1
|
H3K27 tri-demethylase JMJD3 inhibits macrophage apoptosis by promoting ADORA2A in lipopolysaccharide-induced acute lung injury. Cell Death Dis 2022; 8:475. [PMID: 36456564 PMCID: PMC9715944 DOI: 10.1038/s41420-022-01268-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022]
Abstract
Acute lung injury (ALI) is a common critical disease, which is characterized by an uncontrolled, acute inflammatory response, diffuse lung damage and ultimately directly deteriorates into acute respiratory distress syndrome. The number of pro-inflammatory macrophages is related to the severity of ALI. Up-regulation of lipopolysaccharide (LPS)-activated macrophage apoptosis can reduce the pro-inflammatory reactions. Jumonji domain-containing protein D3 (JMJD3)-mediated histone 3 lysine 27 trimethylation (H3K27me3) demethylation may promote the pro-inflammatory response of macrophages under LPS stimulation. However, the mechanism of JMJD3 affecting macrophage apoptosis is still not clear. To explore this gap in knowledge, the ALI mice model with intratracheal administration of LPS and RAW264.7 cells with LPS stimulation were used as in vivo and in vitro experiments. The expression of JMJD3 and H3K27me3 and their cellular localization were analysed in lung tissue. Apoptosis was evaluated using TUNEL staining and flow cytometry. Expression of H3K27me3, ADORA2A and C/EBPβ were compared among different treatments and chromatin immunoprecipitation was performed to investigate the regulatory relationship. Our study showed that JMJD3 expression was upregulated in LPS-induced ALI mice and RAW264.7 cells. JMJD3-indued H3K27me3 demethylation inhibited caspase-3 cleavage by upregulating ADORA2A to decrease LPS-stimulated macrophage apoptosis and promoted the inflammatory reaction. This H3K27me3 demethylation also increased C/EBPβ expression, which may enhance ADORA2A expression further. Besides, inhibiting ADORA2A can also promote LPS-limited macrophage apoptosis. Moreover, the inhibition of JMJD3 in vivo and in vitro relieved the inhibition of macrophage apoptosis thus leading to the resolution of the inflammation. JMJD3 might inhibit macrophage apoptosis by promoting ADORA2A expression in LPS-induced ALI.
Collapse
|
2
|
Halpin-Veszeleiova K, Hatfield SM. Therapeutic Targeting of Hypoxia-A2-Adenosinergic Pathway in COVID-19 Patients. Physiology (Bethesda) 2022; 37:46-52. [PMID: 34486395 PMCID: PMC8742736 DOI: 10.1152/physiol.00010.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The hypoxia-hypoxia-inducible factor (HIF)-1α-A2-adenosinergic pathway protects tissues from inflammatory damage during antipathogen immune responses. The elimination of this physiological tissue-protecting mechanism by supplemental oxygenation may contribute to the high mortality of oxygen-ventilated COVID-19 patients by exacerbating inflammatory lung damage. Restoration of this pathway with hypoxia-adenosinergic drugs may improve outcomes in these patients.
Collapse
Affiliation(s)
- Katarina Halpin-Veszeleiova
- New England Inflammation and Tissue Protection Institute, Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts
| | - Stephen M Hatfield
- New England Inflammation and Tissue Protection Institute, Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts
| |
Collapse
|
3
|
Spiess BD, Sitkovsky M, Correale P, Gravenstein N, Garvan C, Morey TE, Fahy BG, Hendeles L, Pliura TJ, Martin TD, Wu V, Astrom C, Nelson DS. Case Report: Can Inhaled Adenosine Attenuate COVID-19? Front Pharmacol 2021; 12:676577. [PMID: 34434105 PMCID: PMC8381598 DOI: 10.3389/fphar.2021.676577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/11/2021] [Indexed: 01/08/2023] Open
Abstract
This case report demonstrates a small repetition of the case series carried out in Italy wherein inhaled adenosine was administered to patients experiencing severe and worsening coronavirus disease-2019 (COVID-19). The two cases are important not only because they were the first of their type in the United States, but also because both patients were DNR/DNI and were therefore expected to die. Study repetition is vitally important in medicine. New work in pharmacology hypothesizes that adenosine-regulator proteins may play a role in the pathogenesis of COVID-19 infection. Furthermore, adenosine, by interacting with cell receptor sites, has pluripotent effects upon inflammatory cells, is anti-inflammatory, and is important in tissue hypoxia signaling. Inhaled adenosine is potentially safe; thousands have received it for asthmatic challenge testing. The effects of adenosine in these two cases were rapid, positive, and fit the pharmacologic hypotheses (as seen in prior work in this journal) and support its role as a therapeutic nucleoside.
Collapse
Affiliation(s)
- Bruce D Spiess
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL, United States
| | - Michael Sitkovsky
- New England Inflammation and Tissue Protection Institute - Northeastern University, Boston, MA, United States
| | - Pierpaolo Correale
- Medical Oncology Unit, Covid19 Scientific Task Force, Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Nikolaus Gravenstein
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL, United States
| | - Cynthia Garvan
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL, United States
| | - Timothy E Morey
- Department of Anesthesiology, University of Florida School of Medicine, Gainesville, FL, United States
| | - Brenda G Fahy
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL, United States
| | - Leslie Hendeles
- College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Thomas J Pliura
- Private Practice Emergency Department, Champaign, IL, United States
| | - Thomas D Martin
- Department of Surgery (Cardiac Surgery), University of Florida School of Medicine, Gainesville, FL, United States
| | - Velyn Wu
- Department of Community Health and Family Medicine, University of Florida, College of Medicine, Gainesville, FL, United States
| | - Corey Astrom
- Department of Anesthesiology, University of Florida School of Medicine, Gainesville, FL, United States
| | - Danielle S Nelson
- Department of Community Health and Family Medicine, University of Florida, College of Medicine, Gainesville, FL, United States
| |
Collapse
|
4
|
Lv Y, Li Y, Wang J, Li M, Zhang W, Zhang H, Shen Y, Li C, Du Y, Jiang L. MiR-382-5p suppresses M1 macrophage polarization and inflammatory response in response to bronchopulmonary dysplasia through targeting CDK8: Involving inhibition of STAT1 pathway. Genes Cells 2021; 26:772-781. [PMID: 34228857 DOI: 10.1111/gtc.12883] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/11/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is an inflammation-related respiratory disorder in infants. MiR-382-5p has displayed low expression in developing lungs with BPD, while the effect of miR-382-5p on BPD remains elusive. Here, a hyperoxia (85% oxygen)-induced BPD model in neonatal mice was established. On postnatal days 10 and 15, hyperoxia reduced miR-382-5p expression in lungs of mice. Besides, CDK8, CD68 and CD86 levels were elevated on day 15 after birth, implying the involvement of CDK8 in M1 macrophage polarization. In addition, in vitro injury in RAW264.7 macrophages was induced by IFN-γ and LPS stimulation. Lentivirus-encoding miR-382-5p decreased CDK8 expression, alleviated the production of inflammatory cytokines TNF-α, IL-1β and IL-6, and restricted the levels of CD40 and CD86 in response to IFN-γ and LPS. Moreover, miR-382-5p inhibited the phosphorylation of STAT1. Luciferase reporter assay verified that miR-382-5p might target the 3'UTR of CDK8. Rescue assays revealed that CDK8 reversed the mitigating roles of miR-382-5p in inflammatory response and M1 macrophage polarization, as reflected by increased IL-6 and CD40 levels. Taken together, these findings indicate that miR-382-5p may suppress M1 macrophage activation and inflammatory response via inhibiting CDK8, thereby regulating the development of BPD, which is possibly mediated by STAT1 signaling.
Collapse
Affiliation(s)
- Yuanyuan Lv
- Department of Pediatrics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Pediatrics, Baoding First Central Hospital, Baoding, China
| | - Yang Li
- Department of Pediatrics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiangya Wang
- Department of Pediatrics, Hebei General Hospital, Shijiazhuang, China
| | - Mei Li
- Department of Pediatrics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wenhao Zhang
- Department of Pediatrics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huifen Zhang
- Department of Pediatrics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ying Shen
- Department of Pediatrics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chao Li
- Department of Pediatrics, Baoding First Central Hospital, Baoding, China
| | - Yuan Du
- Department of Laboratory Medicine, Baoding No. 1 Hospital of TCM, Baoding, China
| | - Lian Jiang
- Department of Pediatrics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
5
|
Caracciolo M, Correale P, Mangano C, Foti G, Falcone C, Macheda S, Cuzzola M, Conte M, Falzea AC, Iuliano E, Morabito A, Caraglia M, Polimeni N, Ferrarelli A, Labate D, Tescione M, Di Renzo L, Chiricolo G, Romano L, De Lorenzo A. Efficacy and Effect of Inhaled Adenosine Treatment in Hospitalized COVID-19 Patients. Front Immunol 2021; 12:613070. [PMID: 33815368 PMCID: PMC8012541 DOI: 10.3389/fimmu.2021.613070] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/24/2021] [Indexed: 01/08/2023] Open
Abstract
Lack of specific antiviral treatment for COVID-19 has resulted in long hospitalizations and high mortality rate. By harnessing the regulatory effects of adenosine on inflammatory mediators, we have instituted a new therapeutic treatment with inhaled adenosine in COVID-19 patients, with the aim of reducing inflammation, the onset of cytokine storm, and therefore to improve prognosis. The use of inhaled adenosine in COVID19 patients has allowed reduction of length of stay, on average 6 days. This result is strengthened by the decrease in SARS-CoV-2 positive days. In treated patients compared to control, a clear improvement in PaO2/FiO2 was observed together with a reduction in inflammation parameters, such as the decrease of CRP level. Furthermore, the efficacy of inhaled exogenous adenosine led to an improvement of the prognosis indices, NLR and PLR. The treatment seems to be safe and modulates the immune system, allowing an effective response against the viral infection progression, reducing length of stay and inflammation parameters.
Collapse
Affiliation(s)
- Massimo Caracciolo
- Unit of Post-Surgery Intensive Therapy (USDO), Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Pierpaolo Correale
- Medical Oncology Unit, Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Carmelo Mangano
- Unit of Infectious Disease, Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Giuseppe Foti
- Unit of Infectious Disease, Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Carmela Falcone
- Unit of Radiology, Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Sebastiano Macheda
- Unit of Intensive Care Medicine and Anaesthesia, Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Maria Cuzzola
- Microbiology Unit, Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Marco Conte
- Microbiology Unit, Grand Metropolitan Hospital, Reggio Calabria, Italy
| | | | - Eleonora Iuliano
- Medical Oncology Unit, Grand Metropolitan Hospital, Reggio Calabria, Italy
| | | | - Michele Caraglia
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy.,Biogem Scarl, Institute of Genetic Research, Laboratory of Precision and Molecular Oncology, Ariano Irpino, Italy
| | - Nicola Polimeni
- Unit of Intensive Care Medicine and Anaesthesia, Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Anna Ferrarelli
- Unit of Radiology, Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Demetrio Labate
- Unit of Intensive Care Medicine and Anaesthesia, Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Marco Tescione
- Unit of Intensive Care Medicine and Anaesthesia, Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Gaetano Chiricolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Lorenzo Romano
- PhD School of Applied Medical, Surgical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Antonino De Lorenzo
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
6
|
Correale P, Caracciolo M, Bilotta F, Conte M, Cuzzola M, Falcone C, Mangano C, Falzea AC, Iuliano E, Morabito A, Foti G, Armentano A, Caraglia M, De Lorenzo A, Sitkovsky M, Macheda S. Therapeutic effects of adenosine in high flow 21% oxygen aereosol in patients with Covid19-pneumonia. PLoS One 2020; 15:e0239692. [PMID: 33031409 PMCID: PMC7544127 DOI: 10.1371/journal.pone.0239692] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/13/2020] [Indexed: 01/08/2023] Open
Abstract
Background SARS-Cov2 infection may trigger lung inflammation and acute-respiratory-distress-syndrome (ARDS) that requires active ventilation and may have fatal outcome. Considering the severity of the disease and the lack of active treatments, 14 patients with Covid-19 and severe lung inflammation received inhaled adenosine in the attempt to therapeutically compensate for the oxygen-related loss of the endogenous adenosine→A2A adenosine receptor (A2AR)-mediated mitigation of the lung-destructing inflammatory damage. This off label-treatment was based on preclinical studies in mice with LPS-induced ARDS, where inhaled adenosine/A2AR agonists protected oxygenated lungs from the deadly inflammatory damage. The treatment was allowed, considering that adenosine has several clinical applications. Patients and treatment Fourteen consecutively enrolled patients with Covid19-related interstitial pneumonitis and PaO2/FiO2 ratio<300 received off-label-treatment with 9 mg inhaled adenosine every 12 hours in the first 24 hours and subsequently, every 24 days for the next 4 days. Fifty-two patients with analogue features and hospitalized between February and April 2020, who did not receive adenosine, were considered as a historical control group. Patients monitoring also included hemodynamic/hematochemical studies, CTscans, and SARS-CoV2-tests. Results The treatment was well tolerated with no hemodynamic change and one case of moderate bronchospasm. A significant increase (> 30%) in the PaO2/FiO2-ratio was reported in 13 out of 14 patients treated with adenosine compared with that observed in 7 out of52 patients in the control within 15 days. Additionally, we recorded a mean PaO2/FiO2-ratio increase (215 ± 45 vs. 464 ± 136, P = 0.0002) in patients receiving adenosine and no change in the control group (210±75 vs. 250±85 at 120 hours, P>0.05). A radiological response was demonstrated in 7 patients who received adenosine, while SARS-CoV-2 RNA load rapidly decreased in 13 cases within 7 days while no changes were recorded in the control group within 15 days. There was one Covid-19 related death in the experimental group and 11in the control group. Conclusion Our short-term analysis suggests the overall safety and beneficial therapeutic effect of inhaled adenosine in patients with Covid-19-inflammatory lung disease suggesting further investigation in controlled clinical trials.
Collapse
Affiliation(s)
- Pierpaolo Correale
- Medical Oncology Unit, Covid19 Scientific Task Force, Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Massimo Caracciolo
- Unit of Post Surgery Intensive Therapy (USDO), Covid19 Scientific Task Force, Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Federico Bilotta
- Department of Anesthesiology, Critical Care and Pain Medicine, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Marco Conte
- Microbiology Unit, Covid19 Scientific Task Force, Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Maria Cuzzola
- Microbiology Unit, Covid19 Scientific Task Force, Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Carmela Falcone
- Unit of Radiology, Covid19 Scientific Task Force, Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Carmelo Mangano
- Unit of Infectious Disease, Covid19 Scientific Task Force, Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Antonella Consuelo Falzea
- Medical Oncology Unit, Covid19 Scientific Task Force, Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Eleonora Iuliano
- Medical Oncology Unit, Covid19 Scientific Task Force, Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Antonella Morabito
- Unit of Pharmacy, Covid19 Scientific Task Force, Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Giuseppe Foti
- Unit of Infectious Disease, Covid19 Scientific Task Force, Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Antonio Armentano
- Unit of Neuro-radiology, Covid19 Scientific Task Force, Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy.,Laboratory of Precision and Molecular Oncology, BiogemScarl, Institute of Genetic Research, Ariano Irpino, Italy
| | - Antonino De Lorenzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Michail Sitkovsky
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, Massachusetts, United States of America
| | - Sebastiano Macheda
- Unit of Intensive Therapy and Resuscitation, Covid19 Scientific Task Force, Grand Metropolitan Hospital, Reggio Calabria, Italy
| |
Collapse
|
7
|
Falcone C, Caracciolo M, Correale P, Macheda S, Vadalà EG, La Scala S, Tescione M, Danieli R, Ferrarelli A, Tarsitano MG, Romano L, De Lorenzo A. Can Adenosine Fight COVID-19 Acute Respiratory Distress Syndrome? J Clin Med 2020; 9:E3045. [PMID: 32967358 PMCID: PMC7564484 DOI: 10.3390/jcm9093045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) patients can develop interstitial pneumonia, which, in turn, can evolve into acute respiratory distress syndrome (ARDS). This is accompanied by an inflammatory cytokine storm. severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) has proteins capable of promoting the cytokine storm, especially in patients with comorbidities, including obesity. Since currently no resolutive therapy for ARDS has been found and given the scientific literature regarding the use of adenosine, its application has been hypothesized. Through its receptors, adenosine is able to inhibit the acute inflammatory process, increase the protection capacity of the epithelial barrier, and reduce the damage due to an overactivation of the immune system, such as that occurring in cytokine storms. These features are known in ischemia/reperfusion models and could also be exploited in acute lung injury with hypoxia. Considering these hypotheses, a COVID-19 patient with unresponsive respiratory failure was treated with adenosine for compassionate use. The results showed a rapid improvement of clinical conditions, with negativity of SARS-CoV2 detection.
Collapse
Affiliation(s)
- Carmela Falcone
- Unit of Radiology, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124 Reggio Calabria, Italy; (C.F.); (A.F.)
| | - Massimo Caracciolo
- Unit of Intensive Postoperative Therapy, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124 Reggio Calabria, Italy;
| | - Pierpaolo Correale
- Medical Oncology Unit, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124 Reggio Calabria, Italy;
| | - Sebastiano Macheda
- Unit of Intensive Care Medicine and Anesthesia, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124 Reggio Calabria, Italy; (S.M.); (E.G.V.); (S.L.S.); (M.T.)
| | - Eugenio Giuseppe Vadalà
- Unit of Intensive Care Medicine and Anesthesia, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124 Reggio Calabria, Italy; (S.M.); (E.G.V.); (S.L.S.); (M.T.)
| | - Stefano La Scala
- Unit of Intensive Care Medicine and Anesthesia, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124 Reggio Calabria, Italy; (S.M.); (E.G.V.); (S.L.S.); (M.T.)
| | - Marco Tescione
- Unit of Intensive Care Medicine and Anesthesia, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124 Reggio Calabria, Italy; (S.M.); (E.G.V.); (S.L.S.); (M.T.)
| | - Roberta Danieli
- Department of Human Sciences and Promotion of the Quality of Life, University San Raffaele, 00166 Rome, Italy;
| | - Anna Ferrarelli
- Unit of Radiology, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124 Reggio Calabria, Italy; (C.F.); (A.F.)
| | | | - Lorenzo Romano
- School of Specialization in Food Science, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Antonino De Lorenzo
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy;
| |
Collapse
|
8
|
Chen Z, Hua S. Transcription factor-mediated signaling pathways' contribution to the pathology of acute lung injury and acute respiratory distress syndrome. Am J Transl Res 2020; 12:5608-5618. [PMID: 33042442 PMCID: PMC7540143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
The 2019 novel coronavirus (2019-nCoV) is still spreading rapidly around the world, and one cause of lethality for patients infected with 2019-nCoV is acute respiratory distress syndrome (ARDS). ARDS is a severe syndrome of acute lung injury (ALI) that is predominantly triggered by inflammation and results in a sudden loss of, or damage to, kidney function. Emerging studies reveal that multiple transcription factor-associated signaling pathways are activated in the pathology of ALI/ARDS. Of these pathways, the activation of NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells), AP-1 (activator protein 1), IRFs (interferon regulatory factors), STATs (signal transducer and activator of transcription), Wnt/β-catenin-TCF/LEF (T-cell factor/lymphoid enhancer-binding factor), and CtBP2 (C-Terminal binding protein 2)-associated transcriptional complex contributes to ALI/ARDS pathology through diverse mechanisms, such as inducing proinflammatory cytokine levels and mediating macrophage polarization. In this review, we present an updated summary of the mechanisms underlying these signaling activations and regulations, as well as their contribution to the pathogenesis of ALI/ARDS. We aim to develop a better understanding of how ALI/ARDS occurs and improve ALI/ARDS therapy.
Collapse
Affiliation(s)
- Zhi Chen
- Department of Critical Care Medicine, Jiangxi Provincial People’s Hospital Affiliated to Nanchang UniversityNanchang 330006, Jiangxi, China
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji University School of MedicineShanghai 200065, China
| | - Shan Hua
- Department of Ultrasonography, Jiangxi Provincial People’s Hospital Affiliated to Nanchang UniversityNanchang 330006, Jiangxi, China
| |
Collapse
|
9
|
Helms RS, Powell JD. Rethinking the adenosine-A 2AR checkpoint: implications for enhancing anti-tumor immunotherapy. Curr Opin Pharmacol 2020; 53:77-83. [PMID: 32781414 DOI: 10.1016/j.coph.2020.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022]
Abstract
Adenosine signaling through A2AR serves as a negative regulator of the immune system. Unique to this suppressive pathway is its ability to impact numerous stromal and immune cells. Additionally, tumors exhibit elevated concentrations of adenosine further advancing the pathway's potential as a powerful target for activating anti-tumor immunity. The promise of this therapeutic strategy has been repeatedly demonstrated in mice, but has so far only yielded limited success in the clinic. Nonetheless, it is notable that many of these observed clinical responses have been in individuals resistant to prior immunotherapy. These observations suggest this pathway is indeed involved in tumor immune evasion. Thus, identifying the disparities between the translational and clinical implementation of this therapy becomes necessary. To this end, this review will revisit how and where adenosine-A2AR signaling regulates the immune system and anti-tumor immunity so as to reveal opportunities for improving the translational success of this immunotherapy.
Collapse
Affiliation(s)
- Rachel S Helms
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, 1650 Orleans Street, CRB-I Rm443, Baltimore, MD, 21231, USA
| | - Jonathan D Powell
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, 1650 Orleans Street, CRB-I Rm443, Baltimore, MD, 21231, USA.
| |
Collapse
|
10
|
Hypoxia and HIF Signaling: One Axis with Divergent Effects. Int J Mol Sci 2020; 21:ijms21165611. [PMID: 32764403 PMCID: PMC7460602 DOI: 10.3390/ijms21165611] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022] Open
Abstract
The correct concentration of oxygen in all tissues is a hallmark of cellular wellness, and the negative regulation of oxygen homeostasis is able to affect the cells and tissues of the whole organism. The cellular response to hypoxia is characterized by the activation of multiple genes involved in many biological processes. Among them, hypoxia-inducible factor (HIF) represents the master regulator of the hypoxia response. The active heterodimeric complex HIF α/β, binding to hypoxia-responsive elements (HREs), determines the induction of at least 100 target genes to restore tissue homeostasis. A growing body of evidence demonstrates that hypoxia signaling can act by generating contrasting responses in cells and tissues. Here, this dual and controversial role of hypoxia and the HIF signaling pathway is discussed, with particular reference to the effects induced on the complex activities of the immune system and on mechanisms determining cell and tissue responses after an injury in both acute and chronic human diseases related to the heart, lung, liver, and kidney.
Collapse
|
11
|
DiNicolantonio JJ, Barroso-Aranda J. Harnessing adenosine A2A receptors as a strategy for suppressing the lung inflammation and thrombotic complications of COVID-19: Potential of pentoxifylline and dipyridamole. Med Hypotheses 2020; 143:110051. [PMID: 32650197 PMCID: PMC7330590 DOI: 10.1016/j.mehy.2020.110051] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/25/2020] [Indexed: 12/30/2022]
Abstract
Counterproductive lung inflammation and dysregulated thrombosis contribute importantly to the lethality of advanced COVID-19. Adenosine A2A receptors (A2AR), expressed by a wide range of immune cells, as well as endothelial cells and platelets, exert cAMP-mediated anti-inflammatory and anti-thrombotic effects that potentially could be highly protective in this regard. The venerable drug pentoxifylline (PTX) exerts both anti-inflammatory and antithrombotic effects that reflect its ability to boost the responsiveness of A2AR to extracellular adenosine. The platelet-stabilizing drug dipyridamole (DIP) blocks intracellular uptake of extracellularly-generated adenosine, thereby up-regulating A2AR signaling in a way that should be functionally complementary to the impact of PTX in that regard. Moreover, DIP has recently been reported to slow the cellular replication of SARS-CoV-2 in clinically feasible concentrations. Both PTX and DIP are reasonably safe, well-tolerated, widely available, and inexpensive drugs. When COVID-19 patients can be treated within several days of symptom onset, using PTX + DIP in conjunction with hydroxychloroquine (HCQ) and an antibiotic – azithromycin (AZM) or doxycycline – might be warranted. HCQ and AZM can suppress SARS-CoV-2 proliferation in vitro and may slow the cell-to-cell spread of the virus; a large case series evaluating this combination in early-stage patients reported an impressively low mortality rate. However, whereas HCQ and AZM can promote QT interval lengthening and may be contraindicated in more advanced COVID-19 entailing cardiac damage, doxycycline has no such effect and exerts a potentially beneficial anti-inflammatory action. In contrast to HCQ, we propose that the combination of PTX + DIP can be used in both early and advanced stages of COVID-19. Concurrent use of certain nutraceuticals – yeast beta-glucan, zinc, vitamin D, spirulina, phase 2 inducers, N-acetylcysteine, glucosamine, quercetin, and magnesium – might also improve therapeutic outcomes in COVID-19.
Collapse
|
12
|
Reduction in Blood Glutamate Levels Combined With the Genetic Inactivation of A2AR Significantly Alleviate Traumatic Brain Injury-Induced Acute Lung Injury. Shock 2020; 51:502-510. [PMID: 29688987 DOI: 10.1097/shk.0000000000001170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Traumatic brain injury-induced acute lung injury (TBI-ALI) is a serious complication of traumatic brain injury (TBI). Our previous clinical study found that high levels of blood glutamate after TBI were closely related to the occurrence and severity of TBI-ALI, while it remains unknown whether a high concentration of blood glutamate directly causes or aggravates TBI-ALI. We found that inhibition of the adenosine A2A receptor (A2AR) after brain injury alleviated the TBI-ALI; however, it is unknown whether lowering blood glutamate levels in combination with inhibiting the A2AR would lead to better effects. Using mouse models of moderate and severe TBI, we found that intravenous administration of L-glutamate greatly increased the lung water content, lung-body index, level of inflammatory markers in bronchoalveolar lavage fluid and acute lung injury score and significantly decreased the PaO2/FiO2 ratio. Moreover, the incidence of TBI-ALI and the mortality rate were significantly increased, and the combined administration of A2AR activator and exogenous glutamate further exacerbated the above damaging effects. Conversely, lowering the blood glutamate level through peritoneal dialysis or intravenous administration of oxaloacetate notably improved the above parameters, and a further improvement was seen with concurrent A2AR genetic inactivation. These data suggest that A2AR activation aggravates the damaging effect of high blood glutamate concentrations on the lung and that combined treatment targeting both A2AR and blood glutamate may be an effective way to prevent and treat TBI-ALI.
Collapse
|
13
|
Chambers ED, White A, Vang A, Wang Z, Ayala A, Weng T, Blackburn M, Choudhary G, Rounds S, Lu Q. Blockade of equilibrative nucleoside transporter 1/2 protects against Pseudomonas aeruginosa-induced acute lung injury and NLRP3 inflammasome activation. FASEB J 2020; 34:1516-1531. [PMID: 31914698 PMCID: PMC7045807 DOI: 10.1096/fj.201902286r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 11/11/2022]
Abstract
Pseudomonas aeruginosa infections are increasingly multidrug resistant and cause healthcare-associated pneumonia, a major risk factor for acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Adenosine is a signaling nucleoside with potential opposing effects; adenosine can either protect against acute lung injury via adenosine receptors or cause lung injury via adenosine receptors or equilibrative nucleoside transporter (ENT)-dependent intracellular adenosine uptake. We hypothesized that blockade of intracellular adenosine uptake by inhibition of ENT1/2 would increase adenosine receptor signaling and protect against P. aeruginosa-induced acute lung injury. We observed that P. aeruginosa (strain: PA103) infection induced acute lung injury in C57BL/6 mice in a dose- and time-dependent manner. Using ENT1/2 pharmacological inhibitor, nitrobenzylthioinosine (NBTI), and ENT1-null mice, we demonstrated that ENT blockade elevated lung adenosine levels and significantly attenuated P. aeruginosa-induced acute lung injury, as assessed by lung wet-to-dry weight ratio, BAL protein levels, BAL inflammatory cell counts, pro-inflammatory cytokines, and pulmonary function (total lung volume, static lung compliance, tissue damping, and tissue elastance). Using both agonists and antagonists directed against adenosine receptors A2AR and A2BR, we further demonstrated that ENT1/2 blockade protected against P. aeruginosa -induced acute lung injury via activation of A2AR and A2BR. Additionally, ENT1/2 chemical inhibition and ENT1 knockout prevented P. aeruginosa-induced lung NLRP3 inflammasome activation. Finally, inhibition of inflammasome prevented P. aeruginosa-induced acute lung injury. Our results suggest that targeting ENT1/2 and NLRP3 inflammasome may be novel strategies for prevention and treatment of P. aeruginosa-induced pneumonia and subsequent ARDS.
Collapse
Affiliation(s)
- Eboni D. Chambers
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Alpert Medical School of Brown University, Providence, RI 02908
| | - Alexis White
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Alpert Medical School of Brown University, Providence, RI 02908
| | - Alexander Vang
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Alpert Medical School of Brown University, Providence, RI 02908
| | - Zhengke Wang
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Alpert Medical School of Brown University, Providence, RI 02908
| | - Alfred Ayala
- Division of Surgical Research, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02908
| | - Tingting Weng
- Departments of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, TX 77030
| | - Michael Blackburn
- Departments of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, TX 77030
| | - Gaurav Choudhary
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Alpert Medical School of Brown University, Providence, RI 02908
| | - Sharon Rounds
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Alpert Medical School of Brown University, Providence, RI 02908
| | - Qing Lu
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Alpert Medical School of Brown University, Providence, RI 02908
| |
Collapse
|
14
|
Abstract
The ubiquitous adenine nucleoside adenosine (Ado), which plays an important role in cellular energetics, is released from cells under physiologic and pathophysiologic conditions. Another source of extracellular Ado is rapid degradation of extracellular adenosine 5′-triphosphate (ATP) by ectoenzymes. Extracellular Ado acts as an autocrine and paracrine agent by the activation of G protein-coupled cell surface receptors (GPCRs), designated as A1, A2A, A2B, and A3. Almost four decades ago, published data have indicated that Ado could play a role in immune-mediated histamine release from pulmonary mast cells. Since then, numerous studies have indicated that Ado’s signal transductions are involved in various pulmonary pathologies including asthma and COPD. This chapter is a succinct review of recent studies in this field.
Collapse
Affiliation(s)
- Pier Andrea Borea
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Katia Varani
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Stefania Gessi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Stefania Merighi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fabrizio Vincenzi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
15
|
Wang X, Chen D. Purinergic Regulation of Neutrophil Function. Front Immunol 2018; 9:399. [PMID: 29545806 PMCID: PMC5837999 DOI: 10.3389/fimmu.2018.00399] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/13/2018] [Indexed: 12/28/2022] Open
Abstract
Purinergic signaling, which utilizes nucleotides (particularly ATP) and adenosine as transmitter molecules, plays an essential role in immune system. In the extracellular compartment, ATP predominantly functions as a pro-inflammatory molecule through activation of P2 receptors, whereas adenosine mostly functions as an anti-inflammatory molecule through activation of P1 receptors. Neutrophils are the most abundant immune cells in circulation and have emerged as an important component in orchestrating a complex series of events during inflammation. However, because of the destructive nature of neutrophil-derived inflammatory agents, neutrophil activation is fine-tuned, and purinergic signaling is intimately involved in this process. Indeed, shifting the balance between P2 and P1 signaling is critical for neutrophils to appropriately exert their immunologic activity. Here, we review the role of purinergic signaling in regulating neutrophil function, and discuss the potential of targeting purinergic signaling for the treatment of neutrophil-associated infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Xu Wang
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Deyu Chen
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
16
|
Low-Dose Oxygen Enhances Macrophage-Derived Bacterial Clearance following Cigarette Smoke Exposure. J Immunol Res 2016; 2016:1280347. [PMID: 27403445 PMCID: PMC4923598 DOI: 10.1155/2016/1280347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/04/2016] [Accepted: 05/17/2016] [Indexed: 11/22/2022] Open
Abstract
Background. Chronic obstructive pulmonary disease (COPD) is a common, smoking-related lung disease. Patients with COPD frequently suffer disease exacerbations induced by bacterial respiratory infections, suggestive of impaired innate immunity. Low-dose oxygen is a mainstay of therapy during COPD exacerbations; yet we understand little about whether oxygen can modulate the effects of cigarette smoke on lung immunity. Methods. Wild-type mice were exposed to cigarette smoke for 5 weeks, followed by intratracheal instillation of Pseudomonas aeruginosa (PAO1) and 21% or 35–40% oxygen. After two days, lungs were harvested for PAO1 CFUs, and bronchoalveolar fluid was sampled for inflammatory markers. In culture, macrophages were exposed to cigarette smoke and oxygen (40%) for 24 hours and then incubated with PAO1, followed by quantification of bacterial phagocytosis and inflammatory markers. Results. Mice exposed to 35–40% oxygen after cigarette smoke and PAO1 had improved survival and reduced lung CFUs and inflammation. Macrophages from these mice expressed less TNF-α and more scavenger receptors. In culture, macrophages exposed to cigarette smoke and oxygen also demonstrated decreased TNF-α secretion and enhanced phagocytosis of PAO1 bacteria. Conclusions. Our findings demonstrate a novel, protective role for low-dose oxygen following cigarette smoke and bacteria exposure that may be mediated by enhanced macrophage phagocytosis.
Collapse
|
17
|
Vohwinkel CU, Hoegl S, Eltzschig HK. Hypoxia signaling during acute lung injury. J Appl Physiol (1985) 2015; 119:1157-63. [PMID: 25977449 PMCID: PMC4816417 DOI: 10.1152/japplphysiol.00226.2015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/07/2015] [Indexed: 12/29/2022] Open
Abstract
Acute lung injury (ALI) is an inflammatory lung disease that manifests itself in patients as acute respiratory distress syndrome and thereby contributes significantly to the morbidity and mortality of patients experiencing critical illness. Even though it may seem counterintuitive, as the lungs are typically well-oxygenated organs, hypoxia signaling pathways have recently been implicated in the resolution of ALI. For example, functional studies suggest that transcriptional responses under the control of the hypoxia-inducible factor (HIF) are critical in optimizing alveolar epithelial carbohydrate metabolism, and thereby dampen lung inflammation during ALI. In the present review we discuss functional roles of oxygenation, hypoxia and HIFs during ALI, mechanisms of how HIFs are stabilized during lung inflammation, and how HIFs can mediate lung protection during ALI.
Collapse
Affiliation(s)
- Christine U Vohwinkel
- Organ Protection Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado; Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado; and
| | - Sandra Hoegl
- Organ Protection Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado; Department of Anesthesiology, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Holger K Eltzschig
- Organ Protection Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
18
|
Aeffner F, Bolon B, Davis IC. Mouse Models of Acute Respiratory Distress Syndrome: A Review of Analytical Approaches, Pathologic Features, and Common Measurements. Toxicol Pathol 2015; 43:1074-92. [PMID: 26296628 DOI: 10.1177/0192623315598399] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a severe pulmonary reaction requiring hospitalization, which is incited by many causes, including bacterial and viral pneumonia as well as near drowning, aspiration of gastric contents, pancreatitis, intravenous drug use, and abdominal trauma. In humans, ARDS is very well defined by a list of clinical parameters. However, until recently no consensus was available regarding the criteria of ARDS that should be evident in an experimental animal model. This lack was rectified by a 2011 workshop report by the American Thoracic Society, which defined the main features proposed to delineate the presence of ARDS in laboratory animals. These should include histological changes in parenchymal tissue, altered integrity of the alveolar capillary barrier, inflammation, and abnormal pulmonary function. Murine ARDS models typically are defined by such features as pulmonary edema and leukocyte infiltration in cytological preparations of bronchoalveolar lavage fluid and/or lung sections. Common pathophysiological indicators of ARDS in mice include impaired pulmonary gas exchange and histological evidence of inflammatory infiltrates into the lung. Thus, morphological endpoints remain a vital component of data sets assembled from animal ARDS models.
Collapse
Affiliation(s)
- Famke Aeffner
- Flagship Biosciences Inc., Westminster, Colorado, USA
| | - Brad Bolon
- The Ohio State University, College of Veterinary Medicine, Department of Veterinary Biosciences, Columbus, Ohio, USA GEMpath Inc., Longmont, Colorado, USA
| | | |
Collapse
|
19
|
Systemic oxygenation weakens the hypoxia and hypoxia inducible factor 1α-dependent and extracellular adenosine-mediated tumor protection. J Mol Med (Berl) 2014; 92:1283-92. [PMID: 25120128 DOI: 10.1007/s00109-014-1189-3] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/17/2014] [Accepted: 07/04/2014] [Indexed: 10/24/2022]
Abstract
UNLABELLED Intratumoral hypoxia and hypoxia inducible factor-1α (HIF-1-α)-dependent CD39/CD73 ectoenzymes may govern the accumulation of tumor-protecting extracellular adenosine and signaling through A2A adenosine receptors (A2AR) in tumor microenvironments (TME). Here, we explored the conceptually novel motivation to use supplemental oxygen as a treatment to inhibit the hypoxia/HIF-1α-CD39/CD73-driven accumulation of extracellular adenosine in the TME in order to weaken the tumor protection. We report that hyperoxic breathing (60 % O2) decreased the TME hypoxia, as well as levels of HIF-1α and downstream target proteins of HIF-1α in the TME according to proteomic studies in mice. Importantly, oxygenation also downregulated the expression of adenosine-generating ectoenzymes and significantly lowered levels of tumor-protecting extracellular adenosine in the TME. Using supplemental oxygen as a tool in studies of the TME, we also identified FHL-1 as a potentially useful marker for the conversion of hypoxic into normoxic TME. Hyperoxic breathing resulted in the upregulation of antigen-presenting MHC class I molecules on tumor cells and in the better recognition and increased susceptibility to killing by tumor-reactive cytotoxic T cells. Therapeutic breathing of 60 % oxygen resulted in the significant inhibition of growth of established B16.F10 melanoma tumors and prolonged survival of mice. Taken together, the data presented here provide proof-of principle for the therapeutic potential of systemic oxygenation to convert the hypoxic, adenosine-rich and tumor-protecting TME into a normoxic and extracellular adenosine-poor TME that, in turn, may facilitate tumor regression. We propose to explore the combination of supplemental oxygen with existing immunotherapies of cancer. KEY MESSAGES Oxygenation decreases levels of tumor protecting hypoxia. Oxygenation decreases levels of tumor protecting extracellular adenosine. Oxygenation decreases expression of HIF-1alpha dependent tumor-protecting proteins. Oxygenation increases MHC class I expression and enables tumor regression.
Collapse
|
20
|
Aggarwal NR, Tsushima K, Eto Y, Tripathi A, Mandke P, Mock JR, Garibaldi BT, Singer BD, Sidhaye VK, Horton MR, King LS, D'Alessio FR. Immunological priming requires regulatory T cells and IL-10-producing macrophages to accelerate resolution from severe lung inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:4453-4464. [PMID: 24688024 PMCID: PMC4001810 DOI: 10.4049/jimmunol.1400146] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Overwhelming lung inflammation frequently occurs following exposure to both direct infectious and noninfectious agents and is a leading cause of mortality worldwide. In that context, immunomodulatory strategies may be used to limit severity of impending organ damage. We sought to determine whether priming the lung by activating the immune system, or immunological priming, could accelerate resolution of severe lung inflammation. We assessed the importance of alveolar macrophages, regulatory T cells, and their potential interaction during immunological priming. We demonstrate that oropharyngeal delivery of low-dose LPS can immunologically prime the lung to augment alveolar macrophage production of IL-10 and enhance resolution of lung inflammation induced by a lethal dose of LPS or by Pseudomonas bacterial pneumonia. IL-10-deficient mice did not achieve priming and were unable to accelerate lung injury resolution. Depletion of lung macrophages or regulatory T cells during the priming response completely abrogated the positive effect of immunological priming on resolution of lung inflammation and significantly reduced alveolar macrophage IL-10 production. Finally, we demonstrated that oropharyngeal delivery of synthetic CpG-oligonucleotides elicited minimal lung inflammation compared with low-dose LPS but nonetheless primed the lung to accelerate resolution of lung injury following subsequent lethal LPS exposure. Immunological priming is a viable immunomodulatory strategy used to enhance resolution in an experimental acute lung injury model with the potential for therapeutic benefit against a wide array of injurious exposures.
Collapse
Affiliation(s)
- Neil R Aggarwal
- Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Kenji Tsushima
- Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Yoshiki Eto
- Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Ashutosh Tripathi
- Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Pooja Mandke
- Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Jason R Mock
- Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Brian T Garibaldi
- Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Venkataramana K Sidhaye
- Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Maureen R Horton
- Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Landon S King
- Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Franco R D'Alessio
- Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21224
| |
Collapse
|
21
|
Aggarwal NR, King LS, D'Alessio FR. Diverse macrophage populations mediate acute lung inflammation and resolution. Am J Physiol Lung Cell Mol Physiol 2014; 306:L709-25. [PMID: 24508730 PMCID: PMC3989724 DOI: 10.1152/ajplung.00341.2013] [Citation(s) in RCA: 448] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/05/2014] [Indexed: 12/14/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a devastating disease with distinct pathological stages. Fundamental to ARDS is the acute onset of lung inflammation as a part of the body's immune response to a variety of local and systemic stimuli. In patients surviving the inflammatory and subsequent fibroproliferative stages, transition from injury to resolution and recovery is an active process dependent on a series of highly coordinated events regulated by the immune system. Experimental animal models of acute lung injury (ALI) reproduce key components of the injury and resolution phases of human ARDS and provide a methodology to explore mechanisms and potential new therapies. Macrophages are essential to innate immunity and host defense, playing a featured role in the lung and alveolar space. Key aspects of their biological response, including differentiation, phenotype, function, and cellular interactions, are determined in large part by the presence, severity, and chronicity of local inflammation. Studies support the importance of macrophages to initiate and maintain the inflammatory response, as well as a determinant of resolution of lung inflammation and repair. We will discuss distinct roles for lung macrophages during early inflammatory and late resolution phases of ARDS using experimental animal models. In addition, each section will highlight human studies that relate to the diverse role of macrophages in initiation and resolution of ALI and ARDS.
Collapse
Affiliation(s)
- Neil R Aggarwal
- Johns Hopkins Univ. School of Medicine, Pulmonary and Critical Care Medicine, Johns Hopkins Asthma & Allergy Center, Rm. 4B.68, 5501 Hopkins Bayview Circle, Baltimore, MD 21224.
| | | | | |
Collapse
|
22
|
Jing H, Yao J, Liu X, Fan H, Zhang F, Li Z, Tian X, Zhou Y. Fish-oil emulsion (omega-3 polyunsaturated fatty acids) attenuates acute lung injury induced by intestinal ischemia-reperfusion through Adenosine 5'-monophosphate-activated protein kinase-sirtuin1 pathway. J Surg Res 2014; 187:252-261. [PMID: 24231522 DOI: 10.1016/j.jss.2013.10.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/03/2013] [Accepted: 10/04/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND Activated macrophage infiltration into the lungs is paramount in the pathogenesis of acute lung injury (ALI) induced by intestinal ischemia-reperfusion (I/R). Omega-3 polyunsaturated fatty acid (ω-3 PUFA) is a potent activator of the Adenosine 5'-monophosphate-activated protein kinase-sirtuin1 (AMPK/SIRT1) pathway against macrophage inflammation. We aimed to evaluate whether ω-3 PUFAs may protect against ALI induced by intestinal I/R via the AMPK/SIRT1 pathway. METHODS Ischemia in male Wistar rats was induced by superior mesenteric artery occlusion for 60 min and reperfusion for 240 min. One milliliter per day of fish-oil emulsion (FO emulsion, containing major ingredients as ω-3 PUFAs) or normal saline (control) was administered by intraperitoneal injection for three consecutive days to each animal. All animals were sacrificed at the end of reperfusion. Blood and tissue samples were collected for analysis. RESULTS Intestinal I/R caused intestinal and lung injury, evidenced by severe lung tissue edema and macrophage infiltration. Pretreatment with FO emulsion improved the integrity of microscopic structures in the intestine and lungs. Intestinal I/R induced the expression of macrophage-derived mediators (macrophage migration inhibitory factor and macrophage chemoattractant protein-1), inflammatory factors (nuclear factor κB, tumor necrosis factor α, interleukin 6, and interleukin 1β), and proapoptosis factor p66shc. There was a decrease in the expression of AMPK, SIRT1, and claudin 5. FO emulsion significantly inhibited macrophage infiltration into the lungs, inflammatory factor expression, and p66shc phosphorylation. Importantly, FO emulsion restored AMPK, SIRT1, and claudin 5 in the lungs. CONCLUSIONS Pretreatment with ω-3 PUFAs effectively protects intestinal and lung injury induced by intestinal I/R, reduces macrophage infiltration, suppresses inflammation, inhibits lung apoptosis, and improves the lung endothelial barrier after intestinal I/R in a manner dependent on AMPK/SIRT1. Thus, there is a potential for developing AMPK/SIRT1 as a novel target for patients with intestinal I/R-induced ALI.
Collapse
Affiliation(s)
- Huirong Jing
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jihong Yao
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Xingming Liu
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hui Fan
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Feng Zhang
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhenlu Li
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaofeng Tian
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Yun Zhou
- Department of Nutrition, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
23
|
Hyperoxia exacerbates postnatal inflammation-induced lung injury in neonatal BRP-39 null mutant mice promoting the M1 macrophage phenotype. Mediators Inflamm 2013; 2013:457189. [PMID: 24347826 PMCID: PMC3855965 DOI: 10.1155/2013/457189] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/02/2013] [Accepted: 10/03/2013] [Indexed: 12/22/2022] Open
Abstract
RATIONALE Hyperoxia exposure to developing lungs-critical in the pathogenesis of bronchopulmonary dysplasia-may augment lung inflammation by inhibiting anti-inflammatory mediators in alveolar macrophages. OBJECTIVE We sought to determine the O2-induced effects on the polarization of macrophages and the role of anti-inflammatory BRP-39 in macrophage phenotype and neonatal lung injury. METHODS We used RAW264.7, peritoneal, and bone marrow derived macrophages for polarization (M1/M2) studies. For in vivo studies, wild-type (WT) and BRP-39(-/-) mice received continuous exposure to 21% O2 (control mice) or 100% O2 from postnatal (PN) 1 to PN7 days, along with intranasal lipopolysaccharide (LPS) administered on alternate days (PN2, -4, and -6). Lung histology, bronchoalveolar lavage (BAL) cell counts, BAL protein, and cytokines measurements were performed. MEASUREMENTS AND MAIN RESULTS Hyperoxia differentially contributed to macrophage polarization by enhancing LPS induced M1 and inhibiting interleukin-4 induced M2 phenotype. BRP-39 absence led to further enhancement of the hyperoxia and LPS induced M1 phenotype. In addition, BRP-39(-/-) mice were significantly more sensitive to LPS plus hyperoxia induced lung injury and mortality compared to WT mice. CONCLUSIONS These findings collectively indicate that BRP-39 is involved in repressing the M1 proinflammatory phenotype in hyperoxia, thereby deactivating inflammatory responses in macrophages and preventing neonatal lung injury.
Collapse
|