1
|
Wan P, Gao K, Miao F, Shi M, Chen X. Protective effects of tissue factor pathway inhibitor on mice with lipopolysaccharide-induced acute lung injury. Exp Cell Res 2025; 444:114357. [PMID: 39603553 DOI: 10.1016/j.yexcr.2024.114357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/20/2024] [Accepted: 11/23/2024] [Indexed: 11/29/2024]
Abstract
Acute lung injury (ALI) resulting from bacterial infection poses a significant risk, and its etiology involves the complex interplay of harmful immune responses and blood coagulation. Despite this understanding, the roles and mechanisms of tissue factor pathway inhibitor (TFPI) in LPS-induced ALI remain insufficiently elucidated. In this study, we aimed to explore the effects of TFPI in LPS-induced ALI. Our investigations revealed that TFPI exerts multiple beneficial effects in LPS-induced ALI. Specifically, TFPI reduces microvascular permeability, Myeloperoxidase (MPO) activity, and cytokine production while inhibiting blood coagulation. Moreover, TFPI demonstrates the capacity to promote proliferation and suppress apoptosis in Human microvascular endothelial cells (HMEC-1) and Human umbilical vein endothelial cells (HUVEC) through the inhibition of the caspase pathway and mitochondrial apoptosis pathway. Furthermore, our findings indicate a correlation between tissue factor (TF) and TFPI expression, with TFPI regulation observed in HMEC-1 cells following LPS treatment. This novel insight suggests that TFPI plays a regulatory role in TF expression. Overall, the protective effect of TFPI on LPS-induced ALI is unveiled by its ability to enhance endothelial cell proliferation and inhibit apoptosis through the modulation of caspase and Bcl-2/Bax pathways. These results underscore the potential of TFPI as a promising therapeutic target for ALI treatment.
Collapse
Affiliation(s)
- Posum Wan
- Department of Thoracic and Cardiovascular Surgery, Huashan Hospital, Affiliated with Fudan University, Shanghai, 200040, China
| | - Kaiheng Gao
- Department of Thoracic and Cardiovascular Surgery, Huashan Hospital, Affiliated with Fudan University, Shanghai, 200040, China
| | - Feng Miao
- Department of Thoracic and Cardiovascular Surgery, Huashan Hospital, Affiliated with Fudan University, Shanghai, 200040, China
| | - Meng Shi
- Department of Thoracic and Cardiovascular Surgery, Huashan Hospital, Affiliated with Fudan University, Shanghai, 200040, China.
| | - Xiaofeng Chen
- Department of Thoracic and Cardiovascular Surgery, Huashan Hospital, Affiliated with Fudan University, Shanghai, 200040, China.
| |
Collapse
|
2
|
Giriyappagoudar M, Vastrad B, Horakeri R, Vastrad C. Study on Potential Differentially Expressed Genes in Idiopathic Pulmonary Fibrosis by Bioinformatics and Next-Generation Sequencing Data Analysis. Biomedicines 2023; 11:3109. [PMID: 38137330 PMCID: PMC10740779 DOI: 10.3390/biomedicines11123109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 12/24/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease with reduced quality of life and earlier mortality, but its pathogenesis and key genes are still unclear. In this investigation, bioinformatics was used to deeply analyze the pathogenesis of IPF and related key genes, so as to investigate the potential molecular pathogenesis of IPF and provide guidance for clinical treatment. Next-generation sequencing dataset GSE213001 was obtained from Gene Expression Omnibus (GEO), and the differentially expressed genes (DEGs) were identified between IPF and normal control group. The DEGs between IPF and normal control group were screened with the DESeq2 package of R language. The Gene Ontology (GO) and REACTOME pathway enrichment analyses of the DEGs were performed. Using the g:Profiler, the function and pathway enrichment analyses of DEGs were performed. Then, a protein-protein interaction (PPI) network was constructed via the Integrated Interactions Database (IID) database. Cytoscape with Network Analyzer was used to identify the hub genes. miRNet and NetworkAnalyst databaseswereused to construct the targeted microRNAs (miRNAs), transcription factors (TFs), and small drug molecules. Finally, receiver operating characteristic (ROC) curve analysis was used to validate the hub genes. A total of 958 DEGs were screened out in this study, including 479 up regulated genes and 479 down regulated genes. Most of the DEGs were significantly enriched in response to stimulus, GPCR ligand binding, microtubule-based process, and defective GALNT3 causes HFTC. In combination with the results of the PPI network, miRNA-hub gene regulatory network and TF-hub gene regulatory network, hub genes including LRRK2, BMI1, EBP, MNDA, KBTBD7, KRT15, OTX1, TEKT4, SPAG8, and EFHC2 were selected. Cyclothiazide and rotigotinethe are predicted small drug molecules for IPF treatment. Our findings will contribute to identification of potential biomarkers and novel strategies for the treatment of IPF, and provide a novel strategy for clinical therapy.
Collapse
Affiliation(s)
- Muttanagouda Giriyappagoudar
- Department of Radiation Oncology, Karnataka Institute of Medical Sciences (KIMS), Hubballi 580022, Karnataka, India;
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, K.L.E. Socitey’s College of Pharmacy, Gadag 582101, Karnataka, India;
| | - Rajeshwari Horakeri
- Department of Computer Science, Govt First Grade College, Hubballi 580032, Karnataka, India;
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India
| |
Collapse
|
3
|
Wang LJ, Feng F, Li JC, Chen TT, Liu LP. Role of heparanase in pulmonary hypertension. Front Pharmacol 2023; 14:1202676. [PMID: 37637421 PMCID: PMC10450954 DOI: 10.3389/fphar.2023.1202676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Pulmonary hypertension (PH) is a pathophysiological condition of increased pulmonary circulation vascular resistance due to various reasons, which mainly leads to right heart dysfunction and even death, especially in critically ill patients. Although drug interventions have shown some efficacy in improving the hemodynamics of PH patients, the mortality rate remains high. Hence, the identification of new targets and treatment strategies for PH is imperative. Heparanase (HPA) is an enzyme that specifically cleaves the heparan sulfate (HS) side chains in the extracellular matrix, playing critical roles in inflammation and tumorigenesis. Recent studies have indicated a close association between HPA and PH, suggesting HPA as a potential therapeutic target. This review examines the involvement of HPA in PH pathogenesis, including its effects on endothelial cells, inflammation, and coagulation. Furthermore, HPA may serve as a biomarker for diagnosing PH, and the development of HPA inhibitors holds promise as a targeted therapy for PH treatment.
Collapse
Affiliation(s)
- Lin-Jun Wang
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, China
| | - Fei Feng
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, China
| | - Jian-Chun Li
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, China
| | - Ting-Ting Chen
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, China
| | - Li-Ping Liu
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, China
- Departments of Emergency Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Shi Q, Feng N, Ma Q, Wang S, Zhang H, Huang D, Sun J, Shi M. ZNF354C Mediated by DNMT1 Ameliorates Lung Ischemia-Reperfusion Oxidative Stress Injury by Reducing TFPI Promoter Methylation to Upregulate TFPI. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7288729. [PMID: 35915612 PMCID: PMC9338733 DOI: 10.1155/2022/7288729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/06/2022] [Accepted: 05/27/2022] [Indexed: 12/02/2022]
Abstract
Background Pulmonary ischemia reperfusion- (I/R-) induced dysfunction is a significant clinical problem after lung transplantation. In this study, we aim to explore the molecular mechanism of lung I/R injury (LIRI). Methods Bioinformatic analysis of gene involved in oxidative stress. A HUVEC oxygen glucose deprivation/reoxygenation (OGD/R) model and I/R mouse model were first established via I/R. The cellular proliferation, migration, reactive oxygen species (ROS), and parameters of lung injury were assessed via CCK-8, EdU staining, Transwell, cellular ROS kit, and H&E staining. We also confirmed related gene expressions and protein levels and the interaction between the tissue factor pathway inhibitor (TFPI) promotor and ZNF354C. Results Bioinformatic analysis results showed TFPI contributed to oxidative stress. OGD/R caused a reduction in cell viability and migration, hypermethylation of TFPI, increased ROS, and downregulation of ZNF354C, TFPI, and DNA methyltransferases (DNMTs) in HUVECs. Besides, ZNF354C could directly bind to the TFPI promoter, enhance proliferation and migration, and inhibit ROS in OGD/R-induced HUVECs by upregulating TFPI. More importantly, we discovered that 5-Aza could reduce TFPI methylation, upregulate TFPI, and enhance the binding of ZNF354C to the TFPI promoter in LIRI. Furthermore, DNMT1 silencing could induce proliferation and migration and prevent ROS in OGD/R-induced HUVECs by upregulating ZNF354C. Additionally, we verified that ZNF354C could alleviate LIRI by preventing DNA methylation in vivo. Conclusions ZNF354C overexpression induced proliferation and migration, as well as suppressed ROS in OGD/R-induced HUVECs, and alleviated LIRI in mice by inhibiting TFPI promoter methylation to upregulate TFPI. Therefore, ZNF354C and TFPI methylation might be promising molecular markers for LIRI therapy.
Collapse
Affiliation(s)
- Qi Shi
- Department of Thoracic and Cardiovascular Surgery, Huashan Hospital, Affiliated with Fudan University, Shanghai 200040, China
- Department of Respiratory Endoscopy, Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Nana Feng
- Department of Respiratory and Critical Medicine, Shanghai Eighth People's Hospital Affiliated to Jiang Su University, Shanghai 200030, China
| | - Qingyun Ma
- Department of Thoracic and Cardiovascular Surgery, Huashan Hospital, Affiliated with Fudan University, Shanghai 200040, China
| | - Shaohua Wang
- Department of Thoracic and Cardiovascular Surgery, Huashan Hospital, Affiliated with Fudan University, Shanghai 200040, China
| | - Huijun Zhang
- Department of Thoracic and Cardiovascular Surgery, Huashan Hospital, Affiliated with Fudan University, Shanghai 200040, China
| | - Dayu Huang
- Department of Thoracic and Cardiovascular Surgery, Huashan Hospital, Affiliated with Fudan University, Shanghai 200040, China
| | - Jiayuan Sun
- Department of Respiratory Endoscopy, Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Meng Shi
- Department of Thoracic and Cardiovascular Surgery, Huashan Hospital, Affiliated with Fudan University, Shanghai 200040, China
| |
Collapse
|
5
|
Liu X, Zhou H, Hu Z. Resveratrol attenuates chronic pulmonary embolism-related endothelial cell injury by modulating oxidative stress, inflammation, and autophagy. Clinics (Sao Paulo) 2022; 77:100083. [PMID: 35932505 PMCID: PMC9357834 DOI: 10.1016/j.clinsp.2022.100083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/04/2022] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Due to Pulmonary Artery Endothelial Cell (PAEC) dysfunction, Pulmonary Hypertension (PH) persists even after the Pulmonary Embolism (PE) has been relieved. However, the mechanism behind this remains unclear. METHOD Here, the authors incubated Human PAECs (HPAECs) with thrombin to simulate the process of arterial thrombosis. RESULTS CCK8 results showed a decrease in the viability of HPAECs after thrombin incubation. In addition, the expression of Tissue Factor (TF), Monocyte Chemoattractant Protein 1 (MCP-1), VCAM-1, ICAM-1, cleaved caspase 3, cleaved caspase 9, and Bax protein were all increased after thrombin incubation, while Bcl-2 was decreased. The effects of 3-MA treatment further suggested that autophagy might mediate the partial protective effects of Resveratrol on HPAECs. To observe the effects of Resveratrol in vivo, the authors established a Chronic Thromboembolic Pulmonary Hypertension (CTEPH) model by repeatedly injecting autologous blood clots into a rat's left jugular vein. The results exhibited that Mean Pulmonary Arterial Pressure (mPAP) and vessel Wall Area/Total Area (WA/TA) ratio were both decreased after Resveratrol treatment. Moreover, Resveratrol could reduce the concentration and activity of TF, vWF, P-selectin, and promote these Superoxide Dismutase (SOD) in plasma. Western blot analysis of inflammation, platelet activation, autophagy, and apoptosis-associated proteins in pulmonary artery tissue validated the results in PHAECs. CONCLUSIONS These findings suggested that reduced autophagy, increased oxidative stress, increased platelet activation, and increased inflammation were involved in CTEPH-induced HPAEC dysfunction and the development of PH, while Resveratrol could improve PAEC dysfunction and PH.
Collapse
Affiliation(s)
- Xiaopeng Liu
- Department of Respiratory Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Haiying Zhou
- Department of Respiratory Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Zhixiong Hu
- Department of Respiratory Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Marar TT, Martinez ND, Maroney SA, Siebert AE, Wu J, Stalker TJ, Tomaiuolo M, Delacroix S, Simari RD, Mast AE, Brass LF. The contribution of TFPIα to the hemostatic response to injury in mice. J Thromb Haemost 2021; 19:2182-2192. [PMID: 34160126 PMCID: PMC8571650 DOI: 10.1111/jth.15430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Tissue factor pathway inhibitor (TFPI) is an essential regulator of coagulation, limiting thrombin generation and preventing thrombosis. In humans and mice, TFPIα is the sole isoform present in platelets. OBJECTIVE Here, we asked whether TFPIα, because of its release from platelets at sites of injury, has a unique role in limiting the hemostatic response. METHODS TFPIα-mutant (TfpiΔα/Δα ) mice were generated by introducing a stop codon in the C-terminus. Platelet accumulation, platelet activation, and fibrin accumulation were measured following penetrating injuries in the jugular vein and cremaster muscle arterioles, and imaged by fluorescence and scanning electron microscopy. Time to bleeding cessation was recorded in the jugular vein studies. RESULTS TfpiΔα/Δα mice were viable and fertile. Plasma TFPI levels were normal in the TfpiΔα/Δα mice, no TFPI protein or activity was present in their platelets and thrombin-antithrombin complex levels were indistinguishable from Tfpi+/+ littermates. There was a small, but statistically significant reduction in the time to bleeding cessation following jugular vein puncture injury in the TfpiΔα/Δα mice, but no measurable changes in platelet or fibrin accumulation or in hemostatic plug architecture following injury of the micro- or macrovasculature. CONCLUSION Loss of TFPIα expression does not produce a global prothrombotic state in mice. Platelet TFPIα is expected to be released or displayed in a focal manner at the site of injury, potentially accumulating to high concentrations in the narrow gaps between platelets. If so, the data from the vascular injury models studied here indicate this is not essential for a normal hemostatic response in mice.
Collapse
Affiliation(s)
- Tanya T. Marar
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | - Jie Wu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy J. Stalker
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maurizio Tomaiuolo
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sinny Delacroix
- Department of Medicine, University of Adelaide, Adelaide, Australia
| | - Robert D. Simari
- Department of Cardiovascular Medicine, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Alan E. Mast
- Versiti Blood Research Institute, Milwaukee, WI, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lawrence F. Brass
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
Peterson JA, Maroney SA, Martinez ND, Mast AE. Major Reservoir for Heparin-Releasable TFPIα (Tissue Factor Pathway Inhibitor α) Is Extracellular Matrix. Arterioscler Thromb Vasc Biol 2021; 41:1942-1955. [PMID: 33827254 PMCID: PMC8269748 DOI: 10.1161/atvbaha.120.315728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
| | | | | | - Alan E. Mast
- Versiti Blood Research Institute, Milwaukee, WI 53226
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
8
|
Sun D, Ding D, Li Q, Xie M, Xu Y, Liu X. The preventive and therapeutic effects of AAV1-KLF4-shRNA in cigarette smoke-induced pulmonary hypertension. J Cell Mol Med 2021; 25:1238-1251. [PMID: 33342082 PMCID: PMC7812256 DOI: 10.1111/jcmm.16194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 11/29/2022] Open
Abstract
We found previously that KLF4 expression was up-regulated in cultured rat and human pulmonary artery smooth muscle cells (PASMCs) exposed to cigarette smoke (CS) extract and in pulmonary artery from rats with pulmonary hypertension induced by CS. Here, we aim to investigate whether CS-induced pulmonary hypertension (PH) is prevented and ameliorated by targeted pulmonary vascular gene knockdown of KLF4 via adeno-associated virus 1 (AAV1)-KLF4-shRNA in vivo in rat model. The preventive and therapeutic effects were observed according to the different time-point of AAV1-KLF4-shRNA intratracheal administration. We tested haemodynamic measurements of systemic and pulmonary circulations and observed the degree of pulmonary vascular remodelling. In the preventive experiment, KLF4 expression and some pulmonary circulation hemodynamic measurements such as right ventricular systolic pressure (RVSP), mean right ventricular pressure (mRVP), peak RV pressure rate of rise (dP/dt max) and right ventricle (RV) contractility index were increased significantly in the CS-induced PH model. While in the prevention group (AAV1-KLF4-shRNA group), RVSP, mRVP, dP/dt max and RV contractility index which are associated with systolic function of right ventricle decreased and the degree of pulmonary vascular remodelling relieved. In the therapeutic experiment, we observed a similar trend. Our findings emphasize the feasibility of sustained pulmonary vascular KLF4 gene knockdown using intratracheal delivery of AAV1 in an animal model of cigarette smoke-induced PH and determined gene transfer of KLF4-shRNA could prevent and ameliorate the progression of PH.
Collapse
Affiliation(s)
- Desheng Sun
- Department of Respiratory and Critical Care MedicineKey Laboratory of Pulmonary Diseases of Health MinistryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Respiratory and Critical Care MedicineAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - DanDan Ding
- Department of Respiratory and Critical Care MedicineKey Laboratory of Pulmonary Diseases of Health MinistryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qinghai Li
- Department of Respiratory and Critical Care MedicineKey Laboratory of Pulmonary Diseases of Health MinistryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Min Xie
- Department of Respiratory and Critical Care MedicineKey Laboratory of Pulmonary Diseases of Health MinistryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yongjian Xu
- Department of Respiratory and Critical Care MedicineKey Laboratory of Pulmonary Diseases of Health MinistryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiansheng Liu
- Department of Respiratory and Critical Care MedicineKey Laboratory of Pulmonary Diseases of Health MinistryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
9
|
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing the current pandemic of coronavirus disease 2019 (COVID-19), and COVID-19 vaccines focus on its spike protein. However, in addition to facilitating the membrane fusion and viral entry, the SARS-CoV-2 spike protein promotes cell growth signaling in human lung vascular cells, and patients who have died of COVID-19 have thickened pulmonary vascular walls, linking the spike protein to a fatal disease, pulmonary arterial hypertension (PAH). In addition to SARS-CoV spike proteins, gp120, the viral membrane fusion protein of human immunodeficiency virus (HIV), has been reported to promote cell signaling, and long-term surviving HIV-positive patients have a high incidence of developing PAH. This article describes the findings of the SARS-CoV-2 spike protein affecting lung vascular cells and explains how the spike protein possibly increases the incidence of PAH. Since the SARS-CoV-2 spike protein will be administered to millions of people as COVID-19 vaccines, it is critical to understand the biological effects of this protein on human cells to ensure that it does not promote long-term adverse health consequences.
Collapse
|
10
|
Karmouty-Quintana H, Thandavarayan RA, Keller SP, Sahay S, Pandit LM, Akkanti B. Emerging Mechanisms of Pulmonary Vasoconstriction in SARS-CoV-2-Induced Acute Respiratory Distress Syndrome (ARDS) and Potential Therapeutic Targets. Int J Mol Sci 2020; 21:E8081. [PMID: 33138181 PMCID: PMC7662604 DOI: 10.3390/ijms21218081] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
The 1918 influenza killed approximately 50 million people in a few short years, and now, the world is facing another pandemic. In December 2019, a novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused an international outbreak of a respiratory illness termed coronavirus disease 2019 (COVID-19) and rapidly spread to cause the worst pandemic since 1918. Recent clinical reports highlight an atypical presentation of acute respiratory distress syndrome (ARDS) in COVID-19 patients characterized by severe hypoxemia, an imbalance of the renin-angiotensin system, an increase in thrombogenic processes, and a cytokine release storm. These processes not only exacerbate lung injury but can also promote pulmonary vascular remodeling and vasoconstriction, which are hallmarks of pulmonary hypertension (PH). PH is a complication of ARDS that has received little attention; thus, we hypothesize that PH in COVID-19-induced ARDS represents an important target for disease amelioration. The mechanisms that can promote PH following SARS-CoV-2 infection are described. In this review article, we outline emerging mechanisms of pulmonary vascular dysfunction and outline potential treatment options that have been clinically tested.
Collapse
Affiliation(s)
- Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Divisions of Pulmonary, Critical Care and Sleep Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | | | - Steven P. Keller
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Sandeep Sahay
- Co-Director, Pulmonary Vascular Diseases Center, The Methodist Hospital, Houston, TX 77030, USA;
| | - Lavannya M. Pandit
- Michael E. DeBakey Veterans Affairs Medical Center, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Bindu Akkanti
- Divisions of Pulmonary, Critical Care and Sleep Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| |
Collapse
|
11
|
Pujhari S, Paul S, Ahluwalia J, Rasgon JL. Clotting disorder in severe acute respiratory syndrome coronavirus 2. Rev Med Virol 2020; 31:e2177. [PMID: 33022790 PMCID: PMC7646030 DOI: 10.1002/rmv.2177] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 01/20/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel human respiratory viral infection that has rapidly progressed into a pandemic, causing significant morbidity and mortality. Blood clotting disorders and acute respiratory failure have surfaced as the major complications among the severe cases of coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 infection. Remarkably, more than 70% of deaths related to COVID-19 are attributed to clotting-associated complications such as pulmonary embolism, strokes and multi-organ failure. These vascular complications have been confirmed by autopsy. This study summarizes the current understanding and explains the possible mechanisms of the blood clotting disorder, emphasizing the role of (1) hypoxia-related activation of coagulation factors like tissue factor, a significant player in triggering coagulation cascade, (2) cytokine storm and activation of neutrophils and the release of neutrophil extracellular traps and (3) immobility and ICU related risk factors.
Collapse
Affiliation(s)
- Sujit Pujhari
- Department of Pharmacology Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA.,Department of Entomology, The Center for Infectious Disease Dynamics, and the Huck Institutes of The Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Sanjeeta Paul
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jasmina Ahluwalia
- Departments of Hematology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Jason L Rasgon
- Department of Entomology, The Center for Infectious Disease Dynamics, and the Huck Institutes of The Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
12
|
Yang M, Deng C, Wu D, Zhong Z, Lv X, Huang Z, Lian N, Liu K, Zhang Q. The role of mononuclear cell tissue factor and inflammatory cytokines in patients with chronic thromboembolic pulmonary hypertension. J Thromb Thrombolysis 2017; 42:38-45. [PMID: 26667361 PMCID: PMC4877417 DOI: 10.1007/s11239-015-1323-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Thrombosis and inflammation are two major factors underlying chronic thromboembolic pulmonary hypertension (CTEPH). Tissue factor (TF), C-reactive protein (CRP), tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein 1 (MCP-1) may play critical roles in the process of CTEPH thrombosis and pulmonary vascular remodeling. Ten patients with a confirmed diagnosis of CTEPH, 20 patients with acute pulmonary thromboembolism and 15 patients with other types of pulmonary hypertension were enrolled in this study, along with 20 healthy subjects as the control group. The immunoturbidimetric method was used to determine the plasma content of CRP. The plasma levels of TNF-α, MCP-1, and TF antigen were measured by an enzyme-linked immunosorbent assay, and TF activity was measured by the chromogenic substrate method. Percoll density gradient centrifugation was used to separate peripheral blood mononuclear cells from plasma. The level of monocyte TF mRNA was examined by reverse transcriptase-polymerase chain reaction. The correlations between all indices described above were analyzed. In CTEPH patients, the expression of CRP, TNF-α, and MCP-1 was significantly higher than that in controls (P < 0.05). The levels of TF activity, TF antigen, and TF mRNA in monocyte cells were increased in CTEPH patients when compared with control subjects, but only the TF antigen and TF mRNA levels were significantly different (P < 0.05). In CTEPH patients, levels of CRP, MCP-1, and TNF-α significantly correlated with the level of TF antigen in plasma. TF gene expression was increased in patients with CTEPH, suggesting that blood-borne TF mainly comes from mononuclear cells. TF expression significantly correlated with levels of CRP, TNF-α and MCP-1. These factors may play an important role in the development of CTEPH via the inflammation–coagulation–thrombosis cycle.
Collapse
Affiliation(s)
- Minxia Yang
- Intensive Care Unit, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian Province, China
| | - Chaosheng Deng
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian Province, China.
| | - Dawen Wu
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian Province, China
| | - Zhanghua Zhong
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian Province, China
| | - Xiaoting Lv
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian Province, China
| | - Zhihua Huang
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian Province, China
| | - Ningfang Lian
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian Province, China
| | - Kaixiong Liu
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian Province, China
| | - Qiaoxian Zhang
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian Province, China
| |
Collapse
|
13
|
Deng C, Wu D, Yang M, Chen Y, Wang C, Zhong Z, Lian N, Chen H, Wu S. Expression of tissue factor and forkhead box transcription factor O-1 in a rat model for chronic thromboembolic pulmonary hypertension. J Thromb Thrombolysis 2017; 42:520-8. [PMID: 27542118 DOI: 10.1007/s11239-016-1413-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Few reports have examined tissue factor (TF) and forkhead box transcription factor O-1 (FoxO1) expression in chronic thromboembolic pulmonary hypertension (CTEPH) animal models. To investigate the role of TF and FoxO1 and their interactions during CTEPH pathogenesis in a rat model. Autologous blood clots were repeatedly injected into the pulmonary arteries through right jugular vein to induce a rat model of CTEPH. Hemodynamic parameters, histopathology, and TF and FoxO1expression levels were detected. The mean pulmonary arterial pressure (mPAP), pulmonary vascular resistance and vessel wall area/total area (WA/TA) ratio in the experiment group increased significantly than sham group (P < 0.05). The cardiac output in the 1-, 2-, and 4-week groups decreased significantly (P < 0.05) when compared to sham group. TF mRNA expression levels in the experiment group increased significantly than sham group (P < 0.05). FoxO1 mRNA and protein expression levels were lower in the experiment group than sham group (P < 0.05). The mPAP had a positive correlation with WA/TA ratio (r = 0.45, P = 0.01). TF mRNA expression had a positive correlation with WA/TA ratio (r = 0.374, P = 0.035) and a positive correlation with mPAP (r = 0.48, P= 0.005). FoxO1 mRNA expression had a negative correlation trend with the WA/TA ratio (r = -0.297, P = 0.099) and a negative correlation trend with mPAP (r = -0.34, P = 0.057). TF mRNA expression had a negative correlation with FoxO1 mRNA expression (r = -0.62, P < 0.001). A rat model of CTEPH can be successfully established by the injection of autologous blood clots into the pulmonary artery. TF and FoxO1 may play a key role in vascular remodeling during CTEPH pathogenesis.
Collapse
Affiliation(s)
- Chaosheng Deng
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China.
| | - Dawen Wu
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Minxia Yang
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Yunfei Chen
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Caiyun Wang
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Zhanghua Zhong
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Ningfang Lian
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Hua Chen
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Shuang Wu
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| |
Collapse
|
14
|
Deng C, Wu D, Yang M, Chen Y, Ding H, Zhong Z, Lian N, Zhang Q, Wu S, Liu K. The role of tissue factor and autophagy in pulmonary vascular remodeling in a rat model for chronic thromboembolic pulmonary hypertension. Respir Res 2016; 17:65. [PMID: 27234007 PMCID: PMC4884382 DOI: 10.1186/s12931-016-0383-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/24/2016] [Indexed: 02/03/2023] Open
Abstract
Background Few reports have examined tissue factor (TF) and autophagy expression in chronic pulmonary thromboembolic hypertension (CTEPH) animal models. Objectives: To investigate the role of tissue factor (TF), autophagy and their interactions during chronic thromboembolic pulmonary hypertension (CTEPH) pathogenesis in a rat model. Methods Autologous blood clots were repeatedly injected into the left jugular vein of rats with injecting endogenous fibrinolysis inhibitor tranexamic acid (TXA). Mean pulmonary arterial pressure (mPAP), histopathology and TF, Beclin-1 and microtubule-associated protein 1 light chain (LC3) expression levels were detected. Results The mPAP and vessel wall area/total area (WA/TA) ratio in the experiment group increased significantly (P < 0.05). TF mRNA and protein expression levels in the experiment group increased significantly (P < 0.05). Beclin-1 and LC3B mRNA and protein expression levels were lower in the experiment group (P < 0.05). The mPAP had a positive correlation with WA/TA ratio (r = 0.955, P < 0.05). Beclin-1 and LC3B protein expression had a negative correlation with the WA/TA ratio (r = -0.963, P < 0.05, r = -0.965, P < 0.05, respectively). TF protein expression had a negative correlation with both Beclin-1 and LC3B protein expression (r = -0.995, P <0.05, r = -0972, P < 0.05, respectively). Conclusions A rat model of CTEPH can be established by repeatedly introducing autologous blood clots into the pulmonary artery with injecting TXA. TF and autophagy may play a key role during CTEPH pathogenesis, especially in vascular remodeling.
Collapse
Affiliation(s)
- Chaosheng Deng
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350005, China.
| | - Dawen Wu
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350005, China
| | - Minxia Yang
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350005, China
| | - Yunfei Chen
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350005, China
| | - Haibo Ding
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350005, China
| | - Zhanghua Zhong
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350005, China
| | - Ningfang Lian
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350005, China
| | - Qiaoxian Zhang
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350005, China
| | - Shuang Wu
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350005, China
| | - Kaixiong Liu
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350005, China
| |
Collapse
|
15
|
Chang YT, Tseng CN, Tannenberg P, Eriksson L, Yuan K, de Jesus Perez VA, Lundberg J, Lengquist M, Botusan IR, Catrina SB, Tran PK, Hedin U, Tran-Lundmark K. Perlecan heparan sulfate deficiency impairs pulmonary vascular development and attenuates hypoxic pulmonary hypertension. Cardiovasc Res 2015; 107:20-31. [PMID: 25952902 DOI: 10.1093/cvr/cvv143] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 05/01/2015] [Indexed: 12/21/2022] Open
Abstract
AIMS Excessive vascular cell proliferation is an important component of pulmonary hypertension (PH). Perlecan is the major heparan sulfate (HS) proteoglycan in the vascular extracellular matrix. It binds growth factors, including FGF2, and either restricts or promotes cell proliferation. In this study, we have explored the effects of perlecan HS deficiency on pulmonary vascular development and in hypoxia-induced PH. METHODS AND RESULTS In normoxia, Hspg2(Δ3/Δ3) mice, deficient in perlecan HS, had reduced pericytes and muscularization of intra-acinar vessels. Pulmonary angiography revealed a peripheral perfusion defect. Despite these abnormalities, right ventricular systolic pressure (RVSP) and myocardial mass remained normal. After 4 weeks of hypoxia, increases in the proportion of muscularized vessels, RVSP, and right ventricular hypertrophy were significantly less in Hspg2(Δ3/Δ3) compared with wild type. The early phase of hypoxia induced a significantly lower increase in fibroblast growth factor receptor-1 (FGFR1) protein level and receptor phosphorylation, and reduced pulmonary artery smooth muscle cell (PASMC) proliferation in Hspg2(Δ3/Δ3). At 4 weeks, FGF2 mRNA and protein were also significantly reduced in Hspg2(Δ3/Δ3) lungs. Ligand and carbohydrate engagement assay showed that perlecan HS is required for HS-FGF2-FGFR1 ternary complex formation. In vitro, proliferation assays showed that PASMC proliferation is reduced by selective FGFR1 inhibition. PASMC adhesion to fibronectin was higher in Hspg2(Δ3/Δ3) compared with wild type. CONCLUSIONS Perlecan HS chains are important for normal vascular arborization and recruitment of pericytes to pulmonary vessels. Perlecan HS deficiency also attenuates hypoxia-induced PH, where the underlying mechanisms involve impaired FGF2/FGFR1 interaction, inhibition of PASMC growth, and altered cell-matrix interactions.
Collapse
Affiliation(s)
- Ya-Ting Chang
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Chi-Nan Tseng
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Philip Tannenberg
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Linnéa Eriksson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ke Yuan
- Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, USA Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Vinicio A de Jesus Perez
- Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, USA Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Johan Lundberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Mariette Lengquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | | | - Sergiu-Bogdan Catrina
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Phan-Kiet Tran
- Department of Cardiothoracic Surgery, Uppsala University, Uppsala, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Karin Tran-Lundmark
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
16
|
Simonetto DA, Yang HY, Yin M, de Assuncao TM, Kwon JH, Hilsher M, Pan S, Yang L, Bi Y, Beyder A, Cao S, Simari RD, Ehman R, Kamath PS, Shah VH. Chronic passive venous congestion drives hepatic fibrogenesis via sinusoidal thrombosis and mechanical forces. Hepatology 2015; 61:648-59. [PMID: 25142214 PMCID: PMC4303520 DOI: 10.1002/hep.27387] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 08/19/2014] [Indexed: 02/06/2023]
Abstract
UNLABELLED Chronic passive hepatic congestion (congestive hepatopathy) leads to hepatic fibrosis; however, the mechanisms involved in this process are not well understood. We developed a murine experimental model of congestive hepatopathy through partial ligation of the inferior vena cava (pIVCL). C57BL/6 and transgenic mice overexpressing tissue factor pathway inhibitor (SM22α-TFPI) were subjected to pIVCL or sham. Liver and blood samples were collected and analyzed in immunohistochemical, morphometric, real-time polymerase chain reaction, and western blot assays. Hepatic fibrosis and portal pressure were significantly increased after pIVCL concurrent with hepatic stellate cell (HSC) activation. Liver stiffness, as assessed by magnetic resonance elastography, correlated with portal pressure and preceded fibrosis in our model. Hepatic sinusoidal thrombosis as evidenced by fibrin deposition was demonstrated both in mice after pIVCL as well as in humans with congestive hepatopathy. Warfarin treatment and TFPI overexpression both had a protective effect on fibrosis development and HSC activation after pIVCL. In vitro studies show that congestion stimulates HSC fibronectin (FN) fibril assembly through direct effects of thrombi as well as by virtue of mechanical strain. Pretreatment with either Mab13 or Cytochalasin-D, to inhibit β-integrin or actin polymerization, respectively, significantly reduced fibrin and stretch-induced FN fibril assembly. CONCLUSION Chronic hepatic congestion leads to sinusoidal thrombosis and strain, which in turn promote hepatic fibrosis. These studies mechanistically link congestive hepatopathy to hepatic fibrosis.
Collapse
Affiliation(s)
| | - Hui-yin Yang
- Gastroenterology Research Unit, Mayo Clinic, Rochester, MN
,Chinese PLA General Hospital & Chinese PLA Medical School; Integrative Medical Center of the 302 Military Hospital, Beijing, People’s Republic of China
| | - Meng Yin
- Department of Radiology, Mayo Clinic, Rochester, MN
| | | | - Jung Hee Kwon
- Gastroenterology Research Unit, Mayo Clinic, Rochester, MN
| | - Moira Hilsher
- Department of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Shuchong Pan
- Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States
| | - Liu Yang
- Gastroenterology Research Unit, Mayo Clinic, Rochester, MN
| | - Yan Bi
- Gastroenterology Research Unit, Mayo Clinic, Rochester, MN
| | - Arthur Beyder
- Gastroenterology Research Unit, Mayo Clinic, Rochester, MN
| | - Sheng Cao
- Gastroenterology Research Unit, Mayo Clinic, Rochester, MN
| | - Robert D Simari
- Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States
| | | | | | - Vijay H Shah
- Gastroenterology Research Unit, Mayo Clinic, Rochester, MN
| |
Collapse
|
17
|
Lai N, Lade J, Leggett K, Yun X, Baksh S, Chau E, Crow MT, Sidhaye V, Wang J, Shimoda LA. The aquaporin 1 C-terminal tail is required for migration and growth of pulmonary arterial myocytes. Am J Respir Cell Mol Biol 2014; 50:1010-20. [PMID: 24328827 DOI: 10.1165/rcmb.2013-0374oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pulmonary arterial smooth muscle cell (PASMC) proliferation and migration are important contributors to the vascular remodeling that occurs during development of pulmonary hypertension. We previously demonstrated that aquaporin (AQP)1, a member of the water channel family of proteins, was expressed in PASMCs and was necessary for hypoxia-induced migration; however, the mechanism by which AQP1 controls this response is unclear. The C-terminal tail of AQP1 contains putative calcium (EF-hand) and protein binding sites. Thus, we wanted to explore whether the C-terminal tail or the EF-hand motif of AQP1 was required for migration and proliferation. Rat PASMCs were isolated from distal pulmonary arteries, and proliferation and migration were measured using BrdU incorporation and transwell filters, respectively. To deplete AQP1, PASMCs were transfected with AQP1 small interference RNA (siRNA) or nontargeting siRNA. Knockdown of AQP1 reduced basal proliferation and hypoxia-induced migration and proliferation in PASMCs. In subsequent experiments, wild-type AQP1, AQP1 lacking the entire cytoplasmic C-terminal tail, or AQP1 with a mutation in the EF-hand motif were expressed in PASMCs using adenoviral constructs. For all AQP1 constructs, infection increased AQP1 protein levels, water permeability, and the change in cell volume induced by hypotonic challenge. Infection with wild-type and EF-hand mutated AQP1, but not C-terminal-deleted AQP1, increased PASMC migration and proliferation. Our results suggest that AQP1 controls proliferation and migration in PASMCs and that the mechanism requires the C-terminal tail of the protein but is independent of water transport or the EF-hand motif.
Collapse
Affiliation(s)
- Ning Lai
- 1 Guangzhou Institute of Respiratory Diseases, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China; and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Antoniak S, Sparkenbaugh E, Pawlinski R. Tissue factor, protease activated receptors and pathologic heart remodelling. Thromb Haemost 2014; 112:893-900. [PMID: 25104210 DOI: 10.1160/th14-03-0243] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/30/2014] [Indexed: 12/13/2022]
Abstract
Tissue factor is the primary initiator of coagulation cascade and plays an essential role in haemostasis and thrombosis. In addition, tissue factor and coagulation proteases contribute to many cellular responses via activation of protease activated receptors. The heart is an organ with high levels of constitutive tissue factor expression. This review focuses on the role of tissue factor, coagulation proteases and protease activated receptors in heart haemostasis and the pathological heart remodelling associated with myocardial infarction, viral myocarditis and hypertension.
Collapse
Affiliation(s)
| | | | - Rafal Pawlinski
- Rafal Pawlinski, PhD, Division of Hematology/Oncology, Department of Medicine, McAllister Heart Institute, University of North Carolina, 320A Mary Ellen Jones Bldg, 98 Manning Drive, Chapel Hill, NC 27599, USA, Tel: 919 843 8387, Fax: 919 843 4896, E-mail:
| |
Collapse
|
19
|
Yan J, Chen R, Liu P, Gu Y. Docosahexaenoic acid inhibits development of hypoxic pulmonary hypertension: In vitro and in vivo studies. Int J Cardiol 2013; 168:4111-6. [DOI: 10.1016/j.ijcard.2013.07.073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 07/02/2013] [Accepted: 07/07/2013] [Indexed: 01/28/2023]
|
20
|
Nickel KF, Laux V, Heumann R, von Degenfeld G. Thrombin has biphasic effects on the nitric oxide-cGMP pathway in endothelial cells and contributes to experimental pulmonary hypertension. PLoS One 2013; 8:e63504. [PMID: 23785394 PMCID: PMC3681801 DOI: 10.1371/journal.pone.0063504] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 04/06/2013] [Indexed: 01/29/2023] Open
Abstract
Background A potential role for coagulation factors in pulmonary arterial hypertension has been recently described, but the mechanism of action is currently not known. Here, we investigated the interactions between thrombin and the nitric oxide-cGMP pathway in pulmonary endothelial cells and experimental pulmonary hypertension. Principal Findings Chronic treatment with the selective thrombin inhibitor melagatran (0.9 mg/kg daily via implanted minipumps) reduced right ventricular hypertrophy in the rat monocrotaline model of experimental pulmonary hypertension. In vitro, thrombin was found to have biphasic effects on key regulators of the nitric oxide-cGMP pathway in endothelial cells (HUVECs). Acute thrombin stimulation led to increased expression of the cGMP-elevating factors endothelial nitric oxide synthase (eNOS) and soluble guanylate cyclase (sGC) subunits, leading to increased cGMP levels. By contrast, prolonged exposition of pulmonary endothelial cells to thrombin revealed a characteristic pattern of differential expression of the key regulators of the nitric oxide-cGMP pathway, in which specifically the factors contributing to cGMP elevation (eNOS and sGC) were reduced and the cGMP-hydrolyzing PDE5 was elevated (qPCR and Western blot). In line with the differential expression of key regulators of the nitric oxide-cGMP pathway, a reduction of cGMP by prolonged thrombin stimulation was found. The effects of prolonged thrombin exposure were confirmed in endothelial cells of pulmonary origin (HPAECs and HPMECs). Similar effects could be induced by activation of protease-activated receptor-1 (PAR-1). Conclusion These findings suggest a link between thrombin generation and cGMP depletion in lung endothelial cells through negative regulation of the nitric oxide-cGMP pathway, possibly mediated via PAR-1, which could be of relevance in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Katrin F. Nickel
- Cardiology Research, Bayer HealthCare AG, Wuppertal, Germany
- Department of Molecular Medicine and Surgery, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Volker Laux
- Cardiology Research, Bayer HealthCare AG, Wuppertal, Germany
| | - Rolf Heumann
- Biochemistry II – Molecular Neurobiochemistry, Ruhr-University Bochum, Bochum, Germany
| | - Georges von Degenfeld
- Common Mechanism Research, Bayer HealthCare AG, Wuppertal, Germany, and Institute for Research in Operative Medicine, University of Witten/Herdecke, Cologne, Germany
- * E-mail:
| |
Collapse
|
21
|
Holroyd EW, Delacroix S, Larsen K, Harbuzariu A, Psaltis PJ, Wang L, Pan S, White TA, Witt TA, Kleppe LS, Mueske CS, Mukhopadhyay D, Simari RD. Tissue factor pathway inhibitor blocks angiogenesis via its carboxyl terminus. Arterioscler Thromb Vasc Biol 2012; 32:704-11. [PMID: 22223730 DOI: 10.1161/atvbaha.111.243733] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Tissue factor pathway inhibitor (TFPI) is the primary regulator of the tissue factor (TF) coagulation pathway. As such, TFPI may regulate the proangiogenic effects of TF. TFPI may also affect angiogenesis independently of TF, through sequences within its polybasic carboxyl terminus (TFPI C terminus [TFPIct]). We aimed to determine the effects of TFPI on angiogenesis and the role of TFPIct. METHODS AND RESULTS Transgenic overexpression of TFPI attenuated angiogenesis in the murine hindlimb ischemia model and an aortic sprout assay. In vitro, TFPI inhibited endothelial cell migration. Peptides within the human TFPIct inhibited endothelial cell cord formation and migration in response to vascular endothelial growth factor (VEGF) 165 but not VEGF121. Furthermore, exposure to human TFPIct inhibited the phosphorylation of VEGF receptor 2 at residue Lys951, a residue known to be critical for endothelial cell migration. Finally, systemic delivery of a murine TFPIct peptide inhibited angiogenesis in the hindlimb model. CONCLUSION These data demonstrate an inhibitory role for TFPI in angiogenesis that is, in part, mediated through peptides within its carboxyl terminus. In addition to its known role as a TF antagonist, TFPI, via its carboxyl terminus, may regulate angiogenesis by directly blocking VEGF receptor 2 activation and attenuating the migratory capacity of endothelial cells.
Collapse
Affiliation(s)
- Eric W Holroyd
- Division of Cardiovascular Diseases, Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Holroyd EW, White TA, Pan S, Simari RD. Tissue factor pathway inhibitor as a multifunctional mediator of vascular structure. Front Biosci (Elite Ed) 2012; 4:392-400. [PMID: 22201881 PMCID: PMC3904648 DOI: 10.2741/e386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Tissue factor pathway inhibitor (TFPI) is a potent regulator of tissue factor - factor VII-dependent activation of the tissue factor pathway. TFPI is a serine protease inhibitor that contains three Kunitz domains and a basic carboxyl terminus. TFPI is primarily expressed on endothelial cells, and murine models have demonstrated that its expression regulates vascular thrombosis. The localization of TFPI expression and the requirement for TFPI in development suggest a potential role in regulating vascular structure. Data from animal studies suggest that vascular expression of TFPI inhibits pathologic vascular remodeling and inhibits angiogenesis. The mechanism for these effects is diverse and includes tissue factor and factor Xa-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Eric W Holroyd
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
23
|
Broze GJ, Girard TJ. Tissue factor pathway inhibitor: structure-function. Front Biosci (Landmark Ed) 2012; 17:262-80. [PMID: 22201743 DOI: 10.2741/3926] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
TFPI is a multivalent, Kunitz-type proteinase inhibitor, which, due to alternative mRNA splicing, is transcribed in three isoforms: TFPIalpha, TFPIdelta, and glycosyl phosphatidyl inositol (GPI)-anchored TFPIbeta. The microvascular endothelium is thought to be the principal source of TFPI and TFPIalpha is the predominant isoform expressed in humans. TFPIalpha, apparently attached to the surface of the endothelium in an indirect GPI-anchor-dependent fashion, represents the greatest in vivo reservoir of TFPI. The Kunitz-2 domain of TFPI is responsible for factor Xa inhibition and the Kunitz-1 domain is responsible for factor Xa-dependent inhibition of the factor VIIa/tissue factor catalytic complex. The anticoagulant activity of TFPI in one-stage coagulation assays is due mainly to its inhibition of factor Xa through a process that is enhanced by protein S and dependent upon the Kunitz-3 and carboxyterminal domains of full-length TFPIalpha. Carboxyterminal truncated forms of TFPI as well as TFPIalpha in plasma, however, inhibit factor VIIa/tissue factor in two-stage assay systems. Studies in gene-disrupted mice demonstrate the physiological importance of TFPI.
Collapse
Affiliation(s)
- George J Broze
- Division of Hematology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
24
|
Bauer EM, Zheng H, Comhair S, Erzurum S, Billiar TR, Bauer PM. Complement C3 deficiency attenuates chronic hypoxia-induced pulmonary hypertension in mice. PLoS One 2011; 6:e28578. [PMID: 22194859 PMCID: PMC3237464 DOI: 10.1371/journal.pone.0028578] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 11/10/2011] [Indexed: 01/13/2023] Open
Abstract
Background Evidence suggests a role of both innate and adaptive immunity in the development of pulmonary arterial hypertension. The complement system is a key sentry of the innate immune system and bridges innate and adaptive immunity. To date there are no studies addressing a role for the complement system in pulmonary arterial hypertension. Methodology/Principal Findings Immunofluorescent staining revealed significant C3d deposition in lung sections from IPAH patients and C57Bl6/J wild-type mice exposed to three weeks of chronic hypoxia to induce pulmonary hypertension. Right ventricular systolic pressure and right ventricular hypertrophy were increased in hypoxic vs. normoxic wild-type mice, which were attenuated in C3−/− hypoxic mice. Likewise, pulmonary vascular remodeling was attenuated in the C3−/− mice compared to wild-type mice as determined by the number of muscularized peripheral arterioles and morphometric analysis of vessel wall thickness. The loss of C3 attenuated the increase in interleukin-6 and intracellular adhesion molecule-1 expression in response to chronic hypoxia, but not endothelin-1 levels. In wild-type mice, but not C3−/− mice, chronic hypoxia led to platelet activation as assessed by bleeding time, and flow cytometry of platelets to determine cell surface P-selectin expression. In addition, tissue factor expression and fibrin deposition were increased in the lungs of WT mice in response to chronic hypoxia. These pro-thrombotic effects of hypoxia were abrogated in C3−/− mice. Conclusions Herein, we provide compelling genetic evidence that the complement system plays a pathophysiologic role in the development of PAH in mice, promoting pulmonary vascular remodeling and a pro-thrombotic phenotype. In addition we demonstrate C3d deposition in IPAH patients suggesting that complement activation plays a role in the development of PAH in humans.
Collapse
Affiliation(s)
- Eileen M. Bauer
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Han Zheng
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Suzy Comhair
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Serpil Erzurum
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Philip M. Bauer
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
25
|
Ghosh S, Paez-Cortez JR, Boppidi K, Vasconcelos M, Roy M, Cardoso W, Ai X, Fine A. Activation dynamics and signaling properties of Notch3 receptor in the developing pulmonary artery. J Biol Chem 2011; 286:22678-87. [PMID: 21536678 PMCID: PMC3121411 DOI: 10.1074/jbc.m111.241224] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 04/20/2011] [Indexed: 11/06/2022] Open
Abstract
Notch3 signaling is fundamental for arterial specification of systemic vascular smooth muscle cells (VSMCs). However, the developmental role and signaling properties of the Notch3 receptor in the mouse pulmonary artery remain unknown. Here, we demonstrate that Notch3 is expressed selectively in pulmonary artery VSMCs, is activated from late fetal to early postnatal life, and is required to maintain the morphological characteristics and smooth muscle gene expression profile of the pulmonary artery after birth. Using a conditional knock-out mouse model, we show that Notch3 receptor activation in VSMCs is Jagged1-dependent. In vitro VSMC lentivirus-mediated Jagged1 knockdown, confocal localization analysis, and co-culture experiments revealed that Notch3 activation is cell-autonomous and occurs through the physical engagement of Notch3 and VSMC-derived Jagged1 in the interior of the same cell. Although the current models of mammalian Notch signaling involve a two-cell system composed of a signal-receiving cell that expresses a Notch receptor on its surface and a neighboring signal-sending cell that provides membrane-bound activating ligand, our data suggest that pulmonary artery VSMC Notch3 activation is cell-autonomous. This unique mechanism of Notch activation may play an important role in the maturation of the pulmonary artery during the transition to air breathing.
Collapse
Affiliation(s)
- Shamik Ghosh
- From the Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts 02118, and
| | - Jesus R. Paez-Cortez
- From the Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts 02118, and
| | - Karthik Boppidi
- From the Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts 02118, and
| | - Michelle Vasconcelos
- From the Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts 02118, and
| | - Monideepa Roy
- the Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Wellington Cardoso
- From the Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts 02118, and
| | - Xingbin Ai
- From the Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts 02118, and
| | - Alan Fine
- From the Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts 02118, and
| |
Collapse
|