1
|
Feng F, Duan Q, Jiang X, Kao X, Zhang D. DendroX: multi-level multi-cluster selection in dendrograms. BMC Genomics 2024; 25:134. [PMID: 38308243 PMCID: PMC10835886 DOI: 10.1186/s12864-024-10048-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/24/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Cluster heatmaps are widely used in biology and other fields to uncover clustering patterns in data matrices. Most cluster heatmap packages provide utility functions to divide the dendrograms at a certain level to obtain clusters, but it is often difficult to locate the appropriate cut in the dendrogram to obtain the clusters seen in the heatmap or computed by a statistical method. Multiple cuts are required if the clusters locate at different levels in the dendrogram. RESULTS We developed DendroX, a web app that provides interactive visualization of a dendrogram where users can divide the dendrogram at any level and in any number of clusters and pass the labels of the identified clusters for functional analysis. Helper functions are provided to extract linkage matrices from cluster heatmap objects in R or Python to serve as input to the app. A graphic user interface was also developed to help prepare input files for DendroX from data matrices stored in delimited text files. The app is scalable and has been tested on dendrograms with tens of thousands of leaf nodes. As a case study, we clustered the gene expression signatures of 297 bioactive chemical compounds in the LINCS L1000 dataset and visualized them in DendroX. Seventeen biologically meaningful clusters were identified based on the structure of the dendrogram and the expression patterns in the heatmap. We found that one of the clusters consisting of mostly naturally occurring compounds is not previously reported and has its members sharing broad anticancer, anti-inflammatory and antioxidant activities. CONCLUSIONS DendroX solves the problem of matching visually and computationally determined clusters in a cluster heatmap and helps users navigate among different parts of a dendrogram. The identification of a cluster of naturally occurring compounds with shared bioactivities implicates a convergence of biological effects through divergent mechanisms.
Collapse
Affiliation(s)
- Feiling Feng
- Department of Biliary Tract Surgery I, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Qiaonan Duan
- Department of Clinical and Translational Medicine, 3D Medicines Inc., Shanghai, China
| | - Xiaoqing Jiang
- Department of Biliary Tract Surgery I, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Xiaoming Kao
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Dadong Zhang
- Department of Clinical and Translational Medicine, 3D Medicines Inc., Shanghai, China.
| |
Collapse
|
2
|
Zajac D, Wojciechowski P. The Role of Vitamins in the Pathogenesis of Asthma. Int J Mol Sci 2023; 24:ijms24108574. [PMID: 37239921 DOI: 10.3390/ijms24108574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Vitamins play a crucial role in the proper functioning of organisms. Disturbances of their levels, seen as deficiency or excess, enhance the development of various diseases, including those of the cardiovascular, immune, or respiratory systems. The present paper aims to summarize the role of vitamins in one of the most common diseases of the respiratory system, asthma. This narrative review describes the influence of vitamins on asthma and its main symptoms such as bronchial hyperreactivity, airway inflammation, oxidative stress, and airway remodeling, as well as the correlation between vitamin intake and levels and the risk of asthma in both pre- and postnatal life.
Collapse
Affiliation(s)
- Dominika Zajac
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warszawa, Poland
| | - Piotr Wojciechowski
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warszawa, Poland
| |
Collapse
|
3
|
Centorame A, Dumut DC, Youssef M, Ondra M, Kianicka I, Shah J, Paun RA, Ozdian T, Hanrahan JW, Gusev E, Petrof B, Hajduch M, Pislariu R, De Sanctis JB, Radzioch D. Treatment With LAU-7b Complements CFTR Modulator Therapy by Improving Lung Physiology and Normalizing Lipid Imbalance Associated With CF Lung Disease. Front Pharmacol 2022; 13:876842. [PMID: 35668939 PMCID: PMC9163687 DOI: 10.3389/fphar.2022.876842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Cystic fibrosis (CF) is the most common autosomal recessive genetic disease in Caucasians, affecting more than 100,000 individuals worldwide. It is caused by pathogenic variants in the gene encoding CFTR, an anion channel at the plasma membrane of epithelial and other cells. Many CF pathogenic variants disrupt the biosynthesis and trafficking of CFTR or reduce its ion channel function. The most frequent mutation, loss of a phenylalanine at position 508 (F508del), leads to misfolding, retention in the endoplasmic reticulum, and premature degradation of the protein. The therapeutics available for treating CF lung disease include antibiotics, mucolytics, bronchodilators, physiotherapy, and most recently CFTR modulators. To date, no cure for this life shortening disease has been found. Treatment with the Triple combination drug therapy, TRIKAFTA®, is composed of three drugs: Elexacaftor (VX-445), Tezacaftor (VX-661) and Ivacaftor (VX-770). This therapy, benefits persons with CF, improving their weight, lung function, energy levels (as defined by reduced fatigue), and overall quality of life. We examined the effect of combining LAU-7b oral treatment and Triple therapy combination on lung function in a F508deltm1EUR mouse model that displays lung abnormalities relevant to human CF. We assessed lung function, lung histopathology, protein oxidation, lipid oxidation, and fatty acid and lipid profiles in F508deltm1EUR mice.
Collapse
Affiliation(s)
- Amanda Centorame
- Faculty of Medicine, McGill University, Montreal, QC, Canada
- Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Daciana Catalina Dumut
- Faculty of Medicine, McGill University, Montreal, QC, Canada
- Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Mina Youssef
- Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Martin Ondra
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
- Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czechia
| | | | - Juhi Shah
- Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Radu Alexandru Paun
- Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Tomas Ozdian
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
| | - John W. Hanrahan
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Ekaterina Gusev
- Meakins-Christie Laboratories, The Centre for Respiratory Research at McGill University and the Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Basil Petrof
- Meakins-Christie Laboratories, The Centre for Respiratory Research at McGill University and the Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
- Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czechia
| | | | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
- Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czechia
| | - Danuta Radzioch
- Faculty of Medicine, McGill University, Montreal, QC, Canada
- Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
- Laurent Pharmaceuticals, Montreal, QC, Canada
| |
Collapse
|
4
|
Tang XH, Melis M, Mai K, Gudas LJ, Trasino SE. Fenretinide Improves Intestinal Barrier Function and Mitigates Alcohol Liver Disease. Front Pharmacol 2021; 12:630557. [PMID: 33815111 PMCID: PMC8012525 DOI: 10.3389/fphar.2021.630557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Alcohol liver disease (ALD) is a major cause of liver-related mortality globally, yet there remains an unmet demand for approved ALD drugs. The pathogenesis of ALD involves perturbations to the intestinal barrier and subsequent translocation of bacterial endotoxin that, acting through toll-like receptor 4 (TLR4), promotes hepatic inflammation and progression of ALD. In the present study we investigated the ability of fenretinide (Fen) [N-(4-hydroxyphenyl) retinamide], a synthetic retinoid with known anti-cancer and anti-inflammatory properties, to modulate intestinal permeability and clinical hallmarks of ALD in a mouse model of chronic ethanol (EtOH) exposure. Our results show that EtOH-treated mice had reductions in mRNA and protein expression of intestinal tight junction proteins, including claudin one and occludin, and increases in intestinal permeability and endotoxemia compared to pair-fed mice. Also, EtOH-treated mice had marked increases in hepatic steatosis, liver injury, and expression of pro-inflammatory mediators, including TNF-α, and TLR4-positive macrophages, Kupffer cells, and hepatocytes in the intestines and liver, respectively. In contrast, EtOH + Fen-treated mice were resistant to the effects of EtOH on promoting intestinal permeability and had higher intestinal protein levels of claudin one and occludin. Also, EtOH + Fen-treated mice had significantly lower plasma levels of endotoxin, and reductions in expression of TNF-α and TLR4 positive macrophages, Kupffer cells, and hepatocytes in the intestine and liver. Lastly, we found that EtOH + Fen-treated mice exhibited major reductions in hepatic triglycerides, steatosis, and liver injury compared to EtOH-treated mice. Our findings are the first to demonstrate that Fen possesses anti-ALD properties, potentially through modulation of the intestinal barrier function, endotoxemia, and TLR4-mediated inflammation. These data warrant further pre-clinical investigations of Fen as a potential anti-ALD drug.
Collapse
Affiliation(s)
- Xiao-Han Tang
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, United States
| | - Marta Melis
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, United States
| | - Karen Mai
- Nutrition Program, Hunter College, City University of New York, New York, NY, United States
| | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, United States
| | - Steven E Trasino
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, United States.,Nutrition Program, Hunter College, City University of New York, New York, NY, United States
| |
Collapse
|
5
|
Veltman M, De Sanctis JB, Stolarczyk M, Klymiuk N, Bähr A, Brouwer RW, Oole E, Shah J, Ozdian T, Liao J, Martini C, Radzioch D, Hanrahan JW, Scholte BJ. CFTR Correctors and Antioxidants Partially Normalize Lipid Imbalance but not Abnormal Basal Inflammatory Cytokine Profile in CF Bronchial Epithelial Cells. Front Physiol 2021; 12:619442. [PMID: 33613309 PMCID: PMC7891400 DOI: 10.3389/fphys.2021.619442] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/07/2021] [Indexed: 12/20/2022] Open
Abstract
A deficiency in cystic fibrosis transmembrane conductance regulator (CFTR) function in CF leads to chronic lung disease. CF is associated with abnormalities in fatty acids, ceramides, and cholesterol, their relationship with CF lung pathology is not completely understood. Therefore, we examined the impact of CFTR deficiency on lipid metabolism and pro-inflammatory signaling in airway epithelium using mass spectrometric, protein array. We observed a striking imbalance in fatty acid and ceramide metabolism, associated with chronic oxidative stress under basal conditions in CF mouse lung and well-differentiated bronchial epithelial cell cultures of CFTR knock out pig and CF patients. Cell-autonomous features of all three CF models included high ratios of ω-6- to ω-3-polyunsaturated fatty acids and of long- to very long-chain ceramide species (LCC/VLCC), reduced levels of total ceramides and ceramide precursors. In addition to the retinoic acid analog fenretinide, the anti-oxidants glutathione (GSH) and deferoxamine partially corrected the lipid profile indicating that oxidative stress may promote the lipid abnormalities. CFTR-targeted modulators reduced the lipid imbalance and oxidative stress, confirming the CFTR dependence of lipid ratios. However, despite functional correction of CF cells up to 60% of non-CF in Ussing chamber experiments, a 72-h triple compound treatment (elexacaftor/tezacaftor/ivacaftor surrogate) did not completely normalize lipid imbalance or oxidative stress. Protein array analysis revealed differential expression and shedding of cytokines and growth factors from CF epithelial cells compared to non-CF cells, consistent with sterile inflammation and tissue remodeling under basal conditions, including enhanced secretion of the neutrophil activator CXCL5, and the T-cell activator CCL17. However, treatment with antioxidants or CFTR modulators that mimic the approved combination therapies, ivacaftor/lumacaftor and ivacaftor/tezacaftor/elexacaftor, did not effectively suppress the inflammatory phenotype. We propose that CFTR deficiency causes oxidative stress in CF airway epithelium, affecting multiple bioactive lipid metabolic pathways, which likely play a role in CF lung disease progression. A combination of anti-oxidant, anti-inflammatory and CFTR targeted therapeutics may be required for full correction of the CF phenotype.
Collapse
Affiliation(s)
- Mieke Veltman
- Cell Biology Department, Erasmus Medical Center, Rotterdam, Netherlands.,Pediatric Pulmonology, Sophia Children's Hospital, Erasmus Medical Center, Rotterdam, Netherlands
| | - Juan B De Sanctis
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacký University, Olomouc, Czechia
| | - Marta Stolarczyk
- Cell Biology Department, Erasmus Medical Center, Rotterdam, Netherlands
| | - Nikolai Klymiuk
- Large Animal Models for Cardiovascular Research, TU Munich, Munich, Germany.,Center for Innovative Medical Models, LMU Munich, Munich, Germany
| | - Andrea Bähr
- Large Animal Models for Cardiovascular Research, TU Munich, Munich, Germany.,Center for Innovative Medical Models, LMU Munich, Munich, Germany
| | - Rutger W Brouwer
- Cell Biology Department, Erasmus Medical Center, Rotterdam, Netherlands.,Center for Biomics, Erasmus Medical Center, Rotterdam, Netherlands
| | - Edwin Oole
- Cell Biology Department, Erasmus Medical Center, Rotterdam, Netherlands.,Center for Biomics, Erasmus Medical Center, Rotterdam, Netherlands
| | - Juhi Shah
- Department of Medicine, The Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Tomas Ozdian
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacký University, Olomouc, Czechia
| | - Jie Liao
- Department of Physiology, CF Translational Research Centre, McGill University, Montreal, QC, Canada
| | - Carolina Martini
- Department of Physiology, CF Translational Research Centre, McGill University, Montreal, QC, Canada
| | - Danuta Radzioch
- Department of Medicine, The Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - John W Hanrahan
- Department of Medicine, The Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada.,Department of Physiology, CF Translational Research Centre, McGill University, Montreal, QC, Canada
| | - Bob J Scholte
- Cell Biology Department, Erasmus Medical Center, Rotterdam, Netherlands.,Pediatric Pulmonology, Sophia Children's Hospital, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
6
|
Cao Y, Lin Y, Sun Y, Liu W, Shao Y, Zheng C. Fenretinide regulates macrophage polarization to protect against experimental colitis induced by dextran sulfate sodium. Bioengineered 2020; 12:151-161. [PMID: 33380244 PMCID: PMC8806340 DOI: 10.1080/21655979.2020.1859259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fenretinide (4-HPR), a synthetic retinoid, has attracted attention for its anti-inflammation activity. However, few studies have evaluated the effects of 4-HPR on ulcerative colitis (UC). The present study was performed to investigate the therapeutic effects of 4-HPR on UC, and to explore the mechanisms mainly focused on macrophage polarization involved in this progress. Intraperitoneally administered 4-HPR particularly at dose of 100 mg/kg obviously alleviated UC symptoms and restrained the mRNA expression of colonic IL-1β, IL-6, and TNF-α in dextran sulfate sodium (DSS)-induced mice. Further analysis showed that 4-HPR decreased the mRNA expression of M1 macrophage markers IL-12 and iNOS, while increased M2 macrophage markers Ym1, Arg1 and MRC1 in colonic tissue of mice received DSS. Consistently, an in vitro study revealed that 4-HPR decreased inflammatory response and M1 polarization, while enhanced M2 polarization in LPS-induced RAW264.7 cells. Interestingly, 4-HPR remarkably activated PPAR-γ which was an important regulator of macrophage polarization both in colonic tissue of UC mice and in LPS-induced RAW264.7 cells. Furthermore, these effects of 4-HPR in vivo and in vitro including anti-inflammation and modulation of macrophage polarization were partially abolished by treatment with PPAR-γ antagonist GW9662, indicating that 4-HPR activated PPAR-γ to exert its activities. Taken together, this study demonstrated that 4-HPR might be a potent anti-UC agent that works by regulating macrophage polarization via PPARγ.
Collapse
Affiliation(s)
- Yong Cao
- Department of Gastroenterology, Shengjing Hospital of China Medical University , Shenyang, People's Republic of China
| | - Yan Lin
- Department of Gastroenterology, Shengjing Hospital of China Medical University , Shenyang, People's Republic of China
| | - Yan Sun
- Department of Gastroenterology, Shengjing Hospital of China Medical University , Shenyang, People's Republic of China
| | - Weiyu Liu
- Department of Gastroenterology, The People's Hospital of Liaoning Province , Shenyang, People's Republic of China
| | - Yichuan Shao
- School of Information Engineering, Shenyang University , Shenyang, People's Republic of China
| | - Changqing Zheng
- Department of Gastroenterology, Shengjing Hospital of China Medical University , Shenyang, People's Republic of China
| |
Collapse
|
7
|
Heras AF, Veerappan A, Silver RB, Emala CW, Worgall TS, Perez-Zoghbi J, Worgall S. Increasing Sphingolipid Synthesis Alleviates Airway Hyperreactivity. Am J Respir Cell Mol Biol 2020; 63:690-698. [PMID: 32706610 DOI: 10.1165/rcmb.2020-0194oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Impaired sphingolipid synthesis is linked genetically to childhood asthma and functionally to airway hyperreactivity (AHR). The objective was to investigate whether sphingolipid synthesis could be a target for asthma therapeutics. The effects of GlyH-101 and fenretinide via modulation of de novo sphingolipid synthesis on AHR was evaluated in mice deficient in SPT (serine palmitoyl-CoA transferase), the rate-limiting enzyme of sphingolipid synthesis. The drugs were also used directly in human airway smooth-muscle and epithelial cells to evaluate changes in de novo sphingolipid metabolites and calcium release. GlyH-101 and fenretinide increased sphinganine and dihydroceramides (de novo sphingolipid metabolites) in lung epithelial and airway smooth-muscle cells, decreased the intracellular calcium concentration in airway smooth-muscle cells, and decreased agonist-induced contraction in proximal and peripheral airways. GlyH-101 also decreased AHR in SPT-deficient mice in vivo. This study identifies the manipulation of sphingolipid synthesis as a novel metabolic therapeutic strategy to alleviate AHR.
Collapse
Affiliation(s)
| | | | | | | | - Tilla S Worgall
- Department of Pathology and Cell Biology, Columbia University, New York, New York
| | | | - Stefan Worgall
- Department of Pediatrics.,Department of Genetic Medicine, and.,Drukier Institute for Children's Health, Weill Cornell Medicine, New York, New York; and
| |
Collapse
|
8
|
Lam M, Bourke JE. Solving the Riddle: Targeting the Imbalance of Sphingolipids in Asthma to Oppose Airway Hyperresponsiveness. Am J Respir Cell Mol Biol 2020; 63:555-557. [PMID: 32822217 PMCID: PMC7605168 DOI: 10.1165/rcmb.2020-0324ed] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Affiliation(s)
- Maggie Lam
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jane E Bourke
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
9
|
Zhang H, Xu H, Zhang R, Zhao X, Liang M, Wei F. Chemosensitization by 4-hydroxyphenyl retinamide-induced NF-κB inhibition in acute myeloid leukemia cells. Cancer Chemother Pharmacol 2020; 86:257-266. [PMID: 32696214 DOI: 10.1007/s00280-020-04115-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/14/2020] [Indexed: 01/24/2023]
Abstract
PURPOSE Inherent and/or acquired multi-drug resistance might be the instigator of treatment failure for acute myeloid leukemia (AML). In the current study, we aimed to explored the chemosensitizing effect of 4-HPR on AML therapy. METHODS Luciferase reporter assays were used to test the effect of 4-HPR on transcriptional signaling pathways. The quantitative real-time polymerase chain reaction and immunoblots were used to confirm the role of 4-HPR in NF-κB inhibition, apoptosis, and drug resistance. MTT and flow cytometry assays were applied to test the drug response and chemosensitizing effect of 4-HPR with AML cell lines and primary AML samples. RESULTS 4-HPR suppressed tumor necrosis factor-α- and daunorubin-induced NF-κB activation in AML cell lines. The expression of anti-apoptotic gene, BCL2, was downregulated, while expressions of pro-apoptotic genes, cIAP, XIAP, and BID, were increased after 4-HPR treatment. Immunoblots showed decreased p65-NF-κB, IκBα, and MDR1, but increased cleaved poly (ADP-ribose) polymerase and BIM. A low concentration of 4-HPR chemosensitized AML cells to daunorubin treatment in vitro. CONCLUSION 4-HPR-induced NF-κB inhibition was the main driver of the chemosensitizing effect observed in AML cell lines and primary AML samples. These results highlight that 4-HPR might be a promising chemosensitizing agent in AML therapy.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- Antibiotics, Antineoplastic/pharmacology
- Antineoplastic Agents/pharmacology
- Apoptosis
- Cell Proliferation
- Daunorubicin/pharmacology
- Drug Synergism
- Fenretinide/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Hui Zhang
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, Guangdong, China.
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
| | - Haoyu Xu
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, Guangdong, China
| | - Ranran Zhang
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Xinying Zhao
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, Guangdong, China
| | - Ming Liang
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Fenggui Wei
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
10
|
Youssef M, De Sanctis JB, Shah J, Dumut DC, Hajduch M, Naumova AK, Radzioch D. Treatment of Allergic Asthma with Fenretinide Formulation (LAU-7b) Downregulates ORMDL Sphingolipid Biosynthesis Regulator 3 ( Ormdl3) Expression and Normalizes Ceramide Imbalance. J Pharmacol Exp Ther 2020; 373:476-487. [PMID: 32273303 DOI: 10.1124/jpet.119.263715] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/05/2020] [Indexed: 02/06/2023] Open
Abstract
Zona pellucida binding protein 2 (Zpbp2) and ORMDL sphingolipid biosynthesis regulator 3 (Ormdl3), mapped downstream of Zpbp2, were identified as two genes associated with airway hyper-responsiveness (AHR). Ormdl3 gene product has been shown to regulate the biosynthesis of ceramides. Allergic asthma was shown to be associated with an imbalance between very-long-chain ceramides (VLCCs) and long-chain ceramides (LCCs). We hypothesized that Fenretinide can prevent the allergic asthma-induced augmentation of Ormdl3 gene expression, normalize aberrant levels of VLCCs and LCCs, and treat allergic asthma symptoms. We induced allergic asthma by house dust mite (HDM) in A/J WT mice and Zpbp2 KO mice expressing lower levels of Ormdl3 mRNA than WT. We investigated the effect of a novel formulation of Fenretinide, LAU-7b, on the AHR, inflammatory cell infiltration, mucus production, IgE levels, and ceramide levels. Although lower Ormdl3 expression, which was observed in Zpbp2 KO mice, was associated with lower AHR, allergic Zpbp2 KO mice were not protected from inflammatory cell infiltration, mucus accumulation, or aberrant levels of VLCCs and LCCs induced by HDM. LAU-7b treatment protects both the Zpbp2 KO and WT mice. The treatment significantly lowers the gene expression of Ormdl3, normalizes the VLCCs and LCCs, and corrects all the other phenotypes associated with allergic asthma after HDM challenge, except the elevated levels of IgE. LAU-7b treatment prevents the augmentation of Ormdl3 expression and ceramide imbalance induced by HDM challenge and protects both WT and Zpbp2 KO mice against allergic asthma symptoms. SIGNIFICANCE STATEMENT: Compared with A/J WT mice, KO mice with Zpbp2 gene deletion have lower AHR and lower levels of Ormdl3 expression. The novel oral clinical formulation of Fenretinide (LAU-7b) effectively lowers the AHR and protects against inflammatory cell infiltration and mucus accumulation induced by house dust mite in both Zpbp2 KO and WT A/J mice. LAU-7b prevents Ormdl3 overexpression in WT allergic mice and corrects the aberrant levels of very-long-chain and long-chain ceramides in both WT and Zpbp2 KO allergic mice.
Collapse
Affiliation(s)
- Mina Youssef
- Department of Human Genetics (M.Y., A.K.N., D.R.), Department of Pharmacology and Therapeutics (J.S.), Division of Experimental Medicine, Department of Medicine (D.C.D., D.R.), and Department of Obstetrics and Gynecology (A.K.N.), McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada (M.Y., J.S., D.C.D., D.R.); and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic (J.B.D.S., M.H., D.R.)
| | - Juan B De Sanctis
- Department of Human Genetics (M.Y., A.K.N., D.R.), Department of Pharmacology and Therapeutics (J.S.), Division of Experimental Medicine, Department of Medicine (D.C.D., D.R.), and Department of Obstetrics and Gynecology (A.K.N.), McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada (M.Y., J.S., D.C.D., D.R.); and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic (J.B.D.S., M.H., D.R.)
| | - Juhi Shah
- Department of Human Genetics (M.Y., A.K.N., D.R.), Department of Pharmacology and Therapeutics (J.S.), Division of Experimental Medicine, Department of Medicine (D.C.D., D.R.), and Department of Obstetrics and Gynecology (A.K.N.), McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada (M.Y., J.S., D.C.D., D.R.); and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic (J.B.D.S., M.H., D.R.)
| | - Daciana Catalina Dumut
- Department of Human Genetics (M.Y., A.K.N., D.R.), Department of Pharmacology and Therapeutics (J.S.), Division of Experimental Medicine, Department of Medicine (D.C.D., D.R.), and Department of Obstetrics and Gynecology (A.K.N.), McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada (M.Y., J.S., D.C.D., D.R.); and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic (J.B.D.S., M.H., D.R.)
| | - Marian Hajduch
- Department of Human Genetics (M.Y., A.K.N., D.R.), Department of Pharmacology and Therapeutics (J.S.), Division of Experimental Medicine, Department of Medicine (D.C.D., D.R.), and Department of Obstetrics and Gynecology (A.K.N.), McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada (M.Y., J.S., D.C.D., D.R.); and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic (J.B.D.S., M.H., D.R.)
| | - Anna K Naumova
- Department of Human Genetics (M.Y., A.K.N., D.R.), Department of Pharmacology and Therapeutics (J.S.), Division of Experimental Medicine, Department of Medicine (D.C.D., D.R.), and Department of Obstetrics and Gynecology (A.K.N.), McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada (M.Y., J.S., D.C.D., D.R.); and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic (J.B.D.S., M.H., D.R.)
| | - Danuta Radzioch
- Department of Human Genetics (M.Y., A.K.N., D.R.), Department of Pharmacology and Therapeutics (J.S.), Division of Experimental Medicine, Department of Medicine (D.C.D., D.R.), and Department of Obstetrics and Gynecology (A.K.N.), McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada (M.Y., J.S., D.C.D., D.R.); and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic (J.B.D.S., M.H., D.R.)
| |
Collapse
|
11
|
Orienti I, Gentilomi GA, Farruggia G. Pulmonary Delivery of Fenretinide: A Possible Adjuvant Treatment In COVID-19. Int J Mol Sci 2020; 21:E3812. [PMID: 32471278 PMCID: PMC7312074 DOI: 10.3390/ijms21113812] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/18/2020] [Accepted: 05/26/2020] [Indexed: 02/08/2023] Open
Abstract
At present, there is no vaccine or effective standard treatment for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection (or coronavirus disease-19 (COVID-19)), which frequently leads to lethal pulmonary inflammatory responses. COVID-19 pathology is characterized by extreme inflammation and amplified immune response with activation of a cytokine storm. A subsequent progression to acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) can take place, which is often followed by death. The causes of these strong inflammatory responses in SARS-CoV-2 infection are still unknown. As uncontrolled pulmonary inflammation is likely the main cause of death in SARS-CoV-2 infection, anti-inflammatory therapeutic interventions are particularly important. Fenretinide N-(4-hydroxyphenyl) retinamide is a bioactive molecule characterized by poly-pharmacological properties and a low toxicity profile. Fenretinide is endowed with antitumor, anti-inflammatory, antiviral, and immunomodulating properties other than efficacy in obesity/diabetic pathologies. Its anti-inflammatory and antiviral activities, in particular, could likely have utility in multimodal therapies for the treatment of ALI/ARDS in COVID-19 patients. Moreover, fenretinide administration by pulmonary delivery systems could further increase its therapeutic value by carrying high drug concentrations to the lungs and triggering a rapid onset of activity. This is particularly important in SARS-CoV-2 infection, where only a narrow time window exists for therapeutic intervention.
Collapse
Affiliation(s)
- Isabella Orienti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy;
| | - Giovanna Angela Gentilomi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
- Unit of Microbiology, Alma Mater Studiorum-University of Bologna, S. Orsola-Malpighi Hospital, 40138 Bologna, Italy
| | - Giovanna Farruggia
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy;
- Biostructures and Biosystems National Institute (BBNI), 00136 Roma, Italy
| |
Collapse
|
12
|
Efficacy of Optimized Treatment Protocol Using LAU-7b Formulation against Ovalbumin (OVA) and House Dust Mite (HDM) -Induced Allergic Asthma in Atopic Hyperresponsive A/J Mice. Pharm Res 2020; 37:31. [PMID: 31915990 DOI: 10.1007/s11095-019-2743-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 11/27/2019] [Indexed: 01/12/2023]
Abstract
PURPOSE To assess the efficacy of the novel clinical formulation of fenretinide (LAU-7b) for the treatment of allergic asthma. To study the association between LAU-7b treatment in allergic asthma and the modulation of very long chain ceramides (VLCC). METHODS We used two allergens (OVA and HDM) to induce asthma in mouse models and we established a treatment protocol with LAU-7b. The severity of allergic asthma reaction was quantified by measuring the airway resistance, quantifying lung inflammatory cell infiltration (Haematoxylin and eosin stain) and mucus production (Periodic acid Schiff satin). IgE levels were measured by ELISA. Immunophenotyping of T cells was done using Fluorescence-activated cell sorting (FACS) analysis. The analysis of the specific species of lipids and markers of oxidation was performed using mass spectrometry. RESULTS Our data demonstrate that 10 mg/kg of LAU-7b was able to protect OVA- and HDM-challenged mice against increase in airway hyperresponsiveness, influx of inflammatory cells into the airways, and mucus production without affecting IgE levels. Treatment with LAU-7b significantly increased percentage of regulatory T cells and CD4+ IL-10-producing T cells and significantly decreased percentage of CD4+ IL-4-producing T cells. Our data also demonstrate a strong association between the improvement in the lung physiology and histology parameters and the drug-induced normalization of the aberrant distribution of ceramides in allergic mice. CONCLUSION 9 days of 10 mg/kg of LAU-7b daily treatment protects the mice against allergen-induced asthma and restores VLCC levels in the lungs and plasma.
Collapse
|
13
|
Choi JY, Kim SH, Kim JE, Park JW, Kang MJ, Choi HJ, Bae SJ, Lee JH, Jung YS, Hwang DY. Four amino acids as serum biomarkers for anti-asthma effects in the ovalbumin-induced asthma mouse model treated with extract of Asparagus cochinchinensis. Lab Anim Res 2019; 35:32. [PMID: 32257919 PMCID: PMC7081585 DOI: 10.1186/s42826-019-0033-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 12/10/2019] [Indexed: 11/30/2022] Open
Abstract
The butanol extract of Asparagus cochinchinensis roots fermented with Weissella cibaria (BAW) effectively prevents inflammation and remodeling of airway in the ovalbumin (OVA)-induced asthma model. To characterize biomarkers that can predict the anti-asthmatic effects induced by BAW treatment, we measured the alteration of endogenous metabolites in the serum of OVA-induced asthma mice after administration of low concentration BAW (BAWLo, 250 mg/kg) and high concentration BAW (BAWHi, 500 mg/kg) using 1H nuclear magnetic resonance (1H-NMR) spectral data. The number of immune cells and serum concentration of IgE as well as thickness of the respiratory epithelium and infiltration of inflammatory cells in the airway significantly recovered in the OVA+BAW treated group as compared to the OVA+Vehicle treated group. In the metabolic profile analysis, the pattern recognition showed completely separate clustering of serum analysis parameters between the OVA+Vehicle and OVA+BAW treated groups. Of the total endogenous metabolites, 19 metabolites were upregulated or downregulated in the OVA+Vehicle treated group as compared to the Control treated group. However, only 4 amino acids (alanine, glycine, methionine and tryptophan) were significantly recovered after BAWLo and BAWHi treatment. This study provides the first results pertaining to metabolic changes in the asthma model mice treated with OVA+BAW. Additionally, these findings show that 4 metabolites can be used as one of biomarkers to predict the anti-asthmatic effects.
Collapse
Affiliation(s)
- Jun Young Choi
- 1Department of Biomaterials Science, College of Natural Resources and Life Science, Pusan National University, 50 Cheonghak-ri, Samnangjin-eup Miryang-si, Gyeongsangnam-do 50463 South Korea
| | - So Hyun Kim
- 2College of Pharmacy, Pusan National University, Busan, 46241 South Korea
| | - Ji Eun Kim
- 1Department of Biomaterials Science, College of Natural Resources and Life Science, Pusan National University, 50 Cheonghak-ri, Samnangjin-eup Miryang-si, Gyeongsangnam-do 50463 South Korea
| | - Ji Won Park
- 1Department of Biomaterials Science, College of Natural Resources and Life Science, Pusan National University, 50 Cheonghak-ri, Samnangjin-eup Miryang-si, Gyeongsangnam-do 50463 South Korea
| | - Mi Ju Kang
- 1Department of Biomaterials Science, College of Natural Resources and Life Science, Pusan National University, 50 Cheonghak-ri, Samnangjin-eup Miryang-si, Gyeongsangnam-do 50463 South Korea
| | - Hyeon Jun Choi
- 1Department of Biomaterials Science, College of Natural Resources and Life Science, Pusan National University, 50 Cheonghak-ri, Samnangjin-eup Miryang-si, Gyeongsangnam-do 50463 South Korea
| | - Su Ji Bae
- 1Department of Biomaterials Science, College of Natural Resources and Life Science, Pusan National University, 50 Cheonghak-ri, Samnangjin-eup Miryang-si, Gyeongsangnam-do 50463 South Korea
| | - Jae Ho Lee
- 1Department of Biomaterials Science, College of Natural Resources and Life Science, Pusan National University, 50 Cheonghak-ri, Samnangjin-eup Miryang-si, Gyeongsangnam-do 50463 South Korea
| | - Young-Suk Jung
- 2College of Pharmacy, Pusan National University, Busan, 46241 South Korea
| | - Dae Youn Hwang
- 1Department of Biomaterials Science, College of Natural Resources and Life Science, Pusan National University, 50 Cheonghak-ri, Samnangjin-eup Miryang-si, Gyeongsangnam-do 50463 South Korea.,3Wellbeing Product Regional Innovation System Center, Pusan National University, Gyeongsangnam-do, 50463 South Korea
| |
Collapse
|
14
|
Garić D, De Sanctis JB, Dumut DC, Shah J, Peña MJ, Youssef M, Petrof BJ, Kopriva F, Hanrahan JW, Hajduch M, Radzioch D. Fenretinide favorably affects mucins (MUC5AC/MUC5B) and fatty acid imbalance in a manner mimicking CFTR-induced correction. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158538. [PMID: 31678518 DOI: 10.1016/j.bbalip.2019.158538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/28/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
Cystic fibrosis (CF) is the most common genetic disease in Caucasians. CF is manifested by abnormal accumulation of mucus in the lungs, which serves as fertile ground for the growth of microorganisms leading to recurrent infections and ultimately, lung failure. Mucus in CF patients consists of DNA from dead neutrophils as well as mucins produced by goblet cells. MUC5AC mucin leads to pathological plugging of the airways whereas MUC5B has a protective role against bacterial infection. Therefore, decreasing the level of MUC5AC while maintaining MUC5B intact would in principle be a desirable mucoregulatory treatment outcome. Fenretinide prevented the lipopolysaccharide-induced increase of MUC5AC gene expression, without affecting the level of MUC5B, in a lung goblet cell line. Additionally, fenretinide treatment reversed the pro-inflammatory imbalance of fatty acids by increasing docosahexaenoic acid and decreasing the levels of arachidonic acid in a lung epithelial cell line and primary leukocytes derived from CF patients. Furthermore, for the first time we also demonstrate the effect of fenretinide on multiple unsaturated fatty acids, as well as differential effects on the levels of long- compared to very-long-chain saturated fatty acids which are important substrates of complex phospholipids. Finally, we demonstrate that pre-treating mice with fenretinide in a chronic model of P. aeruginosa lung infection efficiently decreases the accumulation of mucus. These findings suggest that fenretinide may offer a new approach to therapeutic modulation of pathological mucus production in CF.
Collapse
Affiliation(s)
- Dušan Garić
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada
| | - Juan B De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic; Institute of Immunology, Faculty of Medicine, Universidad Central de Venezuela, Bolivarian Republic of Venezuela
| | - Daciana Catalina Dumut
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada
| | - Juhi Shah
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada
| | - Maria Johanna Peña
- Institute of Immunology, Faculty of Medicine, Universidad Central de Venezuela, Bolivarian Republic of Venezuela
| | - Mina Youssef
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada
| | - Basil J Petrof
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - Francisek Kopriva
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - John W Hanrahan
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Danuta Radzioch
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic; Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada.
| |
Collapse
|
15
|
Reddam A, Mitchell CA, Dasgupta S, Kirkwood JS, Vollaro A, Hur M, Volz DC. mRNA-Sequencing Identifies Liver as a Potential Target Organ for Triphenyl Phosphate in Embryonic Zebrafish. Toxicol Sci 2019; 172:51-62. [PMID: 31368501 PMCID: PMC6813745 DOI: 10.1093/toxsci/kfz169] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 01/01/2023] Open
Abstract
Triphenyl phosphate (TPHP) is a commonly used organophosphate flame retardant and plasticizer in the United States. Using zebrafish as a model, the overall objective of this study was to identify potential organs that might be targeted by TPHP during embryonic development. Based on mRNA-sequencing, TPHP exposure from 24 to 30 h post fertilization (hpf) and 24 to 48 hpf significantly affected the abundance of 305 and 274 transcripts, respectively, relative to vehicle (0.1% DMSO) controls. In addition to minor effects on cardiotoxicity- and nephrotoxicity-related pathways, Ingenuity Pathway Analysis (IPA) of significantly affected transcripts within 30- and 48-hpf embryos revealed that hepatotoxicity-related pathways were strongly affected following exposure to TPHP alone. Moreover, while pre-treatment with fenretinide (a retinoic acid receptor agonist) mitigated TPHP-induced pericardial edema and liver enlargement at 72 hpf and 128 hpf, respectively, IPA revealed that fenretinide was unable to block TPHP-induced effects on cardiotoxicity-, nephrotoxicity-, and hepatotoxicity-related pathways at 48 hpf, suggesting that TPHP-induced effects on the transcriptome were not associated with toxicity later in development. In addition, based on Oil Red O staining, we found that exposure to TPHP nearly abolished neutral lipids from the embryonic head and trunk and, based on metabolomics, significantly decreased the total abundance of metabolites - including betaine, a known osmoprotectant - at 48 and 72 hpf. Overall, our data suggest that, in addition to the heart, TPHP exposure during early development results in adverse effects on the liver, lipid utilization, and osmoregulation within embryonic zebrafish.
Collapse
Affiliation(s)
- Aalekhya Reddam
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, USA.,Department of Environmental Sciences, University of California, Riverside, CA, USA
| | - Constance A Mitchell
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, USA.,Department of Environmental Sciences, University of California, Riverside, CA, USA
| | - Subham Dasgupta
- Department of Environmental Sciences, University of California, Riverside, CA, USA
| | - Jay S Kirkwood
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Alyssa Vollaro
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Manhoi Hur
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - David C Volz
- Department of Environmental Sciences, University of California, Riverside, CA, USA
| |
Collapse
|
16
|
Garić D, Tao S, Ahmed E, Youssef M, Kanagaratham C, Shah J, Mazer B, Radzioch D. Depletion of BAFF cytokine exacerbates infection in Pseudomonas aeruginosa infected mice. J Cyst Fibros 2019; 18:349-356. [DOI: 10.1016/j.jcf.2018.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/22/2018] [Accepted: 11/28/2018] [Indexed: 12/14/2022]
|
17
|
Abstract
Purpose: Fungal keratitis is a major cause of corneal ulcers, resulting in significant visual impairment and blindness. Fenretinide, a derivative of vitamin A, has been shown to suppress inflammation in a multitude of diseases. In this study, we aimed to characterize the effect of fenretinide in Aspergillus fumigatus keratitis of the eye in a mouse model. Methods: In vivo and in vitro experiments were performed in mouse models and THP-1 macrophage cell cultures infected with A. fumigatus, respectively. Experimental subjects were first pretreated with fenretinide, and then the effect of the compound was assessed with clinical evaluation, neutrophil staining, myeloperoxidase assay, quantitative polymerase chain reaction (qRT-PCR), and western blot. Results: We confirmed that fenretinide contributed to protection of corneal transparency during early mouse A. fumigatus keratitis by reducing neutrophil recruitment, decreasing myeloperoxidase (MPO) levels and increasing apoptosis. Compared with controls, fenretinide impaired proinflammatory cytokine interleukin 1 beta (IL-1β) production in response to A. fumigatus exposure with contributions by lectin-type oxidized LDL receptor 1 (LOX-1) and c-Jun N-terminal kinase (JNK). Conclusions: Together, these findings demonstrate that fenretinide may suppress inflammation through reduced neutrophil recruitment and inflammatory cytokine production in A. fumigatus keratitis.
Collapse
|
18
|
Kanagaratham C, Chiwara V, Ho B, Moussette S, Youssef M, Venuto D, Jeannotte L, Bourque G, de Sanctis JB, Radzioch D, Naumova AK. Loss of the zona pellucida-binding protein 2 (Zpbp2) gene in mice impacts airway hypersensitivity and lung lipid metabolism in a sex-dependent fashion. Mamm Genome 2018. [PMID: 29536159 DOI: 10.1007/s00335-018-9743-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The human chromosomal region 17q12-q21 is one of the best replicated genome-wide association study loci for childhood asthma. The associated SNPs span a large genomic interval that includes several protein-coding genes. Here, we tested the hypothesis that the zona pellucida-binding protein 2 (ZPBP2) gene residing in this region contributes to asthma pathogenesis using a mouse model. We tested the lung phenotypes of knock-out (KO) mice that carry a deletion of the Zpbp2 gene. The deletion attenuated airway hypersensitivity (AHR) in female, but not male, mice in the absence of allergic sensitization. Analysis of the lipid profiles of their lungs showed that female, but not male, KO mice had significantly lower levels of sphingosine-1-phosphate (S1P), very long-chain ceramides (VLCCs), and higher levels of long-chain ceramides compared to wild-type controls. Furthermore, in females, lung resistance following methacholine challenge correlated with lung S1P levels (Pearson correlation coefficient 0.57) suggesting a link between reduced AHR in KO females, Zpbp2 deletion, and S1P level regulation. In livers, spleens and blood plasma, however, VLCC, S1P, and sphingosine levels were reduced in both KO females and males. We also find that the Zpbp2 deletion was associated with gain of methylation in the adjacent DNA regions. Thus, we demonstrate that the mouse ortholog of ZPBP2 has a role in controlling AHR in female mice. Our data also suggest that Zpbp2 may act through regulation of ceramide metabolism. These findings highlight the importance of phospholipid metabolism for sexual dimorphism in AHR.
Collapse
Affiliation(s)
| | - Victoria Chiwara
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Bianca Ho
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Sanny Moussette
- The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Mina Youssef
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - David Venuto
- McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| | - Lucie Jeannotte
- Département de Biologie moléculaire, Biochimie medicale & Pathologie, Faculté de médecine, Université Laval, Québec, QC, Canada.,Centre de recherche sur le cancer de l'Université Laval, CRCHU de Québec-Université Laval, L'Hôtel-Dieu de Québec, Québec, QC, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montreal, QC, Canada.,McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| | - Juan Bautista de Sanctis
- Institute of Immunology, Faculty of Medicine, Universidad Central de Venezuela, Sabana Grande, Caracas, Venezuela
| | - Danuta Radzioch
- Department of Human Genetics, McGill University, Montreal, QC, Canada.,The Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Infectious Diseases and Immunity in Global Health Program (IDIGH), The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Anna K Naumova
- Department of Human Genetics, McGill University, Montreal, QC, Canada. .,The Research Institute of the McGill University Health Centre, Montreal, QC, Canada. .,Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
19
|
Paul S, Sarkar S, Dutta T, Bhattacharjee S. Assessment of anti-inflammatory and anti-arthritic properties of Acmella uliginosa (Sw.) Cass. based on experiments in arthritic rat models and qualitative gas chromatography-mass spectrometry analyses. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2016; 5:257-62. [PMID: 27366352 PMCID: PMC4927131 DOI: 10.5455/jice.20160521010145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/03/2016] [Indexed: 11/29/2022]
Abstract
Aim: The principle objective of the study was to explore the anti-arthritic properties of Acmella uliginosa (AU) (Sw.) Cass. flower in a rat model and to identify potential anti-inflammatory compounds derived from flower extracts. The synergistic role played by a combination of AU flower and Aloe vera (AV) gel crude extracts was also investigated. Materials and Methods: Male Wistar rats induced with Freund’s complete adjuvant (FCA) were used as a disease model of arthritic paw swelling. There were three experimental and two control groups, each consisting of five rats. Paw circumference and serum biochemical parameters were evaluated to investigate the role of the flower extracts in disease amelioration through a feeding schedule spanning 21 days. Gas chromatography/mass spectrometry (GC/MS) analyses were performed to search for the presence of anti-inflammatory compounds in the ethanolic and n-hexane solvent extracts of the flower. Results: As a visual cue to the experimental outcomes, FCA-induced paw swelling decreased to the normal level; and hemoglobin, serum protein, and albumin levels were significantly increased in the treated animals. The creatinine level was estimated to be normal in the experimental rats after the treatment. The combination of AU and AV showed the best recovery potential in all the studied parameters, confirming the synergistic efficacy of the herbal formulation. GC/MS analyses revealed the presence of at least 5 anti-inflammatory compounds including 9-octadecenoic acid (Z)-, phenylmethyl ester, astaxanthin, à-N-Normethadol, fenretinide that have reported anti-inflammatory/anti-arthritic properties. Conclusion: Our findings indicated that the crude flower homogenate of AU contains potential anti-inflammatory compounds which could be used as an anti-inflammatory/anti-arthritic medication.
Collapse
Affiliation(s)
- Subhashis Paul
- Department of Zoology, Cell and Molecular Biology Laboratory, University of North Bengal, Darjeeling, West Bengal, India
| | - Sudeb Sarkar
- Division of Cancer Biology and Inflammatory Disorder, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Tanmoy Dutta
- Department of Zoology, Cell and Molecular Biology Laboratory, University of North Bengal, Darjeeling, West Bengal, India
| | - Soumen Bhattacharjee
- Department of Zoology, Cell and Molecular Biology Laboratory, University of North Bengal, Darjeeling, West Bengal, India
| |
Collapse
|
20
|
Schnúr A, Hegyi P, Rousseau S, Lukacs GL, Veit G. Epithelial Anion Transport as Modulator of Chemokine Signaling. Mediators Inflamm 2016; 2016:7596531. [PMID: 27382190 PMCID: PMC4921137 DOI: 10.1155/2016/7596531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 05/03/2016] [Accepted: 05/12/2016] [Indexed: 12/16/2022] Open
Abstract
The pivotal role of epithelial cells is to secrete and absorb ions and water in order to allow the formation of a luminal fluid compartment that is fundamental for the epithelial function as a barrier against environmental factors. Importantly, epithelial cells also take part in the innate immune system. As a first line of defense they detect pathogens and react by secreting and responding to chemokines and cytokines, thus aggravating immune responses or resolving inflammatory states. Loss of epithelial anion transport is well documented in a variety of diseases including cystic fibrosis, chronic obstructive pulmonary disease, asthma, pancreatitis, and cholestatic liver disease. Here we review the effect of aberrant anion secretion with focus on the release of inflammatory mediators by epithelial cells and discuss putative mechanisms linking these transport defects to the augmented epithelial release of chemokines and cytokines. These mechanisms may contribute to the excessive and persistent inflammation in many respiratory and gastrointestinal diseases.
Collapse
Affiliation(s)
- Andrea Schnúr
- Department of Physiology, McGill University, Montréal, QC, Canada H3G 1Y6
| | - Péter Hegyi
- Institute for Translational Medicine and 1st Department of Medicine, University of Pécs, Pécs 7624, Hungary
- MTA-SZTE Translational Gastroenterology Research Group, Szeged 6720, Hungary
| | - Simon Rousseau
- The Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montréal, QC, Canada H2X 2P2
| | - Gergely L. Lukacs
- Department of Physiology, McGill University, Montréal, QC, Canada H3G 1Y6
- Department of Biochemistry, McGill University, Montréal, QC, Canada H3G 1Y6
- Groupe de Recherche Axé sur la Structure des Protéines (GRASP), McGill University, Montréal, QC, Canada H3G 1Y6
| | - Guido Veit
- Department of Physiology, McGill University, Montréal, QC, Canada H3G 1Y6
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Our objective was to provide an overview and discussion of recent experimental studies, epidemiologic studies, and clinical trials of diet and asthma. We focus on dietary sources and vitamins with antioxidant properties [vitamins (A, C, and E), folate, and omega-3 and omega-6 polyunsaturated fatty acids (n-3 and n-6 PUFAs)]. RECENT FINDINGS Current evidence does not support the use of vitamin A, vitamin C, vitamin E, or PUFAs for the prevention or treatment of asthma or allergies. Current guidelines for prenatal use of folate to prevent neural tube defects should be followed, as there is no evidence of major effects of this practice on asthma or allergies. Consumption of a balanced diet that is rich in sources of antioxidants (e.g. fruits and vegetables) may be beneficial in the primary prevention of asthma. SUMMARY None of the vitamins or nutrients examined is consistently associated with asthma or allergies. In some cases, further studies of the effects of a vitamin or nutrient on specific asthma phenotypes (e.g. vitamin C to prevent viral-induced exacerbations) are warranted. Clinical trials of 'whole diet' interventions to prevent asthma are advisable on the basis of existing evidence.
Collapse
Affiliation(s)
- Yueh-Ying Han
- Division of Pediatric Pulmonary Medicine, Allergy and Immunology, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Erick Forno
- Division of Pediatric Pulmonary Medicine, Allergy and Immunology, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Fernando Holguin
- Division of Pediatric Pulmonary Medicine, Allergy and Immunology, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, PA
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Juan C. Celedón
- Division of Pediatric Pulmonary Medicine, Allergy and Immunology, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, PA
| |
Collapse
|