1
|
Milman Krentsis I, Zheng Y, Rosen C, Shin SY, Blagdon C, Shoshan E, Qi Y, Wang J, Yadav SK, Bachar Lustig E, Shetzen E, Dickey BF, Karmouty-Quintana H, Reisner Y. Lung cell transplantation for pulmonary fibrosis. SCIENCE ADVANCES 2024; 10:eadk2524. [PMID: 39178253 PMCID: PMC11343030 DOI: 10.1126/sciadv.adk2524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 07/19/2024] [Indexed: 08/25/2024]
Abstract
Idiopathic pulmonary fibrosis is a major cause of death with few treatment options. Here, we demonstrate the therapeutic efficacy for lung fibrosis of adult lung cell transplantation using a single-cell suspension of the entire lung in two distinct mouse systems: bleomycin treatment and mice lacking telomeric repeat-binding factor 1 expression in alveolar type 2 (AT2) cells (SPC-Cre TRF1fl/fl), spontaneously developing fibrosis. In both models, the progression of fibrosis was associated with reduced levels of host lung progenitors, enabling engraftment of donor progenitors without any additional conditioning, in contrast to our previous studies. Two months after transplantation, engrafted progenitors expanded to form numerous donor-derived patches comprising AT1 and AT2 alveolar cells, as well as donor-derived mesenchymal and endothelial cells. This lung chimerism was associated with attenuation of fibrosis, as demonstrated histologically, biochemically, by computed tomography imaging, and by lung function measurements. Our study provides a strong rationale for the treatment of lung fibrosis using lung cell transplantation.
Collapse
Affiliation(s)
- Irit Milman Krentsis
- Department of Stem Cell Transplantation and Cell Therapy, MD Anderson Cancer Center, Houston, TX, USA
| | - Yangxi Zheng
- Department of Stem Cell Transplantation and Cell Therapy, MD Anderson Cancer Center, Houston, TX, USA
| | - Chava Rosen
- Department of Stem Cell Transplantation and Cell Therapy, MD Anderson Cancer Center, Houston, TX, USA
- Department of Neonatology, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, Israel
| | - Sarah Y. Shin
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Christa Blagdon
- Department of Stem Cell Transplantation and Cell Therapy, MD Anderson Cancer Center, Houston, TX, USA
| | - Einav Shoshan
- Department of Stem Cell Transplantation and Cell Therapy, MD Anderson Cancer Center, Houston, TX, USA
| | - Yuan Qi
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer, Houston, TX, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer, Houston, TX, USA
| | - Sandeep K. Yadav
- Department of Stem Cell Transplantation and Cell Therapy, MD Anderson Cancer Center, Houston, TX, USA
| | - Esther Bachar Lustig
- Department of Stem Cell Transplantation and Cell Therapy, MD Anderson Cancer Center, Houston, TX, USA
| | - Elias Shetzen
- Department of Stem Cell Transplantation and Cell Therapy, MD Anderson Cancer Center, Houston, TX, USA
| | - Burton F. Dickey
- Department of Pulmonary Medicine, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Divisions of Critical Care, Pulmonary and Sleep Medicine, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yair Reisner
- Department of Stem Cell Transplantation and Cell Therapy, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
2
|
Vitucci ECM, Simmons AE, Martin EM, McCullough SD. Epithelial MAPK signaling directs endothelial NRF2 signaling and IL-8 secretion in a tri-culture model of the alveolar-microvascular interface following diesel exhaust particulate (DEP) exposure. Part Fibre Toxicol 2024; 21:15. [PMID: 38468337 PMCID: PMC10926573 DOI: 10.1186/s12989-024-00576-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 02/27/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Particulate matter 2.5 (PM2.5) deposition in the lung's alveolar capillary region (ACR) is significantly associated with respiratory disease development, yet the molecular mechanisms are not completely understood. Adverse responses that promote respiratory disease development involve orchestrated, intercellular signaling between multiple cell types within the ACR. We investigated the molecular mechanisms elicited in response to PM2.5 deposition in the ACR, in an in vitro model that enables intercellular communication between multiple resident cell types of the ACR. METHODS An in vitro, tri-culture model of the ACR, incorporating alveolar-like epithelial cells (NCI-H441), pulmonary fibroblasts (IMR90), and pulmonary microvascular endothelial cells (HULEC) was developed to investigate cell type-specific molecular responses to a PM2.5 exposure in an in-vivo-like model. This tri-culture in vitro model was termed the alveolar capillary region exposure (ACRE) model. Alveolar epithelial cells in the ACRE model were exposed to a suspension of diesel exhaust particulates (DEP) (20 µg/cm2) with an average diameter of 2.5 µm. Alveolar epithelial barrier formation, and transcriptional and protein expression alterations in the directly exposed alveolar epithelial and the underlying endothelial cells were investigated over a 24 h DEP exposure. RESULTS Alveolar epithelial barrier formation was not perturbed by the 24 h DEP exposure. Despite no alteration in barrier formation, we demonstrate that alveolar epithelial DEP exposure induces transcriptional and protein changes in both the alveolar epithelial cells and the underlying microvascular endothelial cells. Specifically, we show that the underlying microvascular endothelial cells develop redox dysfunction and increase proinflammatory cytokine secretion. Furthermore, we demonstrate that alveolar epithelial MAPK signaling modulates the activation of NRF2 and IL-8 secretion in the underlying microvascular endothelial cells. CONCLUSIONS Endothelial redox dysfunction and increased proinflammatory cytokine secretion are two common events in respiratory disease development. These findings highlight new, cell-type specific roles of the alveolar epithelium and microvascular endothelium in the ACR in respiratory disease development following PM2.5 exposure. Ultimately, these data expand our current understanding of respiratory disease development following particle exposures and illustrate the utility of multicellular in vitro systems for investigating respiratory tract health.
Collapse
Affiliation(s)
- Eva C M Vitucci
- Interdisciplinary Faculty of Toxicology, School of Public Health, Texas A&M University, College Station, TX, USA
- Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Alysha E Simmons
- Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Elizabeth M Martin
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Shaun D McCullough
- Exposure and Protection, RTI International, 3040 East Cornwallis Road, Durham, NC, USA.
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Yang X, Sun W, Jing X, Zhang Q, Huang H, Xu Z. C/EBP homologous protein promotes Sonic Hedgehog secretion from type II alveolar epithelial cells and activates Hedgehog signaling pathway of fibroblast in pulmonary fibrosis. Respir Res 2022; 23:86. [PMID: 35395850 PMCID: PMC8991723 DOI: 10.1186/s12931-022-02012-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 04/02/2022] [Indexed: 01/04/2023] Open
Abstract
Background Endoplasmic reticulum (ER) stress is involved in the pathological process of pulmonary fibrosis, including IPF. It affects a broad scope of cellular types during pulmonary fibrosis but the role in epithelial-mesenchymal crosstalk has not been fully defined. The present study aimed to investigate the effects of Shh secretion by ER stress-challenged type II alveolar epithelial cells (AECII) on fibroblast and pulmonary fibrosis. Methods Conditioned medium (CM) from tunicamycin (TM)-treated AECII was collected and incubated with fibroblast. Short hairpin RNA (shRNA) was used for RNA interference of C/EBP homologous protein (CHOP). The effects of CHOP and HH signaling were evaluated by TM administration under the background of bleomycin-induced pulmonary fibrosis in mice. Results Both expression of CHOP and Shh in AECII, and HH signaling in mesenchyme were upregulated in IPF lung. TM-induced Shh secretion from AECII activates HH signaling and promotes pro-fibrotic effects of fibroblast. Interfering CHOP expression reduced ER stress-induced Shh secretion and alleviated pulmonary fibrosis in mice. Conclusions Our work identified a novel mechanism by which ER stress is involved in pulmonary fibrosis. Inhibition of ER stress or CHOP in epithelial cells alleviated pulmonary fibrosis by suppressing Shh/HH signaling pathway of fibroblasts. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02012-x.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan Street, Dong Cheng District, Beijing, 100730, China
| | - Wei Sun
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan Street, Dong Cheng District, Beijing, 100730, China.,Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan Street, Dong Cheng District, Beijing, China
| | - Xiaoyan Jing
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan Street, Dong Cheng District, Beijing, 100730, China
| | - Qian Zhang
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan Street, Dong Cheng District, Beijing, 100730, China
| | - Hui Huang
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan Street, Dong Cheng District, Beijing, 100730, China
| | - Zuojun Xu
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan Street, Dong Cheng District, Beijing, 100730, China.
| |
Collapse
|
4
|
Zhang K, Wang L, Hong X, Chen H, Shi Y, Liu Y, Liu J, Liu JP. Pulmonary Alveolar Stem Cell Senescence, Apoptosis, and Differentiation by p53-Dependent and -Independent Mechanisms in Telomerase-Deficient Mice. Cells 2021; 10:2892. [PMID: 34831112 PMCID: PMC8616483 DOI: 10.3390/cells10112892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/10/2021] [Accepted: 10/21/2021] [Indexed: 12/20/2022] Open
Abstract
Pulmonary premature ageing and fibrogenesis as in idiopathic pulmonary fibrosis (IPF) occur with the DNA damage response in lungs deficient of telomerase. The molecular mechanism mediating pulmonary alveolar cell fates remains to be investigated. The present study shows that naturally occurring ageing is associated with the DNA damage response (DDR) and activation of the p53 signalling pathway. Telomerase deficiency induced by telomerase RNA component (TERC) knockout (KO) accelerates not only replicative senescence but also altered differentiation and apoptosis of the pulmonary alveolar stem cells (AEC2) in association with increased innate immune natural killer (NK) cells in TERC KO mice. TERC KO results in increased senescence-associated heterochromatin foci (SAHF) marker HP1γ, p21, p16, and apoptosis-associated cleaved caspase-3 in AEC2. However, additional deficiency of the tumour suppressor p53 in the Trp53-/- allele of the late generation of TERC KO mice attenuates the increased senescent and apoptotic markers significantly. Moreover, p53 deficiency has no significant effect on the increased gene expression of T1α (a marker of terminal differentiated AEC1) in AEC2 of the late generation of TERC KO mice. These findings demonstrate that, in natural ageing or premature ageing accelerated by telomere shortening, pulmonary senescence and IPF develop with alveolar stem cell p53-dependent premature replicative senescence, apoptosis, and p53-independent differentiation, resulting in pulmonary senescence-associated low-grade inflammation (SALI). Our studies indicate a natural ageing-associated molecular mechanism of telomerase deficiency-induced telomere DDR and SALI in pulmonary ageing and IPF.
Collapse
Affiliation(s)
- Kexiong Zhang
- Institute of Ageing Research, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou 311121, China; (L.W.); (X.H.); (H.C.); (Y.S.); (Y.L.); (J.L.)
| | - Lihui Wang
- Institute of Ageing Research, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou 311121, China; (L.W.); (X.H.); (H.C.); (Y.S.); (Y.L.); (J.L.)
| | - Xiaojing Hong
- Institute of Ageing Research, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou 311121, China; (L.W.); (X.H.); (H.C.); (Y.S.); (Y.L.); (J.L.)
| | - Hao Chen
- Institute of Ageing Research, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou 311121, China; (L.W.); (X.H.); (H.C.); (Y.S.); (Y.L.); (J.L.)
| | - Yao Shi
- Institute of Ageing Research, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou 311121, China; (L.W.); (X.H.); (H.C.); (Y.S.); (Y.L.); (J.L.)
| | - Yingying Liu
- Institute of Ageing Research, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou 311121, China; (L.W.); (X.H.); (H.C.); (Y.S.); (Y.L.); (J.L.)
| | - Jun Liu
- Institute of Ageing Research, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou 311121, China; (L.W.); (X.H.); (H.C.); (Y.S.); (Y.L.); (J.L.)
| | - Jun-Ping Liu
- Institute of Ageing Research, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou 311121, China; (L.W.); (X.H.); (H.C.); (Y.S.); (Y.L.); (J.L.)
- Hudson Institute of Medical Research and Monash University Department of Molecular and Translational Science, Clayton, VIC 3168, Australia
- Department of Immunology and Pathology, Monash University Faculty of Medicine, Prahran, VIC 3181, Australia
| |
Collapse
|
5
|
Zhang K, Wang L, Chen H, Shi Y, Liu Y, Liu J, Hong X, Liu JP. Pulmonary alveolar stem cells undergo senescence, apoptosis and differentiation by p53-dependent and -independent mechanisms in telomerase deficient mice. Clin Exp Pharmacol Physiol 2021; 48:651-659. [PMID: 33634502 DOI: 10.1111/1440-1681.13472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/16/2022]
Abstract
Pulmonary senescence and fibrosis occur with deoxyribonucleic acid (DNA) damage response in the lungs deficient of telomerase. The molecular mechanism mediating pulmonary alveolar cell fates remains to be investigated. The present study shows that pulmonary alveolar epithelial type 2 cells (AEC2) (alveolar stem cells) undergo not only replicative senescence, but also apoptosis and differentiation in association with increased innate immune natural killer (NK) cells in telomerase knockout (KO) mice. Telomerase ribonucleic acid (RNA) component (TERC) deficiency results in increased senescence-associated heterochromatin foci marker HP1γ, p21, p16 and apoptosis-associated cleaved caspase-3 in AEC2. However, p53 deficiency in the Trp53-/- allele of the late generation of TERC KO mice attenuates the increased senescent and apoptotic markers significantly. Moreover, p53 deficiency has no significant effect on the increased gene expression of T1α (a marker of terminal differentiated alveolar epithelial type 1 cells [AEC1]) in AEC2 of the late generation of TERC KO mice. Collectively, our findings suggest that pulmonary senescence takes place in deficiency of telomerase RNA component with the alveolar stem cells undergoing p53-dependent senescence and apoptosis as well as p53-independent differentiation.
Collapse
Affiliation(s)
- Kexiong Zhang
- Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Lihui Wang
- Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Hao Chen
- Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Yao Shi
- Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Yingying Liu
- Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Jun Liu
- Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Xiaojing Hong
- Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Jun-Ping Liu
- Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou, China
- Department of Molecular and Translational Science, Hudson Institute of Medical Research and Monash University, Clayton, Victoria, Australia
- Department of Immunology, Monash University Faculty of Medicine, Prahran, Victoria, Australia
| |
Collapse
|
6
|
Valacchi G, Magnani N, Woodby B, Ferreira SM, Evelson P. Particulate Matter Induces Tissue OxInflammation: From Mechanism to Damage. Antioxid Redox Signal 2020; 33:308-326. [PMID: 32443938 DOI: 10.1089/ars.2019.8015] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Oxidative stress and oxidative damage are central hypothetical mechanisms for the adverse effects of airborne particulate matter (PM). Activation of inflammatory cells capable of generating reactive oxygen and nitrogen species is another proposed damage pathway. Understanding the interplay between these responses can help us understand the adverse health effects attributed to breathing polluted air. Recent Advances: The consequences of PM exposure on different organs are oxidative damage, decreased function, and inflammation, which can lead to the development/exacerbation of proinflammatory disorders. Mitochondrial damage is also an important event in PM-induced cytotoxicity. Critical Issues: Reactive oxygen species (ROS) are generated during phagocytosis of the particles, leading to enhancement of oxidative stress and triggering the inflammatory response. The activation of inflammatory signaling pathways results in the release of cytokines and other mediators, which can further induce ROS production by activating endogenous enzymes, leading to a positive feedback loop, which can aggravate the effects triggered by PM exposure. Future Directions: Further research is required to elucidate the exact mechanisms by which PM exposure results in adverse health effects, in terms of the relationship between the redox responses triggered by the presence of the particles and the inflammation observed in the different organs, so the development/exacerbation of PM-associated health problems can be prevented.
Collapse
Affiliation(s)
- Giuseppe Valacchi
- Department of Animal Science, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, North Carolina, USA.,Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy.,Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea
| | - Natalia Magnani
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Buenos Aires, Argentina.,CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Brittany Woodby
- Department of Animal Science, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, North Carolina, USA
| | - Sandra María Ferreira
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Buenos Aires, Argentina.,CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pablo Evelson
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Buenos Aires, Argentina.,CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
7
|
Borok Z, Horie M, Flodby P, Wang H, Liu Y, Ganesh S, Firth AL, Minoo P, Li C, Beers MF, Lee AS, Zhou B. Grp78 Loss in Epithelial Progenitors Reveals an Age-linked Role for Endoplasmic Reticulum Stress in Pulmonary Fibrosis. Am J Respir Crit Care Med 2020; 201:198-211. [PMID: 31738079 PMCID: PMC6961744 DOI: 10.1164/rccm.201902-0451oc] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 11/13/2019] [Indexed: 01/26/2023] Open
Abstract
Rationale: Alveolar epithelial cell (AEC) injury and dysregulated repair are implicated in the pathogenesis of pulmonary fibrosis. Endoplasmic reticulum (ER) stress in AEC has been observed in idiopathic pulmonary fibrosis (IPF), a disease of aging.Objectives: To investigate a causal role for ER stress in the pathogenesis of pulmonary fibrosis (PF) and therapeutic potential of ER stress inhibition in PF.Methods: The role of ER stress in AEC dysfunction and fibrosis was studied in mice with tamoxifen (Tmx)-inducible deletion of ER chaperone Grp78, a key regulator of ER homeostasis, in alveolar type II (AT2) cells, progenitors of distal lung epithelium, and in IPF lung slice cultures.Measurements and Main Results:Grp78 deletion caused weight loss, mortality, lung inflammation, and spatially heterogeneous fibrosis characterized by fibroblastic foci, hyperplastic AT2 cells, and increased susceptibility of old and male mice, all features of IPF. Fibrosis was more persistent in more severely injured Grp78 knockout (KO) mice. Grp78 KO AT2 cells showed evidence of ER stress, apoptosis, senescence, impaired progenitor capacity, and activation of TGF-β (transforming growth factor-β)/SMAD signaling. Glucose-regulated protein 78 is reduced in AT2 cells from old mice and patients with IPF, and ER stress inhibitor tauroursodeoxycholic acid ameliorates ER stress and fibrosis in Grp78 KO mouse and IPF lung slice cultures.Conclusions: These results support a causal role for ER stress and resulting epithelial dysfunction in PF and suggest ER stress as a potential mechanism linking aging to IPF. Modulation of ER stress and chaperone function may offer a promising therapeutic approach for pulmonary fibrosis.
Collapse
Affiliation(s)
- Zea Borok
- Division of Pulmonary, Critical Care and Sleep Medicine
- Hastings Center for Pulmonary Research, Department of Medicine
- Department of Biochemistry and Molecular Medicine
- Norris Comprehensive Cancer Center
| | - Masafumi Horie
- Division of Pulmonary, Critical Care and Sleep Medicine
- Hastings Center for Pulmonary Research, Department of Medicine
| | - Per Flodby
- Division of Pulmonary, Critical Care and Sleep Medicine
- Hastings Center for Pulmonary Research, Department of Medicine
| | - Hongjun Wang
- Division of Pulmonary, Critical Care and Sleep Medicine
- Hastings Center for Pulmonary Research, Department of Medicine
| | - Yixin Liu
- Division of Pulmonary, Critical Care and Sleep Medicine
- Hastings Center for Pulmonary Research, Department of Medicine
| | - Sivagini Ganesh
- Division of Pulmonary, Critical Care and Sleep Medicine
- Hastings Center for Pulmonary Research, Department of Medicine
| | - Amy L Firth
- Division of Pulmonary, Critical Care and Sleep Medicine
- Hastings Center for Pulmonary Research, Department of Medicine
- Department of Stem Cell Biology and Regenerative Medicine, and
| | - Parviz Minoo
- Hastings Center for Pulmonary Research, Department of Medicine
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | - Changgong Li
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | - Michael F Beers
- Pulmonary, Allergy, and Critical Care Division of the University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Amy S Lee
- Department of Biochemistry and Molecular Medicine
- Norris Comprehensive Cancer Center
| | - Beiyun Zhou
- Division of Pulmonary, Critical Care and Sleep Medicine
- Hastings Center for Pulmonary Research, Department of Medicine
- Norris Comprehensive Cancer Center
| |
Collapse
|
8
|
Moimas S, Salton F, Kosmider B, Ring N, Volpe MC, Bahmed K, Braga L, Rehman M, Vodret S, Graziani ML, Wolfson MR, Marchetti N, Rogers TJ, Giacca M, Criner GJ, Zacchigna S, Confalonieri M. miR-200 family members reduce senescence and restore idiopathic pulmonary fibrosis type II alveolar epithelial cell transdifferentiation. ERJ Open Res 2019; 5:00138-2019. [PMID: 31857992 PMCID: PMC6911923 DOI: 10.1183/23120541.00138-2019] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022] Open
Abstract
Rationale Alveolar type II (ATII) cells act as adult stem cells contributing to alveolar type I (ATI) cell renewal and play a major role in idiopathic pulmonary fibrosis (IPF), as supported by familial cases harbouring mutations in genes specifically expressed by these cells. During IPF, ATII cells lose their regenerative potential and aberrantly express pathways contributing to epithelial–mesenchymal transition (EMT). The microRNA miR-200 family is downregulated in IPF, but its effect on human IPF ATII cells remains unproven. We wanted to 1) evaluate the characteristics and transdifferentiating ability of IPF ATII cells, and 2) test whether miR-200 family members can rescue the regenerative potential of fibrotic ATII cells. Methods ATII cells were isolated from control or IPF lungs and cultured in conditions promoting their transdifferentiation into ATI cells. Cells were either phenotypically monitored over time or transfected with miR-200 family members to evaluate the microRNA effect on the expression of transdifferentiation, senescence and EMT markers. Results IPF ATII cells show a senescent phenotype (p16 and p21), overexpression of EMT (ZEB1/2) and impaired expression of ATI cell markers (AQP5 and HOPX) after 6 days of culture in differentiating medium. Transfection with certain miR-200 family members (particularly miR-200b-3p and miR-200c-3p) reduced senescence marker expression and restored the ability to transdifferentiate into ATI cells. Conclusions We demonstrated that ATII cells from IPF patients express senescence and EMT markers, and display a reduced ability to transdifferentiate into ATI cells. Transfection with certain miR-200 family members rescues this phenotype, reducing senescence and restoring transdifferentiation marker expression. Idiopathic pulmonary fibrosis alveolar epithelial type II cells show senescence and EMT features, but miR-200b and miR-200c can restore the ability of type II cells to transdifferentiate in vitro into type I alveolar epithelial cellshttp://bit.ly/359tlit
Collapse
Affiliation(s)
- Silvia Moimas
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.,These authors contributed equally to this work (co-first authors)
| | - Francesco Salton
- Pulmonology Dept, University Hospital of Cattinara, Trieste, Italy.,These authors contributed equally to this work (co-first authors)
| | - Beata Kosmider
- Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Dept of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Dept of Physiology, Temple University, Philadelphia, PA, USA.,These authors contributed equally to this work (co-first authors)
| | - Nadja Ring
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Maria C Volpe
- Pulmonology Dept, University Hospital of Cattinara, Trieste, Italy.,Dept of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Karim Bahmed
- Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Dept of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Luca Braga
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Michael Rehman
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Simone Vodret
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | | | - Marla R Wolfson
- Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Dept of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Dept of Physiology, Temple University, Philadelphia, PA, USA.,CENTRe: Collaborative for Environmental and Neonatal Therapeutics, Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Nathaniel Marchetti
- Dept of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Thomas J Rogers
- Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Dept of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.,Dept of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Gerard J Criner
- Dept of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,These authors contributed equally to this work (co-last authors)
| | - Serena Zacchigna
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.,Dept of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy.,These authors contributed equally to this work (co-last authors)
| | - Marco Confalonieri
- Pulmonology Dept, University Hospital of Cattinara, Trieste, Italy.,Dept of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy.,These authors contributed equally to this work (co-last authors)
| |
Collapse
|
9
|
Yang Y, Hu L, Xia H, Chen L, Cui S, Wang Y, Zhou T, Xiong W, Song L, Li S, Pan S, Xu J, Liu M, Xiao H, Qin L, Shang Y, Yao S. Resolvin D1 attenuates mechanical stretch-induced pulmonary fibrosis via epithelial-mesenchymal transition. Am J Physiol Lung Cell Mol Physiol 2019; 316:L1013-L1024. [PMID: 30724098 DOI: 10.1152/ajplung.00415.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mechanical ventilation-induced pulmonary fibrosis plays an important role in the high mortality rate of acute respiratory distress syndrome (ARDS). Resolvin D1 (RvD1) displays potent proresolving activities. Epithelial-mesenchymal transition (EMT) has been proved to be an important pathological feature of lung fibrosis. This study aimed to investigate whether RvD1 can attenuate mechanical ventilation-induced lung fibrosis. Human lung epithelial (BEAS-2B) cells were pretreated with RvD1 for 30 min and exposed to acid for 10 min before being subjected to mechanical stretch for 48 h. C57BL/6 mice were subjected to intratracheal acid aspiration followed by mechanical ventilation 24 h later (peak inspiratory pressure 22 cmH2O, positive end-expiratory pressure 2 cmH2O, and respiratory rate 120 breaths/min for 2 h). RvD1 was injected into mice for 5 consecutive days after mechanical ventilation. Treatment with RvD1 significantly inhibited mechanical stretch-induced mesenchymal markers (vimentin and α-smooth muscle actin) and stimulated epithelial markers (E-cadherin). Tert-butyloxycarbonyl 2 (BOC-2), a lipoxin A4 receptor/formyl peptide receptor 2 (ALX/FPR2) antagonist, is known to inhibit ALX/FPR2 function. BOC-2 could reverse the beneficial effects of RvD1. The antifibrotic effect of RvD1 was associated with the suppression of Smad2/3 phosphorylation. This study demonstrated that mechanical stretch could induce EMT and pulmonary fibrosis and that treatment with RvD1 could attenuate mechanical ventilation-induced lung fibrosis, thus highlighting RvD1 as an effective therapeutic agent against pulmonary fibrosis associated with mechanical ventilation.
Collapse
Affiliation(s)
- Yiyi Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Lisha Hu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Haifa Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Lin Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Shunan Cui
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Yaxin Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Ting Zhou
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Wei Xiong
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Limin Song
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Shengnan Li
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Shangwen Pan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Jiqian Xu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Min Liu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Hairong Xiao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Lu Qin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China
| |
Collapse
|
10
|
Molina-Molina M, Agusti A, Crestani B, Schwartz DA, Königshoff M, Chambers RC, Maher TM, Faner R, Mora AL, Rojas M, Antoniou KM, Sellares J. Towards a global initiative for fibrosis treatment (GIFT). ERJ Open Res 2017; 3:00106-2017. [PMID: 29214157 PMCID: PMC5710382 DOI: 10.1183/23120541.00106-2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/06/2017] [Indexed: 12/13/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease characterised by increased scarring of lung tissue. Despite the recent introduction of novel drugs that slow disease progression, IPF remains a deadly disease, and the benefits of these new drugs differ markedly between patients. Human diseases arise due to alterations in an almost limitless network of interconnected genes, proteins, metabolites, cells and tissues, in direct relationship with a continuously changing macro- or microenvironment. Systems biology is a novel research strategy that seeks to understand the structure and behaviour of the so-called “emergent properties” of complex systems, such as those involved in disease pathogenesis, which are most often overlooked when just one element of disease pathogenesis is observed in isolation. This article summarises the debate that took place during a European Respiratory Society research seminar in Barcelona, Spain on December 15–16, 2016, which focused on how systems biology could generate new data by integrating the different IPF pathogenic levels of complexity. The main conclusion of the seminar was to create a global initiative to improve IPF outcomes by integrating cutting-edge international research that leverages systems biology to develop a precision medicine approach to tackle this devastating disease. A novel call to action for implementing systems biology in IPF researchhttp://ow.ly/Is0A30gpnVb
Collapse
Affiliation(s)
- Maria Molina-Molina
- Servei de Pneumologia, Laboratori de Pneumologia Experimental, IDIBELL, Campus de Bellvitge, Universitat de Barcelona, Barcelona, Spain.,CIBER of Respiratory Diseases, ISCIII, Barcelona, Spain
| | - Alvar Agusti
- CIBER of Respiratory Diseases, ISCIII, Barcelona, Spain.,Servei de Pneumologia, Institut Respiratori, Hospital Clinic, Universitat de Barcelona, IDIBAPS, Barcelona, Spain
| | - Bruno Crestani
- Service de Pneumologie A, Hospital Bichat, University Paris Diderot, Paris, France
| | | | - Melanie Königshoff
- Division of Pulmonary Sciences and Critical Care Medicine, Dept of Medicine, University of Colorado, Aurora, CO, USA
| | - Rachel C Chambers
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, UK
| | - Toby M Maher
- Interstitial Lung Disease Unit, Royal Brompton and Harefield NHS Foundation Trust, London, UK.,Fibrosis Research Group, National Heart and Lung Institute, Imperial College, London, UK
| | - Rosa Faner
- CIBER of Respiratory Diseases, ISCIII, Barcelona, Spain.,Servei de Pneumologia, Institut Respiratori, Hospital Clinic, Universitat de Barcelona, IDIBAPS, Barcelona, Spain
| | - Ana Lucia Mora
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mauricio Rojas
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA
| | - Katerina M Antoniou
- Dept of Respiratory Medicine and Laboratory of Molecular and Cellular Pneumonology, Medical School, University of Crete, Heraklion, Greece
| | - Jacobo Sellares
- CIBER of Respiratory Diseases, ISCIII, Barcelona, Spain.,Servei de Pneumologia, Institut Respiratori, Hospital Clinic, Universitat de Barcelona, IDIBAPS, Barcelona, Spain
| |
Collapse
|
11
|
Beers MF, Moodley Y. When Is an Alveolar Type 2 Cell an Alveolar Type 2 Cell? A Conundrum for Lung Stem Cell Biology and Regenerative Medicine. Am J Respir Cell Mol Biol 2017; 57:18-27. [PMID: 28326803 DOI: 10.1165/rcmb.2016-0426ps] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Generating mature, differentiated, adult lung cells from pluripotent cells, such as induced pluripotent stem cells and embryonic stem cells, offers the hope of both generating disease-specific in vitro models and creating definitive and personalized therapies for a host of debilitating lung parenchymal and airway diseases. With the goal of advancing lung-regenerative medicine, several groups have developed and reported on protocols using defined media, coculture with mesenchymal components, or sequential treatments mimicking lung development, to obtain distal lung epithelial cells from stem cell precursors. However, there remains significant controversy about the degree of differentiation of these cells compared with their primary counterparts, coupled with a lack of consistency or uniformity in assessing the resultant phenotypes. Given the inevitable, exponential expansion of these approaches and the probable, but yet-to-emerge second and higher generation techniques to create such assets, we were prompted to pose the question, what makes a lung epithelial cell a lung epithelial cell? More specifically for this Perspective, we also posed the question, what are the minimum features that constitute an alveolar type (AT) 2 epithelial cell? In addressing this, we summarize a body of work spanning nearly five decades, amassed by a series of "lung epithelial cell biology pioneers," which carefully describes well characterized molecular, functional, and morphological features critical for discriminately assessing an AT2 phenotype. Armed with this, we propose a series of core criteria to assist the field in confirming that cells obtained following a differentiation protocol are indeed mature and functional AT2 epithelial cells.
Collapse
Affiliation(s)
- Michael F Beers
- 1 Lung Epithelial Biology Laboratories, Penn Center for Pulmonary Biology, Pulmonary and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Yuben Moodley
- 2 University of Western Australia, Harry Perkins Research Institute, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| |
Collapse
|
12
|
Pedroza M, Le TT, Lewis K, Karmouty-Quintana H, To S, George AT, Blackburn MR, Tweardy DJ, Agarwal SK. STAT-3 contributes to pulmonary fibrosis through epithelial injury and fibroblast-myofibroblast differentiation. FASEB J 2015; 30:129-40. [PMID: 26324850 DOI: 10.1096/fj.15-273953] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 08/17/2015] [Indexed: 01/08/2023]
Abstract
Lung fibrosis is the hallmark of the interstitial lung diseases. Alveolar epithelial cell (AEC) injury is a key step that contributes to a profibrotic microenvironment. Fibroblasts and myofibroblasts subsequently accumulate and deposit excessive extracellular matrix. In addition to TGF-β, the IL-6 family of cytokines, which signal through STAT-3, may also contribute to lung fibrosis. In the current manuscript, the extent to which STAT-3 inhibition decreases lung fibrosis is investigated. Phosphorylated STAT-3 was elevated in lung biopsies from patients with idiopathic pulmonary fibrosis and bleomycin (BLM)-induced fibrotic murine lungs. C-188-9, a small molecule STAT-3 inhibitor, decreased pulmonary fibrosis in the intraperitoneal BLM model as assessed by arterial oxygen saturation (control, 84.4 ± 1.3%; C-188-9, 94.4 ± 0.8%), histology (Ashcroft score: untreated, 5.4 ± 0.25; C-188-9, 3.3 ± 0.14), and attenuated fibrotic markers such as diminished α-smooth muscle actin, reduced collagen deposition. In addition, C-188-9 decreased the expression of epithelial injury markers, including hypoxia-inducible factor-1α (HIF-1α) and plasminogen activator inhibitor-1 (PAI-1). In vitro studies show that inhibition of STAT-3 decreased IL-6- and TGF-β-induced expression of multiple genes, including HIF-1α and PAI-1, in AECs. Furthermore, C-188-9 decreased fibroblast-to-myofibroblast differentiation. Finally, TGF-β stimulation of lung fibroblasts resulted in SMAD2/SMAD3-dependent phosphorylation of STAT-3. These findings demonstrate that STAT-3 contributes to the development of lung fibrosis and suggest that STAT-3 may be a therapeutic target in pulmonary fibrosis.
Collapse
Affiliation(s)
- Mesias Pedroza
- *Department of Medicine and Department of Infectious Disease, Baylor College of Medicine, Houston, Texas, USA; and Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston Medical School, Houston, Texas, USA
| | - Thuy T Le
- *Department of Medicine and Department of Infectious Disease, Baylor College of Medicine, Houston, Texas, USA; and Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston Medical School, Houston, Texas, USA
| | - Katherine Lewis
- *Department of Medicine and Department of Infectious Disease, Baylor College of Medicine, Houston, Texas, USA; and Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston Medical School, Houston, Texas, USA
| | - Harry Karmouty-Quintana
- *Department of Medicine and Department of Infectious Disease, Baylor College of Medicine, Houston, Texas, USA; and Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston Medical School, Houston, Texas, USA
| | - Sarah To
- *Department of Medicine and Department of Infectious Disease, Baylor College of Medicine, Houston, Texas, USA; and Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston Medical School, Houston, Texas, USA
| | - Anuh T George
- *Department of Medicine and Department of Infectious Disease, Baylor College of Medicine, Houston, Texas, USA; and Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston Medical School, Houston, Texas, USA
| | - Michael R Blackburn
- *Department of Medicine and Department of Infectious Disease, Baylor College of Medicine, Houston, Texas, USA; and Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston Medical School, Houston, Texas, USA
| | - David J Tweardy
- *Department of Medicine and Department of Infectious Disease, Baylor College of Medicine, Houston, Texas, USA; and Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston Medical School, Houston, Texas, USA
| | - Sandeep K Agarwal
- *Department of Medicine and Department of Infectious Disease, Baylor College of Medicine, Houston, Texas, USA; and Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston Medical School, Houston, Texas, USA
| |
Collapse
|
13
|
Weibel ER. On the Tricks Alveolar Epithelial Cells Play to Make a Good Lung. Am J Respir Crit Care Med 2015; 191:504-13. [DOI: 10.1164/rccm.201409-1663oe] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
14
|
Ahluwalia N, Shea BS, Tager AM. New therapeutic targets in idiopathic pulmonary fibrosis. Aiming to rein in runaway wound-healing responses. Am J Respir Crit Care Med 2014; 190:867-78. [PMID: 25090037 DOI: 10.1164/rccm.201403-0509pp] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating disease, with a median survival as short as 3 years from the time of diagnosis and no pharmacological therapies yet approved by the U.S. Food and Drug Administration. To address the great unmet need for effective IPF therapy, a number of new drugs have recently been, or are now being, evaluated in clinical trials. The rationales for most of these therapeutic candidates are based on the current paradigm of IPF pathogenesis, in which recurrent injury to the alveolar epithelium is believed to drive aberrant wound healing responses, resulting in fibrosis rather than repair. Here we discuss drugs in recently completed or currently ongoing phase II and III IPF clinical trials in the context of their putative mechanisms of action and the aberrant repair processes they are believed to target: innate immune activation and polarization, fibroblast accumulation and myofibroblast differentiation, or extracellular matrix deposition and stiffening. Placed in this context, the positive results of recently completed trials of pirfenidone and nintedanib, and results that will come from ongoing trials of other agents, should provide valuable insights into the still-enigmatic pathogenesis of this disease, in addition to providing benefits to patients with IPF.
Collapse
Affiliation(s)
- Neil Ahluwalia
- Pulmonary and Critical Care Unit and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | |
Collapse
|