1
|
Jagirdar RM, Grammatikopoulos A, Ioannou M, Solenov E, Gourgoulianis KI, Hatzoglou C, Giannou AD, Mercanoglu B, Zarogiannis SG. Short Term Exposure of Sheep Tracheal Epithelium to Cigarette Smoke Extract Reduces ENaC Current: A Pilot Study. In Vivo 2024; 38:2294-2299. [PMID: 39187341 PMCID: PMC11363775 DOI: 10.21873/invivo.13694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND/AIM Cigarette smoke has been shown to induce a phenotype in humans known as "acquired cystic fibrosis". This occurs because the cystic fibrosis transmembrane conductance regulator (CFTR) functions are impaired systemically due to the deleterious effects of smoke components. Elucidation of cigarette smoke effects on the tracheal epithelium is important. The aim of this study was to develop an ex vivo sheep tracheal model to investigate tracheal ion function. In this model, the epithelial sodium channel (ENaC) is inhibited after exposure to cigarette smoke extract (CSE) as a proof of principle. MATERIALS AND METHODS Tracheas were isolated from healthy sheep and the tracheal epithelium was surgically excised. Tissues were mounted in Ussing chambers and the short circuit current (Isc) was measured after incubation with 5% CSE in PBS or PBS alone for 30 min. The function of ENaC was investigated by the addition of amiloride (10-5M) apically. Western blot analysis was performed to assess differences in ENaC quantity after CSE exposure. Some specimens were stained with H&E for detection of histological alterations. RESULTS The amiloride effect on normal epithelium led to a significant decrease in Isc [ΔI=33±5.92 μA/cm2; p<0.001 versus control experiments (ΔI=1.44±0.71 μA/cm2)]. After incubation with CSE, ENaC Isc was significantly reduced (ΔI=14.80±1.96 μA/cm2; p<0.001). No differences in αENaC expression were observed between CSE-exposed and normal tracheal epithelium. Histological images post CSE incubation revealed decreases in the height of the epithelium, with basal cell hyperplasia and loss of ciliated cells. CONCLUSION Reduced ENaC inhibition by amiloride after CSE incubation could be due to alterations in the tracheal epithelium.
Collapse
Affiliation(s)
- Rajesh M Jagirdar
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
| | | | - Maria Ioannou
- Department of Histopathology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Evgeniy Solenov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | | | - Chrissi Hatzoglou
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Anastasios D Giannou
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Baris Mercanoglu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sotirios G Zarogiannis
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece;
| |
Collapse
|
2
|
Rathnayake SNH, Ditz B, van Nijnatten J, Sadaf T, Hansbro PM, Brandsma CA, Timens W, van Schadewijk A, Hiemstra PS, ten Hacken NHT, Oliver B, Kerstjens HAM, van den Berge M, Faiz A. Smoking induces shifts in cellular composition and transcriptome within the bronchial mucus barrier. Respirology 2023; 28:132-142. [PMID: 36414410 PMCID: PMC10947540 DOI: 10.1111/resp.14401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/07/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND OBJECTIVE Smoking disturbs the bronchial-mucus-barrier. This study assesses the cellular composition and gene expression shifts of the bronchial-mucus-barrier with smoking to understand the mechanism of mucosal damage by cigarette smoke exposure. We explore whether single-cell-RNA-sequencing (scRNA-seq) based cellular deconvolution (CD) can predict cell-type composition in RNA-seq data. METHODS RNA-seq data of bronchial biopsies from three cohorts were analysed using CD. The cohorts included 56 participants with chronic obstructive pulmonary disease [COPD] (38 smokers; 18 ex-smokers), 77 participants without COPD (40 never-smokers; 37 smokers) and 16 participants who stopped smoking for 1 year (11 COPD and 5 non-COPD-smokers). Differential gene expression was used to investigate gene expression shifts. The CD-derived goblet cell ratios were validated by correlating with staining-derived goblet cell ratios from the COPD cohort. Statistics were done in the R software (false discovery rate p-value < 0.05). RESULTS Both CD methods indicate a shift in bronchial-mucus-barrier cell composition towards goblet cells in COPD and non-COPD-smokers compared to ex- and never-smokers. It shows that the effect was reversible within a year of smoking cessation. A reduction of ciliated and basal cells was observed with current smoking, which resolved following smoking cessation. The expression of mucin and sodium channel (ENaC) genes, but not chloride channel genes, were altered in COPD and current smokers compared to never smokers or ex-smokers. The goblet cell-derived staining scores correlate with CD-derived goblet cell ratios. CONCLUSION Smoking alters bronchial-mucus-barrier cell composition, transcriptome and increases mucus production. This effect is partly reversible within a year of smoking cessation. CD methodology can predict goblet-cell percentages from RNA-seq.
Collapse
Affiliation(s)
- Senani N. H. Rathnayake
- University of Technology Sydney, Respiratory Bioinformatics and Molecular Biology (RBMB), School of Life SciencesSydneyNew South WalesAustralia
- The University of Sydney, Respiratory Cellular and Molecular Biology (RCMB), Woolcock Institute of Medical ResearchSydneyNew South WalesAustralia
| | - Benedikt Ditz
- Department of Pulmonary DiseasesUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPDGroningenthe Netherlands
| | - Jos van Nijnatten
- University of Technology Sydney, Respiratory Bioinformatics and Molecular Biology (RBMB), School of Life SciencesSydneyNew South WalesAustralia
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPDGroningenthe Netherlands
- Department of Pathology & Medical BiologyUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
| | - Tayyaba Sadaf
- University of Technology Sydney, Respiratory Bioinformatics and Molecular Biology (RBMB), School of Life SciencesSydneyNew South WalesAustralia
- Centre for InflammationCentenary Institute, and the University of Technology Sydney, Faculty of ScienceSydneyNew South WalesAustralia
| | - Philip M. Hansbro
- Centre for InflammationCentenary Institute, and the University of Technology Sydney, Faculty of ScienceSydneyNew South WalesAustralia
| | - Corry A. Brandsma
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPDGroningenthe Netherlands
- Department of Pathology & Medical BiologyUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
| | - Wim Timens
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPDGroningenthe Netherlands
- Department of Pathology & Medical BiologyUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
| | | | - Peter S. Hiemstra
- Department of PulmonologyLeiden University Medical CenterLeidenthe Netherlands
| | - Nick H. T. ten Hacken
- Department of Pulmonary DiseasesUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPDGroningenthe Netherlands
| | - Brian Oliver
- The University of Sydney, Respiratory Cellular and Molecular Biology (RCMB), Woolcock Institute of Medical ResearchSydneyNew South WalesAustralia
| | - Huib A. M. Kerstjens
- Department of Pulmonary DiseasesUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPDGroningenthe Netherlands
| | - Maarten van den Berge
- Department of Pulmonary DiseasesUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPDGroningenthe Netherlands
| | - Alen Faiz
- University of Technology Sydney, Respiratory Bioinformatics and Molecular Biology (RBMB), School of Life SciencesSydneyNew South WalesAustralia
- The University of Sydney, Respiratory Cellular and Molecular Biology (RCMB), Woolcock Institute of Medical ResearchSydneyNew South WalesAustralia
- Department of Pulmonary DiseasesUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
| |
Collapse
|
3
|
Chen W, Lamb TM, Gomer RH. TGF-β1 increases sialidase 3 expression in human lung epithelial cells by decreasing its degradation and upregulating its translation. Exp Lung Res 2020; 46:75-80. [PMID: 32102576 DOI: 10.1080/01902148.2020.1733135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Purpose: We previously found extensive desialylation of glycoconjugates and upregulation of the sialidase enzyme NEU3 in fibrotic lesions in human and mouse lungs. However, studies using microarray analysis of whole lung tissue mRNA and single cell RNA-seq found no significant difference in levels of NEU3 mRNA between IPF patients and controls. This study aimed to elucidate how NEU3 was upregulated in fibrotic lungs.Materials and methods: Transforming growth factor-β1 (TGF-β1), a key driver of fibrosis, was added to A549 human alveolar basal epithelial adenocarcinoma cells and human small airway epithelial cells (HSAEpC). NEU3 expression in A549 cells and HSAEpC was detected by immunofluorescence staining. NEU3 translation and degradation were assessed by polysome profiling (polysomes efficiently translate mRNAs; monosomes poorly translate mRNAs) and cycloheximide chase after treating cells with or without TGF-β1 for 48 h.Results: TGF-β1 increased NEU3 expression and secretion in A549 cells and HSAEpC but did not change total (nuclear + cytosolic) NEU3 mRNA levels. TGF-β1 decreased the degradation rate of NEU3 in A549 cells. TGF-β1 decreased NEU3 mRNA levels in monosomes and increased NEU3 mRNA level in polysomes.Conclusion: TGF-β1 upregulates levels of NEU3 in epithelial cells by both decreasing NEU3 degradation and by increasing the translation of NEU3 mRNA, explaining the apparent paradox of high levels of NEU3 protein in pulmonary fibrosis without a concomitant increase in the expression of NEU3 mRNA.
Collapse
Affiliation(s)
- Wensheng Chen
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Teresa M Lamb
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
4
|
Fang Q, You M, Xu W, Yang W, Gong Y, Dong X. pre-B cell colony enhancing factor negatively regulates Na + and fluid transport in lung epithelial cells. Am J Transl Res 2018; 10:2047-2054. [PMID: 30093942 PMCID: PMC6079128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/06/2018] [Indexed: 06/08/2023]
Abstract
UNLABELLED This study was undertaken to investigate the effect of pre-B cell colony enhancing factor (PBEF) on Na+ and fluid transport in lung epithelial cells. METHODS Type 1 and 2 cells were isolated from lung epithelium. After hypoxia reoxygenation treatment, the primary cell cultures were transfected with a plasmid over-expressing PBEF. Sodium-potassium ATPase (NKA), epithelial sodium channel (ENaC), type I cell marker rT140, surfactant protein (SP) and PBEF protein were analyzed at mRNA and protein levels using PCR and Western blot analysis. Immunofluorescence assays showed type 1 and 2 cells were successfully isolated. After the transfection with PBEF over-expression vector, PBEF and RTI40 levels were increased, while ENaC and SP as well as NKA, were decreased in both cells. It is clear that PBEF negatively regulates the expression of ENaC and NKA in the Na+ and fluid transport in lung epithelial cells.
Collapse
Affiliation(s)
- Qiao Fang
- Department of Cardiac Macrovascular Surgery, The Second Affiliated Hospital of Nanchang University Nanchang 330006, China
| | - Miaomiao You
- Department of Cardiac Macrovascular Surgery, The Second Affiliated Hospital of Nanchang University Nanchang 330006, China
| | - Weichang Xu
- Department of Cardiac Macrovascular Surgery, The Second Affiliated Hospital of Nanchang University Nanchang 330006, China
| | - Wei Yang
- Department of Cardiac Macrovascular Surgery, The Second Affiliated Hospital of Nanchang University Nanchang 330006, China
| | - Yi Gong
- Department of Cardiac Macrovascular Surgery, The Second Affiliated Hospital of Nanchang University Nanchang 330006, China
| | - Xiao Dong
- Department of Cardiac Macrovascular Surgery, The Second Affiliated Hospital of Nanchang University Nanchang 330006, China
| |
Collapse
|
5
|
Downs CA, Johnson NM, Coca C, Helms MN. Angiotensin II regulates δ-ENaC in human umbilical vein endothelial cells. Microvasc Res 2018; 116:26-33. [DOI: 10.1016/j.mvr.2017.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/19/2017] [Accepted: 10/15/2017] [Indexed: 11/24/2022]
|
6
|
Downs CA, Johnson NM, Tsaprailis G, Helms MN. RAGE-induced changes in the proteome of alveolar epithelial cells. J Proteomics 2018; 177:11-20. [PMID: 29448054 DOI: 10.1016/j.jprot.2018.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/28/2018] [Accepted: 02/05/2018] [Indexed: 12/14/2022]
Abstract
The receptor for advanced glycation end-products (RAGE) is a pattern recognition receptor and member of the immunoglobulin superfamily. RAGE is constitutively expressed in the distal lung where it co-localizes with the alveolar epithelium; RAGE expression is otherwise minimal or absent, except with disease. This suggests RAGE plays a role in lung physiology and pathology. We used proteomics to identify and characterize the effects of RAGE on rat alveolar epithelial (R3/1) cells. LC-MS/MS identified 177 differentially expressed proteins and the PANTHER Classification System further segregated proteins. Proteins involved in gene transcription (RNA and mRNA splicing, mRNA processing) and transport (protein, intracellular protein) were overrepresented; genes involved in a response to stimulus were underrepresented. Immune system processes and response to stimuli were downregulated with RAGE knockdown. Western blot confirmed RAGE-dependent changes in protein expression for NFκB and NLRP3 that was functionally supported by a reduction in IL-1β and phosphorylated p65. We also assessed RAGE's effect on redox regulation and report that RAGE knockdown attenuated oxidant production, decreased protein oxidation, and increased reduced thiol pools. Collectively the data suggest that RAGE is a critical regulator of epithelial cell response and has implications for our understanding of lung disease, specifically acute lung injury. SIGNIFICANCE STATEMENT In the present study, we undertook the first proteomic evaluation of RAGE-dependent processes in alveolar epithelial cells. The alveolar epithelium is a primary target during acute lung injury, and our data support a role for RAGE in gene transcription, protein transport, and response to stimuli. More over our data suggest that RAGE is a critical driver of redox regulation in the alveolar epithelium. The conclusions of the present work assist to unravel the molecular events that underlie the function of RAGE in alveolar epithelial cells and have implications for our understanding of RAGE signaling during lung injury. Our study was the first proteomic comparison showing the effects of RAGE activation from alveolar epithelial cells that constitutively express RAGE and these results can affect a wide field of lung biology, pulmonary therapeutics, and proteomics.
Collapse
Affiliation(s)
- Charles A Downs
- Biobehavioral Health Science Division, College of Nursing & Division of Translational and Regenerative Medicine, College of Medicine, The University of Arizona, Tucson, AZ, United States.
| | - Nicholle M Johnson
- Biobehavioral Health Science Division, College of Nursing & Division of Translational and Regenerative Medicine, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - George Tsaprailis
- Arizona Research Laboratories, The University of Arizona, Tucson, AZ, United States
| | - My N Helms
- Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
7
|
Li Y, Chang J, Cui Y, Zhao R, Ding Y, Hou Y, Zhou Z, Ji HL, Nie H. Novel mechanisms for crotonaldehyde-induced lung edema. Oncotarget 2017; 8:83509-83522. [PMID: 29137360 PMCID: PMC5663532 DOI: 10.18632/oncotarget.17840] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/25/2017] [Indexed: 12/13/2022] Open
Abstract
Background Crotonaldehyde is a highly noxious α,β-unsaturated aldehyde in cigarette smoke that causes edematous acute lung injury. Objective To understand how crotonaldehyde impairs lung function, we examined its effects on human epithelial sodium channels (ENaC), which are major contributors to alveolar fluid clearance. Methods We studied alveolar fluid clearance in C57 mice and ENaC activity was examined in H441 cells. Expression of α- and γ-ENaC was measured at protein and mRNA levels by western blot and real-time PCR, respectively. Intracellular ROS levels were detected by the dichlorofluorescein assay. Heterologous αβγ-ENaC activity was observed in an oocyte model. Results Our results showed that crotonaldehyde reduced transalveolar fluid clearance in mice. Furthermore, ENaC activity in H441 cells was inhibited by crotonaldehyde dose-dependently. Expression of α- and γ-subunits of ENaC was decreased at the protein and mRNA level in H441 cells exposed to crotonaldehyde, which was probably mediated by the increase in phosphorylated extracellular signal-regulated protein kinases 1 and 2. ROS levels increased time-dependently in cells exposed to crotonaldehyde. Heterologous αβγ-ENaC activity was rapidly eliminated by crotonaldehyde. Conclusion Our findings suggest that crotonaldehyde causes edematous acute lung injury by eliminating ENaC activity at least partly via facilitating the phosphorylation of extracellular signal-regulated protein kinases 1 and 2 signal molecules. Long-term exposure may decrease the expression of ENaC subunits and damage the cell membrane integrity, as well as increase the levels of cellular ROS products.
Collapse
Affiliation(s)
- Yue Li
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang 110122, Liaoning, China
| | - Jianjun Chang
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang 110122, Liaoning, China
| | - Yong Cui
- Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Runzhen Zhao
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas 75708, USA
| | - Yan Ding
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang 110122, Liaoning, China
| | - Yapeng Hou
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang 110122, Liaoning, China
| | - Zhiyu Zhou
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang 110122, Liaoning, China
| | - Hong-Long Ji
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas 75708, USA.,Texas Lung Injury Institute, University of Texas Health Northeast, Tyler, Texas 75708, USA
| | - Hongguang Nie
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang 110122, Liaoning, China
| |
Collapse
|
8
|
Zhang JL, Zhuo XJ, Lin J, Luo LC, Ying WY, Xie X, Zhang HW, Yang JX, Li D, Gao Smith F, Jin SW. Maresin1 stimulates alveolar fluid clearance through the alveolar epithelial sodium channel Na,K-ATPase via the ALX/PI3K/Nedd4-2 pathway. J Transl Med 2017; 97:543-554. [PMID: 28218740 DOI: 10.1038/labinvest.2016.150] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 11/26/2016] [Accepted: 12/06/2016] [Indexed: 12/31/2022] Open
Abstract
Maresin1 (MaR1) is a new docosahexaenoic acid-derived pro-resolving agent that promotes the resolution of inflammation. In this study, we sought to investigate the effect and underlining mechanisms of MaR1 in modulating alveolar fluid clearance (AFC) on LPS-induced acute lung injury. MaR1 was injected intravenously or administered by instillation (200 ng/kg) 8 h after LPS (14 mg/kg) administration and AFC was measured in live rats. In primary rat alveolar type II epithelial cells, MaR1 (100 nM) was added to the culture medium with lipopolysaccharide for 6 h. MaR1 markedly stimulated AFC in LPS-induced lung injury, with the outcome of decreased pulmonary edema and lung injury. In addition, rat lung tissue protein was isolated after intervention, and we found MaR1 improved epithelial sodium channel (ENaC), Na,K-adenosine triphosphatase (ATPase) protein expression and Na,K-ATPase activity. MaR1 down-regulated Nedd4-2 protein expression though PI3k/Akt but not though PI3k/SGK1 pathway in vivo. In primary rat alveolar type II epithelial cells stimulated with LPS, MaR1-upregulated ENaC and Na,K-ATPase protein abundance in the plasma membrane. Finally, the lipoxin A4 Receptor inhibitor (BOC-2) and PI3K inhibitor (LY294002) not only blocked MaR1's effects on cAMP/cGMP, the expression of phosphorylated Akt and Nedd4-2, but also inhibited the effect of MaR1 on AFC in vivo. In conclusion, MaR1 stimulates AFC through a mechanism partly dependent on alveolar epithelial ENaC and Na,K-ATPase activation via the ALX/PI3K/Nedd4-2 signaling pathway. Our findings reveal a novel mechanism for pulmonary edema fluid reabsorption and MaR1 may provide a new therapy for the resolution of ALI/ARDS.
Collapse
Affiliation(s)
- Jun-Li Zhang
- Department of Anesthesia and Critical Care, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Xiao-Jun Zhuo
- Department of Anesthesia and Critical Care, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Jing Lin
- Department of Anesthesia and Critical Care, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Ling-Chun Luo
- Department of Anesthesia and Critical Care, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Wei-Yang Ying
- Department of Anesthesia and Critical Care, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Xiang Xie
- Department of Anesthesia and Critical Care, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Hua-Wei Zhang
- Department of Anesthesia and Critical Care, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Jing-Xiang Yang
- Department of Anesthesia and Critical Care, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Dan Li
- Department of Anesthesia and Critical Care, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Fang Gao Smith
- Department of Anesthesia and Critical Care, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China.,Academic Department of Anesthesia, Critical Care, Pain and Resuscitation, Birmingham Heartlands Hospital, Heart of England NHS Foundation Trust, Birmingham, UK
| | - Sheng-Wei Jin
- Department of Anesthesia and Critical Care, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
9
|
Pharmacological and genetic reappraisals of protease and oxidative stress pathways in a mouse model of obstructive lung diseases. Sci Rep 2016; 6:39305. [PMID: 27982104 PMCID: PMC5159865 DOI: 10.1038/srep39305] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/22/2016] [Indexed: 01/01/2023] Open
Abstract
Protease-antiprotease imbalance and oxidative stress are considered to be major pathophysiological hallmarks of severe obstructive lung diseases including chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF), but limited information is available on their direct roles in the regulation of pulmonary phenotypes. Here, we utilized βENaC-transgenic (Tg) mice, the previously established mouse model of severe obstructive lung diseases, to produce lower-mortality but pathophysiologically highly useful mouse model by backcrossing the original line with C57/BL6J mice. C57/BL6J-βENaC-Tg mice showed higher survival rates and key pulmonary abnormalities of COPD/CF, including mucous hypersecretion, inflammatory and emphysematous phenotypes and pulmonary dysfunction. DNA microarray analysis confirmed that protease- and oxidative stress-dependent pathways are activated in the lung tissue of C57/BL6J-βENaC-Tg mice. Treatments of C57/BL6J-βENaC-Tg mice with a serine protease inhibitor ONO-3403, a derivative of camostat methylate (CM), but not CM, and with an anti-oxidant N-acetylcystein significantly improved pulmonary emphysema and dysfunction. Moreover, depletion of a murine endogenous antioxidant vitamin C (VC), by genetic disruption of VC-synthesizing enzyme SMP30 in C57/BL6J-βENaC-Tg mice, exaggerated pulmonary phenotypes. Thus, these assessments clarified that protease-antiprotease imbalance and oxidative stress are critical pathways that exacerbate the pulmonary phenotypes of C57/BL6J-βENaC-Tg mice, consistent with the characteristics of human COPD/CF.
Collapse
|
10
|
Cui Y, Li H, Wu S, Zhao R, Du D, Ding Y, Nie H, Ji HL. Formaldehyde impairs transepithelial sodium transport. Sci Rep 2016; 6:35857. [PMID: 27762337 PMCID: PMC5071906 DOI: 10.1038/srep35857] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/06/2016] [Indexed: 01/26/2023] Open
Abstract
Unsaturated oxidative formaldehyde is a noxious aldehyde in cigarette smoke that causes edematous acute lung injury. However, the mechanistic effects of formaldehyde on lung fluid transport are still poorly understood. We examined how formaldehyde regulates human epithelial sodium channels (ENaC) in H441 and expressed in Xenopus oocytes and exposed mice in vivo. Our results showed that formaldehyde reduced mouse transalveolar fluid clearance in vivo. Formaldehyde caused a dose-dependent inhibition of amiloride-sensitive short-circuit Na+ currents in H441 monolayers and of αβγ-ENaC channel activity in oocytes. α-ENaC protein was reduced, whereas phosphorylation of the extracellular regulated protein kinases 1 and 2 (ERK1/2) increased significantly post exposure. Moreover, both α- and γ-ENaC transcripts were down-regulated. Reactive oxygen species (ROS) was elevated significantly by formaldehyde in addition to markedly augmented membrane permeability of oocytes. These data suggest that formaldehyde contributes to edematous acute lung injury by reducing transalveolar Na+ transport, through decreased ENaC activity and enhanced membrane depolarization, and by elevating ROS production over long-term exposure.
Collapse
Affiliation(s)
- Yong Cui
- Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Huiming Li
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, Liaoning, China
| | - Sihui Wu
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, Liaoning, China
| | - Runzhen Zhao
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Deyi Du
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, Liaoning, China
| | - Yan Ding
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, Liaoning, China
| | - Hongguang Nie
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, Liaoning, China
| | - Hong-Long Ji
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| |
Collapse
|
11
|
Abstract
Objective: To focus on the asthmatic pathogenesis and clinical manifestations related to epithelial sodium channel (ENaC)/chlorine ion channel. Data Sources: The data analyzed in this review were the English articles from 1980 to 2015 from journal databases, primarily PubMed and Google Scholar. The terms used in the literature search were: (1) ENaCs; cystic fibrosis (CF) transmembrane conductance regulator (CFTR); asthma/asthmatic, (2) ENaC/sodium salt; CF; asthma/asthmatic, (3) CFTR/chlorine ion channels; asthma/asthmatic, (4) ENaC/sodium channel/scnn1a/scnn1b/scnn1g/scnn1d/amiloride-sensitive/amiloride-inhibtable sodium channels/sodium salt; asthma/asthmatic, lung/pulmonary/respiratory/tracheal/alveolar, and (5) CFTR; CF; asthma/asthmatic (ti). Study Selection: These studies included randomized controlled trials or studies covering asthma pathogenesis and clinical manifestations related to ENaC/chlorine ion channels within the last 25 years (from 1990 to 2015). The data involving chronic obstructive pulmonary disease and CF obtained from individual studies were also reviewed by the authors. Results: Airway surface liquid dehydration can cause airway inflammation and obstruction. ENaC and CFTR are closely related to the airway mucociliary clearance. Ion transporters may play a critical role in pathogenesis of asthmatic exacerbations. Conclusions: Ion channels have been the center of many studies aiming to understand asthmatic pathophysiological mechanisms or to identify therapeutic targets for better control of the disease.
Collapse
Affiliation(s)
- Wen Wang
- Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing Institute of Respiratory Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing 100020, China; Department of Cellular and Molecular Biology, Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler Texas 75708, USA,
| | | |
Collapse
|
12
|
A. Downs C, A. Alli A, M. Johnson N, N. Helms M. Cigarette smoke extract is a Nox agonist and regulates ENaC in alveolar type 2 cells. AIMS MOLECULAR SCIENCE 2016. [DOI: 10.3934/molsci.2016.3.439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
13
|
Seys LJM, Verhamme FM, Dupont LL, Desauter E, Duerr J, Seyhan Agircan A, Conickx G, Joos GF, Brusselle GG, Mall MA, Bracke KR. Airway Surface Dehydration Aggravates Cigarette Smoke-Induced Hallmarks of COPD in Mice. PLoS One 2015; 10:e0129897. [PMID: 26066648 PMCID: PMC4466573 DOI: 10.1371/journal.pone.0129897] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 05/14/2015] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Airway surface dehydration, caused by an imbalance between secretion and absorption of ions and fluid across the epithelium and/or increased epithelial mucin secretion, impairs mucociliary clearance. Recent evidence suggests that this mechanism may be implicated in chronic obstructive pulmonary disease (COPD). However, the role of airway surface dehydration in the pathogenesis of cigarette smoke (CS)-induced COPD remains unknown. OBJECTIVE We aimed to investigate in vivo the effect of airway surface dehydration on several CS-induced hallmarks of COPD in mice with airway-specific overexpression of the β-subunit of the epithelial Na⁺ channel (βENaC). METHODS βENaC-Tg mice and wild-type (WT) littermates were exposed to air or CS for 4 or 8 weeks. Pathological hallmarks of COPD, including goblet cell metaplasia, mucin expression, pulmonary inflammation, lymphoid follicles, emphysema and airway wall remodelling were determined and lung function was measured. RESULTS Airway surface dehydration in βENaC-Tg mice aggravated CS-induced airway inflammation, mucin expression and destruction of alveolar walls and accelerated the formation of pulmonary lymphoid follicles. Moreover, lung function measurements demonstrated an increased compliance and total lung capacity and a lower resistance and hysteresis in βENaC-Tg mice, compared to WT mice. CS exposure further altered lung function measurements. CONCLUSIONS We conclude that airway surface dehydration is a risk factor that aggravates CS-induced hallmarks of COPD.
Collapse
Affiliation(s)
- Leen J. M. Seys
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Fien M. Verhamme
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Lisa L. Dupont
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Elke Desauter
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Julia Duerr
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Ayca Seyhan Agircan
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Griet Conickx
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Guy F. Joos
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Guy G. Brusselle
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Marcus A. Mall
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Ken R. Bracke
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
14
|
Zhang R, Zhao H, Dong H, Zou F, Cai S. 1α,25-dihydroxyvitamin D₃ counteracts the effects of cigarette smoke in airway epithelial cells. Cell Immunol 2015; 295:137-43. [PMID: 25880105 DOI: 10.1016/j.cellimm.2015.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/18/2015] [Accepted: 03/13/2015] [Indexed: 11/28/2022]
Abstract
Cigarette smoke extracts (CSE) alter calpain-1 expression via ERK signaling pathway in bronchial epithelial cells. 1α,25-dihydroxyvitamin D3 (1,25D3) inhibits cigarette smoke-induced epithelial barrier disruption. This study was aimed to explore whether the 1,25D3 counteracted the CSE effects in a human bronchial epithelial cell line (16HBE). In particular, transepithelial electrical resistance (TER) and permeability, expression and distribution of E-cadherin and β-catenin, calpain-1 expression, and ERK phosphorylation were assessed in the CSE-stimulated 16HBE cells. The CSE induced the ERK phosphorylation, improved the calpain-1 expression, increased the distribution anomalies and the cleaving of E-cadherin and β-catenin, and resulted in the TER reduction and the permeability increase. The 1,25D3 reduced these pathological changes. The 1,25D3 mediated effects were associated with a reduced ERK phosphorylation. In conclusion, the present study provides compelling evidences that the 1,25D3 may be considered a possible valid therapeutic option in controlling the cigarette smoke-induced epithelial barrier disruption.
Collapse
Affiliation(s)
- Ruhui Zhang
- Department of Respiratory, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Haijin Zhao
- Department of Respiratory, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hangming Dong
- Department of Respiratory, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Fei Zou
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Shaoxi Cai
- Department of Respiratory, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
15
|
Downs CA, Kreiner L, Zhao XM, Trac P, Johnson NM, Hansen JM, Brown LA, Helms MN. Oxidized glutathione (GSSG) inhibits epithelial sodium channel activity in primary alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2015; 308:L943-52. [PMID: 25713321 PMCID: PMC4888545 DOI: 10.1152/ajplung.00213.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 02/15/2015] [Indexed: 11/22/2022] Open
Abstract
Amiloride-sensitive epithelial Na(+) channels (ENaC) regulate fluid balance in the alveoli and are regulated by oxidative stress. Since glutathione (GSH) is the predominant antioxidant in the lungs, we proposed that changes in glutathione redox potential (Eh) would alter cell signaling and have an effect on ENaC open probability (Po). In the present study, we used single channel patch-clamp recordings to examine the effect of oxidative stress, via direct application of glutathione disulfide (GSSG), on ENaC activity. We found a linear decrease in ENaC activity as the GSH/GSSG Eh became less negative (n = 21; P < 0.05). Treatment of 400 μM GSSG to the cell bath significantly decreased ENaC Po from 0.39 ± 0.06 to 0.13 ± 0.05 (n = 8; P < 0.05). Likewise, back-filling recording electrodes with 400 μM GSSG reduced ENaC Po from 0.32 ± 0.08 to 0.17 ± 0.05 (n = 10; P < 0.05), thus implicating GSSG as an important regulatory factor. Biochemical assays indicated that oxidizing potentials promote S-glutathionylation of ENaC and irreversible oxidation of cysteine residues with N-ethylmaleimide blocked the effects of GSSG on ENaC Po. Additionally, real-time imaging studies showed that GSSG impairs alveolar fluid clearance in vivo as opposed to GSH, which did not impair clearance. Taken together, these data show that glutathione Eh is an important determinant of alveolar fluid clearance in vivo.
Collapse
Affiliation(s)
- Charles A Downs
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, Georgia
| | - Lisa Kreiner
- Department Pediatrics, School of Medicine, Emory University, Atlanta, Georgia
| | - Xing-Ming Zhao
- Department of Computer Science, School of Electronics and Information Engineering, Tongji University, Shanghai, China
| | - Phi Trac
- Department Pediatrics, School of Medicine, Emory University, Atlanta, Georgia
| | - Nicholle M Johnson
- Department Pediatrics, School of Medicine, Emory University, Atlanta, Georgia
| | - Jason M Hansen
- Department Pediatrics, School of Medicine, Emory University, Atlanta, Georgia; Center for Cystic Fibrosis and Airways Disease Research at Children's Healthcare of Atlanta Hospital, Atlanta, Georgia; and
| | - Lou Ann Brown
- Department Pediatrics, School of Medicine, Emory University, Atlanta, Georgia; Center for Cystic Fibrosis and Airways Disease Research at Children's Healthcare of Atlanta Hospital, Atlanta, Georgia; and
| | - My N Helms
- Department Pediatrics, School of Medicine, Emory University, Atlanta, Georgia; Center for Cystic Fibrosis and Airways Disease Research at Children's Healthcare of Atlanta Hospital, Atlanta, Georgia; and
| |
Collapse
|
16
|
Downs CA, Kreiner LH, Johnson NM, Brown LA, Helms MN. Receptor for advanced glycation end-products regulates lung fluid balance via protein kinase C-gp91(phox) signaling to epithelial sodium channels. Am J Respir Cell Mol Biol 2015; 52:75-87. [PMID: 24978055 DOI: 10.1165/rcmb.2014-0002oc] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The receptor for advanced glycation end-products (RAGE), a multiligand member of the Ig family, may play a crucial role in the regulation of lung fluid balance. We quantified soluble RAGE (sRAGE), a decoy isoform, and advanced glycation end-products (AGEs) from the bronchoalveolar lavage fluid of smokers and nonsmokers, and tested the hypothesis that AGEs regulate lung fluid balance through protein kinase C (PKC)-gp91(phox) signaling to the epithelial sodium channel (ENaC). Human bronchoalveolar lavage samples from smokers showed increased AGEs (9.02 ± 3.03 μg versus 2.48 ± 0.53 μg), lower sRAGE (1,205 ± 292 pg/ml versus 1,910 ± 263 pg/ml), and lower volume(s) of epithelial lining fluid (97 ± 14 ml versus 133 ± 17 ml). sRAGE levels did not predict ELF volumes in nonsmokers; however, in smokers, higher volumes of ELF were predicted with higher levels of sRAGE. Single-channel patch clamp analysis of rat alveolar epithelial type 1 cells showed that AGEs increased ENaC activity measured as the product of the number of channels (N) and the open probability (Po) (NPo) from 0.19 ± 0.08 to 0.83 ± 0.22 (P = 0.017) and the subsequent addition of 4-hydroxy-2, 2, 6, 6-tetramethylpiperidine-N-oxyl decreased ENaC NPo to 0.15 ± 0.07 (P = 0.01). In type 2 cells, human AGEs increased ENaC NPo from 0.12 ± 0.05 to 0.53 ± 0.16 (P = 0.025) and the addition of 4-hydroxy-2, 2, 6, 6-tetramethylpiperidine-N-oxyl decreased ENaC NPo to 0.10 ± 0.03 (P = 0.013). Using molecular and biochemical techniques, we observed that inhibition of RAGE and PKC activity attenuated AGE-induced activation of ENaC. AGEs induced phosphorylation of p47(phox) and increased gp91(phox)-dependent reactive oxygen species production, a response that was abrogated with RAGE or PKC inhibition. Finally, tracheal instillation of AGEs promoted clearance of lung fluid, whereas concomitant inhibition of RAGE, PKC, and gp91(phox) abrogated the response.
Collapse
|
17
|
Pulliero A, Wu Y, Fenoglio D, Parodi A, Romani M, Soares CP, Filaci G, Lee JL, Sinkam PN, Izzotti A. Nanoparticles increase the efficacy of cancer chemopreventive agents in cells exposed to cigarette smoke condensate. Carcinogenesis 2015; 36:368-77. [PMID: 25653234 DOI: 10.1093/carcin/bgv008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lung cancer is a leading cause of death in developed countries. Although smoking cessation is a primary strategy for preventing lung cancer, former smokers remain at high risk of cancer. Accordingly, there is a need to increase the efficacy of lung cancer prevention. Poor bioavailability is the main factor limiting the efficacy of chemopreventive agents. The aim of this study was to increase the efficacy of cancer chemopreventive agents by using lipid nanoparticles (NPs) as a carrier. This study evaluated the ability of lipid NPs to modify the pharmacodynamics of chemopreventive agents including N-acetyl-L-cysteine, phenethyl isothiocyanate and resveratrol (RES). The chemopreventive efficacy of these drugs was determined by evaluating their abilities to counteract cytotoxic damage (DNA fragmentation) induced by cigarette smoke condensate (CSC) and to activate protective apoptosis (annexin-V cytofluorimetric staining) in bronchial epithelial cells both in vitro and in ex vivo experiment in mice. NPs decreased the toxicity of RES and increased its ability to counteract CSC cytotoxicity. NPs significantly increased the ability of phenethyl isothiocyanate to attenuate CSC-induced DNA fragmentation at the highest tested dose. In contrast, this potentiating effect was observed at all tested doses of RES, NPs dramatically increasing RES-induced apoptosis in CSC-treated cells. These results provide evidence that NPs are highly effective at increasing the efficacy of lipophilic drugs (RES) but are not effective towards hydrophilic agents (N-acetyl-L-cysteine), which already possess remarkable bioavailability. Intermediate effects were observed for phenethyl isothiocyanate. These findings are relevant to the identification of cancer chemopreventive agents that would benefit from lipid NP delivery.
Collapse
Affiliation(s)
| | - Yun Wu
- Nanoscale Science and Engineering Center for Affordable Nano-engineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, OH 43210, USA
| | - Daniela Fenoglio
- Centre of Excellence for Biomedical Research and Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
| | | | - Massimo Romani
- Mutagenesis Unit, IRCCS AOU (Institute for Hospitalization and Cure with Scientific Character) San Martino-IST Genoa, 16132 Genoa, Italy
| | - Christiane P Soares
- Mutagenesis Unit, IRCCS AOU (Institute for Hospitalization and Cure with Scientific Character) San Martino-IST Genoa, 16132 Genoa, Italy
| | - Gilberto Filaci
- Centre of Excellence for Biomedical Research and Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
| | - James L Lee
- Nanoscale Science and Engineering Center for Affordable Nano-engineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, OH 43210, USA, William G. Lowrie Department of Chemical and Bimolecular Engineering, 125A Koffolt Labs and
| | - Patrick N Sinkam
- Division of Pulmonary Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Alberto Izzotti
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy, Mutagenesis Unit, IRCCS AOU (Institute for Hospitalization and Cure with Scientific Character) San Martino-IST Genoa, 16132 Genoa, Italy,
| |
Collapse
|
18
|
Marunaka Y. Characteristics and Pharmacological Regulation of Epithelial Na+ Channel (ENaC) and Epithelial Na+ Transport. J Pharmacol Sci 2014. [DOI: 10.1254/jphs.14r01sr] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
19
|
Abstract
Ion channels perform a variety of cellular functions in lung epithelia. Oxidant- and antioxidant-mediated mechanisms (that is, redox regulation) of ion channels are areas of intense research. Significant progress has been made in our understanding of redox regulation of ion channels since the last Experimental Biology report in 2003. Advancements include: 1) identification of nonphagocytic NADPH oxidases as sources of regulated reactive species (RS) production in epithelia, 2) an understanding that excessive treatment with antioxidants can result in greater oxidative stress, and 3) characterization of novel RS signaling pathways that converge upon ion channel regulation. These advancements, as discussed at the 2013 Experimental Biology Meeting in Boston, MA, impact our understanding of oxidative stress in the lung, and, in particular, illustrate that the redox state has profound effects on ion channel and cellular function.
Collapse
|