. Lapek
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Michael Bulger
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Alan E. Friedman
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Hongwei Yao
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York, United States of America
| | - James R. Davie
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Irfan Rahman
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
26
|
Chung S, Sundar IK, Hwang JW, Yull FE, Blackwell TS, Kinnula VL, Bulger M, Yao H, Rahman I. NF-κB inducing kinase, NIK mediates cigarette smoke/TNFα-induced histone acetylation and inflammation through differential activation of IKKs. PLoS One 2011; 6:e23488. [PMID: 21887257 PMCID: PMC3160853 DOI: 10.1371/journal.pone.0023488] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 07/18/2011] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Nuclear factor (NF)-κB inducing kinase (NIK) is a central player in the non-canonical NF κB pathway, which phosphorylates IκB kinase α (IKKα) resulting in enhancement of target gene expression. We have recently shown that IKKα responds to a variety of stimuli including oxidants and cigarette smoke (CS) regulating the histone modification in addition to its role in NF-κB activation. However, the primary signaling mechanism linking CS-mediated oxidative stress and TNFα with histone acetylation and pro-inflammatory gene transcription is not well understood. We hypothesized that CS and TNFα increase NIK levels causing phosphorylation of IKKα, which leads to histone acetylation. METHODOLOGY To test this hypothesis, we investigated whether NIK mediates effects of CS and TNFα on histone acetylation in human lung epithelial cells in vitro and in lungs of mouse exposed to CS in vivo. CS increased the phosphorylation levels of IKKα/NIK in lung epithelial cells and mouse lungs. NIK is accumulated in the nuclear compartment, and is recruited to the promoters of pro-inflammatory genes, to induce posttranslational acetylation of histones in response to CS and TNFα. Cells in which NIK is knocked down using siRNA showed partial attenuation of CSE- and TNFα-induced acetylation of histone H3 on pro-inflammatory gene promoters. Additional study to determine the role of IKKβ/NF-κB pathway in CS-induced histone acetylation suggests that the canonical pathway does not play a role in histone acetylation particularly in response to CS in mouse lungs. CONCLUSIONS Overall, our findings provide a novel role for NIK in CS- and TNFα-induced histone acetylation, especially on histone H3K9.
Collapse
Affiliation(s)
- Sangwoon Chung
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Isaac K. Sundar
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Jae-Woong Hwang
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Fiona E. Yull
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Timothy S. Blackwell
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Vuokko L. Kinnula
- Pulmonary Division, Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Michael Bulger
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Hongwei Yao
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Irfan Rahman
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York, United States of America
| |
Collapse
|
27
|
Yao H, Rahman I. Current concepts on oxidative/carbonyl stress, inflammation and epigenetics in pathogenesis of chronic obstructive pulmonary disease. Toxicol Appl Pharmacol 2011; 254:72-85. [PMID: 21296096 PMCID: PMC3107364 DOI: 10.1016/j.taap.2009.10.022] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 10/04/2009] [Accepted: 10/04/2009] [Indexed: 12/17/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a global health problem. The current therapies for COPD are poorly effective and the mainstays of pharmacotherapy are bronchodilators. A better understanding of the pathobiology of COPD is critical for the development of novel therapies. In the present review, we have discussed the roles of oxidative/aldehyde stress, inflammation/immunity, and chromatin remodeling in the pathogenesis of COPD. An imbalance of oxidants/antioxidants caused by cigarette smoke and other pollutants/biomass fuels plays an important role in the pathogenesis of COPD by regulating redox-sensitive transcription factors (e.g., NF-κB), autophagy and unfolded protein response leading to chronic lung inflammatory response. Cigarette smoke also activates canonical/alternative NF-κB pathways and their upstream kinases leading to sustained inflammatory response in lungs. Recently, epigenetic regulation has been shown to be critical for the development of COPD because the expression/activity of enzymes that regulate these epigenetic modifications have been reported to be abnormal in airways of COPD patients. Hence, the significant advances made in understanding the pathophysiology of COPD as described herein will identify novel therapeutic targets for intervention in COPD.
Collapse
Affiliation(s)
- Hongwei Yao
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, NY 1464, USA
| | | |
Collapse
|
28
|
Sundar IK, Caito S, Yao H, Rahman I. Oxidative stress, thiol redox signaling methods in epigenetics. Methods Enzymol 2010; 474:213-44. [PMID: 20609913 DOI: 10.1016/s0076-6879(10)74013-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epigenetics is referred to as heritable changes in gene expression but not encoded in the DNA sequence itself which occurs during posttranslational modifications in DNA and histones. These epigenetic modifications include histone acetylation, deacetylation, and methylation. Acetylation by histone acetyltransferases (HATs) of specific lysine residues on the N-terminal tail of core histones results in uncoiling of the DNA and increased accessibility to transcription factor binding. In contrast, histone deacetylation by histone deacetylases (HDACs) represses gene transcription by promoting DNA winding thereby limiting access to transcription factors. Reactive oxygen species (ROS) are involved in cellular redox alterations, such as amplification of proinflammatory and immunological responses, signaling pathways, activation of transcription factors (NF-kappaB and AP-1), chromatin remodeling (histone acetylation and deacetylation), histone/protein deacetylation by sirtuin 1 (SIRT1) and gene expression. The glutathione redox status plays an important role in protein modifications and signaling pathways, including effects on redox-sensitive transcription factors. Protein S-glutathiolation and mixed disulfide formation as candidate mechanisms for protein regulation during intracellular oxidative stress have gained a renewed impetus in view of their involvements in redox regulation of signaling proteins. A variety of methods are applied to study the epigenetic processes to elucidate the molecular mysteries underlying epigenetic inheritance. These include chromatin immunoprecipitation (ChIP), which is a powerful tool to study protein-DNA interaction and is widely used in many fields to study protein associated with chromatin, such as histone and its isoforms and transcription factors, across a defined DNA domain. Here, we describe some of the contemporary methods used to study oxidative stress and thiol redox signaling involved in epigenetic (histone acetylation, deacetylation, and methylation) and chromatin remodeling (HAT, HDAC, SIRT1) research.
Collapse
Affiliation(s)
- Isaac K Sundar
- Lung Biology and Disease Program, Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | | | | | | |
Collapse
|
29
|
Current World Literature. Curr Opin Pulm Med 2010; 16:162-7. [DOI: 10.1097/mcp.0b013e32833723f8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Wixted WE, Kitson C, Colebrook JC, Roberts EJ, Fox SM, Kou JP, Li JU, López-Boado YS. A model to identify novel targets involved in oxidative stress-induced apoptosis in human lung epithelial cells by RNA interference. Toxicol In Vitro 2010; 24:310-8. [DOI: 10.1016/j.tiv.2009.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 08/18/2009] [Accepted: 08/19/2009] [Indexed: 01/31/2023]
|
31
|
Yao H, Hwang JW, Moscat J, Diaz-Meco MT, Leitges M, Kishore N, Li X, Rahman I. Protein kinase C zeta mediates cigarette smoke/aldehyde- and lipopolysaccharide-induced lung inflammation and histone modifications. J Biol Chem 2009; 285:5405-16. [PMID: 20007975 DOI: 10.1074/jbc.m109.041418] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Atypical protein kinase C (PKC) zeta is an important regulator of inflammation through activation of the nuclear factor-kappaB (NF-kappaB) pathway. Chromatin remodeling on pro-inflammatory genes plays a pivotal role in cigarette smoke (CS)- and lipopolysaccharide (LPS)-induced abnormal lung inflammation. However, the signaling mechanism whereby chromatin remodeling occurs in CS- and LPS-induced lung inflammation is not known. We hypothesized that PKCzeta is an important regulator of chromatin remodeling, and down-regulation of PKCzeta ameliorates lung inflammation by CS and LPS exposures. We determined the role and molecular mechanism of PKCzeta in abnormal lung inflammatory response to CS and LPS exposures in PKCzeta-deficient (PKCzeta(-/-)) and wild-type mice. Lung inflammatory response was decreased in PKCzeta(-/-) mice compared with WT mice exposed to CS and LPS. Moreover, inhibition of PKCzeta by a specific pharmacological PKCzeta inhibitor attenuated CS extract-, reactive aldehydes (present in CS)-, and LPS-mediated pro-inflammatory mediator release from macrophages. The mechanism underlying these findings is associated with decreased RelA/p65 phosphorylation (Ser(311)) and translocation of the RelA/p65 subunit of NF-kappaB into the nucleus. Furthermore, CS/reactive aldehydes and LPS exposures led to activation and translocation of PKCzeta into the nucleus where it forms a complex with CREB-binding protein (CBP) and acetylated RelA/p65 causing histone phosphorylation and acetylation on promoters of pro-inflammatory genes. Taken together, these data suggest that PKCzeta plays an important role in CS/aldehyde- and LPS-induced lung inflammation through acetylation of RelA/p65 and histone modifications via CBP. These data provide new insights into the molecular mechanisms underlying the pathogenesis of chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Hongwei Yao
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|