1
|
Hwang JY, Chai P, Nawaz S, Choi J, Lopez-Giraldez F, Hussain S, Bilguvar K, Mane S, Lifton RP, Ahmad W, Zhang K, Chung JJ. LRRC23 truncation impairs radial spoke 3 head assembly and sperm motility underlying male infertility. eLife 2023; 12:RP90095. [PMID: 38091523 PMCID: PMC10721216 DOI: 10.7554/elife.90095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Radial spokes (RS) are T-shaped multiprotein complexes on the axonemal microtubules. Repeated RS1, RS2, and RS3 couple the central pair to modulate ciliary and flagellar motility. Despite the cell type specificity of RS3 substructures, their molecular components remain largely unknown. Here, we report that a leucine-rich repeat-containing protein, LRRC23, is an RS3 head component essential for its head assembly and flagellar motility in mammalian spermatozoa. From infertile male patients with defective sperm motility, we identified a splice site variant of LRRC23. A mutant mouse model mimicking this variant produces a truncated LRRC23 at the C-terminus that fails to localize to the sperm tail, causing male infertility due to defective sperm motility. LRRC23 was previously proposed to be an ortholog of the RS stalk protein RSP15. However, we found that purified recombinant LRRC23 interacts with an RS head protein RSPH9, which is abolished by the C-terminal truncation. Evolutionary and structural comparison also shows that LRRC34, not LRRC23, is the RSP15 ortholog. Cryo-electron tomography clearly revealed that the absence of the RS3 head and the sperm-specific RS2-RS3 bridge structure in LRRC23 mutant spermatozoa. Our study provides new insights into the structure and function of RS3 in mammalian spermatozoa and the molecular pathogenicity of LRRC23 underlying reduced sperm motility in infertile human males.
Collapse
Affiliation(s)
- Jae Yeon Hwang
- Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale UniversityNew HavenUnited States
- Department of Molecular Biology, Pusan National UniversityBusanRepublic of Korea
| | - Pengxin Chai
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, Yale UniversityNew HavenUnited States
| | - Shoaib Nawaz
- Department of Biotechnology, Faculty of BiologicalSciences, Quaid-i-Azam UniversityIslamabadPakistan
| | - Jungmin Choi
- Department of Genetics, YaleSchool of Medicine, Yale UniversityNew HavenUnited States
- Department of Biomedical Sciences, Korea University College of MedicineSeoulRepublic of Korea
| | | | - Shabir Hussain
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam UniversityIslamabadPakistan
| | - Kaya Bilguvar
- Department of Genetics, YaleSchool of Medicine, Yale UniversityNew HavenUnited States
- Yale Center forGenome Analysis, Yale UniversityWest HavenUnited States
| | - Shrikant Mane
- Department of Biomedical Sciences, Korea University College of MedicineSeoulRepublic of Korea
| | - Richard P Lifton
- Laboratory of Human Genetics and Genomics, The Rockefeller UniversityNew YorkUnited States
| | - Wasim Ahmad
- Department of Biotechnology, Faculty of BiologicalSciences, Quaid-i-Azam UniversityIslamabadPakistan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam UniversityIslamabadPakistan
| | - Kai Zhang
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, Yale UniversityNew HavenUnited States
| | - Jean-Ju Chung
- Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale UniversityNew HavenUnited States
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, Yale UniversityNew HavenUnited States
| |
Collapse
|
2
|
Hwang JY, Chai P, Nawaz S, Choi J, Lopez-Giraldez F, Hussain S, Bilguvar K, Mane S, Lifton RP, Ahmad W, Zhang K, Chung JJ. LRRC23 truncation impairs radial spoke 3 head assembly and sperm motility underlying male infertility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.25.530050. [PMID: 36865175 PMCID: PMC9980178 DOI: 10.1101/2023.02.25.530050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Radial spokes (RS) are T-shaped multiprotein complexes on the axonemal microtubules. Repeated RS1, RS2, and RS3 couple the central pair to modulate ciliary and flagellar motility. Despite the cell type specificity of RS3 substructures, their molecular components remain largely unknown. Here, we report that a leucine-rich repeat-containing protein, LRRC23, is an RS3 head component essential for its head assembly and flagellar motility in mammalian spermatozoa. From infertile male patients with defective sperm motility, we identified a splice site variant of LRRC23. A mutant mouse model mimicking this variant produces a truncated LRRC23 at the C-terminus that fails to localize to the sperm tail, causing male infertility due to defective sperm motility. LRRC23 was previously proposed to be an ortholog of the RS stalk protein RSP15. However, we found that purified recombinant LRRC23 interacts with an RS head protein RSPH9, which is abolished by the C-terminal truncation. Evolutionary and structural comparison also shows that LRRC34, not LRRC23, is the RSP15 ortholog. Cryo-electron tomography clearly revealed that the absence of the RS3 head and the sperm-specific RS2-RS3 bridge structure in LRRC23 mutant spermatozoa. Our study provides new insights into the structure and function of RS3 in mammalian spermatozoa and the molecular pathogenicity of LRRC23 underlying reduced sperm motility in infertile human males.
Collapse
Affiliation(s)
- Jae Yeon Hwang
- Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT, 06510
- Present address, Department of Molecular Biology, Pusan National University, Pusan, South Korea, 43241
| | - Pengxin Chai
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, Yale University, New Haven, CT, 06510
| | - Shoaib Nawaz
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
- Present address, Department of Human Genetics, Sidra Medicine, Doha, Qatar, 26999
| | - Jungmin Choi
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, 06510
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea, 02841
| | | | - Shabir Hussain
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
- Present address, Clinical and Molecular Metabolism Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland, 00250
| | - Kaya Bilguvar
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, 06510
- Yale Center for Genome Analysis, Yale University, West Haven, CT, 06516
| | - Shrikant Mane
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea, 02841
- Yale Center for Genome Analysis, Yale University, West Haven, CT, 06516
| | - Richard P. Lifton
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, 10065
| | - Wasim Ahmad
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Kai Zhang
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, Yale University, New Haven, CT, 06510
| | - Jean-Ju Chung
- Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT, 06510
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT, 06510
| |
Collapse
|
3
|
Rabiasz A, Ziętkiewicz E. Schmidtea mediterranea as a Model Organism to Study the Molecular Background of Human Motile Ciliopathies. Int J Mol Sci 2023; 24:ijms24054472. [PMID: 36901899 PMCID: PMC10002865 DOI: 10.3390/ijms24054472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Cilia and flagella are evolutionarily conserved organelles that form protrusions on the surface of many growth-arrested or differentiated eukaryotic cells. Due to the structural and functional differences, cilia can be roughly classified as motile and non-motile (primary). Genetically determined dysfunction of motile cilia is the basis of primary ciliary dyskinesia (PCD), a heterogeneous ciliopathy affecting respiratory airways, fertility, and laterality. In the face of the still incomplete knowledge of PCD genetics and phenotype-genotype relations in PCD and the spectrum of PCD-like diseases, a continuous search for new causative genes is required. The use of model organisms has been a great part of the advances in understanding molecular mechanisms and the genetic basis of human diseases; the PCD spectrum is not different in this respect. The planarian model (Schmidtea mediterranea) has been intensely used to study regeneration processes, and-in the context of cilia-their evolution, assembly, and role in cell signaling. However, relatively little attention has been paid to the use of this simple and accessible model for studying the genetics of PCD and related diseases. The recent rapid development of the available planarian databases with detailed genomic and functional annotations prompted us to review the potential of the S. mediterranea model for studying human motile ciliopathies.
Collapse
|
4
|
Analysis of motility and mucociliary function of tracheal epithelial cilia. Methods Cell Biol 2023; 176:159-180. [PMID: 37164536 DOI: 10.1016/bs.mcb.2022.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The airway epithelium contains numerous multiciliated cells. The apical surface of multiciliated cells is covered with cilia that move at 15-25Hz. Ciliary movement is not a simple reciprocal movement and distinctly has forward and reverse movements called effective and recovery strokes, respectively. These "asymmetric" ciliary strokes push away the mucus covering the mucosa of the airway epithelium. Mucus flow created by ciliary stroke is important for capturing and expelling dust, pollen, PM2.5, pathogens, and other particles that enter the airways from outside the body. This mechanism for protecting the airways produced by ciliary movement is called mucociliary function. Defects in ciliary motility lead to impairment of mucociliary function, resulting in recurrent airway infections such as bronchitis and pneumonia, and consequently, bronchiectasis. While the analysis of ciliary beat frequency is relatively easy, the analyses of the amplitude, velocities of strokes, and the asymmetric level require specific techniques and tips. In this chapter, we present methods for the analysis of ciliary movements of a group of cilia on the luminal surface of the trachea ex vivo and individually isolated and ATP-reactivated cilia in vitro. In addition, a method for the analysis of mucociliary function is also presented.
Collapse
|
5
|
Beentjes D, Shears RK, French N, Neill DR, Kadioglu A. Mechanistic Insights into the Impact of Air Pollution on Pneumococcal Pathogenesis and Transmission. Am J Respir Crit Care Med 2022; 206:1070-1080. [PMID: 35649181 PMCID: PMC9704843 DOI: 10.1164/rccm.202112-2668tr] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/01/2022] [Indexed: 11/16/2022] Open
Abstract
Streptococcus pneumoniae (the pneumococcus) is the leading cause of pneumonia and bacterial meningitis. A number of recent studies indicate an association between the incidence of pneumococcal disease and exposure to air pollution. Although the epidemiological evidence is substantial, the underlying mechanisms by which the various components of air pollution (particulate matter and gases such as NO2 and SO2) can increase susceptibility to pneumococcal infection are less well understood. In this review, we summarize the various effects air pollution components have on pneumococcal pathogenesis and transmission; exposure to air pollution can enhance host susceptibility to pneumococcal colonization by impairing the mucociliary activity of the airway mucosa, reducing the function and production of key antimicrobial peptides, and upregulating an important pneumococcal adherence factor on respiratory epithelial cells. Air pollutant exposure can also impair the phagocytic killing ability of macrophages, permitting increased replication of S. pneumoniae. In addition, particulate matter has been shown to activate various extra- and intracellular receptors of airway epithelial cells, which may lead to increased proinflammatory cytokine production. This increases recruitment of innate immune cells, including macrophages and neutrophils. The inflammatory response that ensues may result in significant tissue damage, thereby increasing susceptibility to invasive disease, because it allows S. pneumoniae access to the underlying tissues and blood. This review provides an in-depth understanding of the interaction between air pollution and the pneumococcus, which has the potential to aid the development of novel treatments or alternative strategies to prevent disease, especially in areas with high concentrations of air pollution.
Collapse
Affiliation(s)
- Daan Beentjes
- Department of Clinical Immunology, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Rebecca K Shears
- Department of Clinical Immunology, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Neil French
- Department of Clinical Immunology, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Daniel R Neill
- Department of Clinical Immunology, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Aras Kadioglu
- Department of Clinical Immunology, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
6
|
Rogers TD, Button B, Kelada SNP, Ostrowski LE, Livraghi-Butrico A, Gutay MI, Esther CR, Grubb BR. Regional Differences in Mucociliary Clearance in the Upper and Lower Airways. Front Physiol 2022; 13:842592. [PMID: 35356083 PMCID: PMC8959816 DOI: 10.3389/fphys.2022.842592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/24/2022] [Indexed: 12/16/2022] Open
Abstract
As the nasal cavity is the portal of entry for inspired air in mammals, this region is exposed to the highest concentration of inhaled particulate matter and pathogens, which must be removed to keep the lower airways sterile. Thus, one might expect vigorous removal of these substances via mucociliary clearance (MCC) in this region. We have investigated the rate of MCC in the murine nasal cavity compared to the more distal airways (trachea). The rate of MCC in the nasal cavity (posterior nasopharynx, PNP) was ∼3-4× greater than on the tracheal wall. This appeared to be due to a more abundant population of ciliated cells in the nasal cavity (∼80%) compared to the more sparsely ciliated trachea (∼40%). Interestingly, the tracheal ventral wall exhibited a significantly lower rate of MCC than the tracheal posterior membrane. The trachealis muscle underlying the ciliated epithelium on the posterior membrane appeared to control the surface architecture and likely in part the rate of MCC in this tracheal region. In one of our mouse models (Bpifb1 KO) exhibiting a 3-fold increase in MUC5B protein in lavage fluid, MCC particle transport on the tracheal walls was severely compromised, yet normal MCC occurred on the tracheal posterior membrane. While a blanket of mucus covered the surface of both the PNP and trachea, this mucus appeared to be transported as a blanket by MCC only in the PNP. In contrast, particles appeared to be transported as discrete patches or streams of mucus in the trachea. In addition, particle transport in the PNP was fairly linear, in contrast transport of particles in the trachea often followed a more non-linear route. The thick, viscoelastic mucus blanket that covered the PNP, which exhibited ∼10-fold greater mass of mucus than did the blanket covering the surface of the trachea, could be transported over large areas completely devoid of cells (made by a breach in the epithelial layer). In contrast, particles could not be transported over even a small epithelial breach in the trachea. The thick mucus blanket in the PNP likely aids in particle transport over the non-ciliated olfactory cells in the nasal cavity and likely contributes to humidification and more efficient particle trapping in this upper airway region.
Collapse
Affiliation(s)
- Troy D. Rogers
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Brian Button
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Samir N. P. Kelada
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lawrence E. Ostrowski
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | | | - Mark I. Gutay
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Charles R. Esther
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Barbara R. Grubb
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|
7
|
Niziolek M, Bicka M, Osinka A, Samsel Z, Sekretarska J, Poprzeczko M, Bazan R, Fabczak H, Joachimiak E, Wloga D. PCD Genes-From Patients to Model Organisms and Back to Humans. Int J Mol Sci 2022; 23:ijms23031749. [PMID: 35163666 PMCID: PMC8836003 DOI: 10.3390/ijms23031749] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 01/27/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is a hereditary genetic disorder caused by the lack of motile cilia or the assembxly of dysfunctional ones. This rare human disease affects 1 out of 10,000-20,000 individuals and is caused by mutations in at least 50 genes. The past twenty years brought significant progress in the identification of PCD-causative genes and in our understanding of the connections between causative mutations and ciliary defects observed in affected individuals. These scientific advances have been achieved, among others, due to the extensive motile cilia-related research conducted using several model organisms, ranging from protists to mammals. These are unicellular organisms such as the green alga Chlamydomonas, the parasitic protist Trypanosoma, and free-living ciliates, Tetrahymena and Paramecium, the invertebrate Schmidtea, and vertebrates such as zebrafish, Xenopus, and mouse. Establishing such evolutionarily distant experimental models with different levels of cell or body complexity was possible because both basic motile cilia ultrastructure and protein composition are highly conserved throughout evolution. Here, we characterize model organisms commonly used to study PCD-related genes, highlight their pros and cons, and summarize experimental data collected using these models.
Collapse
Affiliation(s)
- Michal Niziolek
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Marta Bicka
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Faculty of Chemistry, University of Warsaw, 1 Pasteur Street, 02-093 Warsaw, Poland
| | - Anna Osinka
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Zuzanna Samsel
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Justyna Sekretarska
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Martyna Poprzeczko
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| | - Rafal Bazan
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Correspondence: (E.J.); (D.W.); Tel.: +48-22-58-92-338 (E.J. & D.W.)
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Correspondence: (E.J.); (D.W.); Tel.: +48-22-58-92-338 (E.J. & D.W.)
| |
Collapse
|
8
|
Ostrowski LE, Yin W, Smith AJ, Sears PR, Bustamante-Marin XM, Dang H, Hildebrandt F, Daniels LA, Capps NA, Sullivan KM, Leigh MW, Zariwala MA, Knowles MR. Expression of a Truncated Form of ODAD1 Associated with an Unusually Mild Primary Ciliary Dyskinesia Phenotype. Int J Mol Sci 2022; 23:ijms23031753. [PMID: 35163670 PMCID: PMC8835943 DOI: 10.3390/ijms23031753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/19/2022] [Accepted: 01/30/2022] [Indexed: 11/25/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a rare lung disease caused by mutations that impair the function of motile cilia, resulting in chronic upper and lower respiratory disease, reduced fertility, and a high prevalence of situs abnormalities. The disease is genetically and phenotypically heterogeneous, with causative mutations in > 50 genes identified, and clinical phenotypes ranging from mild to severe. Absence of ODAD1 (CCDC114), a component of the outer dynein arm docking complex, results in a failure to assemble outer dynein arms (ODAs), mostly immotile cilia, and a typical PCD phenotype. We identified a female (now 34 years old) with an unusually mild clinical phenotype who has a homozygous non-canonical splice mutation (c.1502+5G>A) in ODAD1. To investigate the mechanism for the unusual phenotype, we performed molecular and functional studies of cultured nasal epithelial cells. We demonstrate that this splice mutation results in the expression of a truncated protein that is attached to the axoneme, indicating that the mutant protein retains partial function. This allows for the assembly of some ODAs and a significant level of ciliary activity that may result in the atypically mild clinical phenotype. The results also suggest that partial restoration of ciliary function by therapeutic agents could lead to significant improvement of disease symptoms.
Collapse
Affiliation(s)
- Lawrence E. Ostrowski
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.Y.); (A.J.S.); (P.R.S.); (X.M.B.-M.); (H.D.); (L.A.D.); (N.A.C.); (K.M.S.); (M.W.L.); (M.A.Z.)
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence: (L.E.O.); (M.R.K.)
| | - Weining Yin
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.Y.); (A.J.S.); (P.R.S.); (X.M.B.-M.); (H.D.); (L.A.D.); (N.A.C.); (K.M.S.); (M.W.L.); (M.A.Z.)
| | - Amanda J. Smith
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.Y.); (A.J.S.); (P.R.S.); (X.M.B.-M.); (H.D.); (L.A.D.); (N.A.C.); (K.M.S.); (M.W.L.); (M.A.Z.)
| | - Patrick R. Sears
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.Y.); (A.J.S.); (P.R.S.); (X.M.B.-M.); (H.D.); (L.A.D.); (N.A.C.); (K.M.S.); (M.W.L.); (M.A.Z.)
| | - Ximena M. Bustamante-Marin
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.Y.); (A.J.S.); (P.R.S.); (X.M.B.-M.); (H.D.); (L.A.D.); (N.A.C.); (K.M.S.); (M.W.L.); (M.A.Z.)
| | - Hong Dang
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.Y.); (A.J.S.); (P.R.S.); (X.M.B.-M.); (H.D.); (L.A.D.); (N.A.C.); (K.M.S.); (M.W.L.); (M.A.Z.)
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02113, USA;
| | - Leigh Anne Daniels
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.Y.); (A.J.S.); (P.R.S.); (X.M.B.-M.); (H.D.); (L.A.D.); (N.A.C.); (K.M.S.); (M.W.L.); (M.A.Z.)
| | - Nicole A. Capps
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.Y.); (A.J.S.); (P.R.S.); (X.M.B.-M.); (H.D.); (L.A.D.); (N.A.C.); (K.M.S.); (M.W.L.); (M.A.Z.)
| | - Kelli M. Sullivan
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.Y.); (A.J.S.); (P.R.S.); (X.M.B.-M.); (H.D.); (L.A.D.); (N.A.C.); (K.M.S.); (M.W.L.); (M.A.Z.)
| | - Margaret W. Leigh
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.Y.); (A.J.S.); (P.R.S.); (X.M.B.-M.); (H.D.); (L.A.D.); (N.A.C.); (K.M.S.); (M.W.L.); (M.A.Z.)
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Maimoona A. Zariwala
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.Y.); (A.J.S.); (P.R.S.); (X.M.B.-M.); (H.D.); (L.A.D.); (N.A.C.); (K.M.S.); (M.W.L.); (M.A.Z.)
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael R. Knowles
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.Y.); (A.J.S.); (P.R.S.); (X.M.B.-M.); (H.D.); (L.A.D.); (N.A.C.); (K.M.S.); (M.W.L.); (M.A.Z.)
- Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence: (L.E.O.); (M.R.K.)
| |
Collapse
|
9
|
Forno E, Abman SH, Singh J, Robbins ME, Selvadurai H, Schumacker PT, Robinson PD. Update in Pediatrics 2020. Am J Respir Crit Care Med 2021; 204:274-284. [PMID: 34126039 DOI: 10.1164/rccm.202103-0605up] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Erick Forno
- Division of Pediatric Pulmonary Medicine, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Steven H Abman
- Department of Pediatrics, Children's Hospital Colorado, Denver, Colorado.,University of Colorado Anschutz School of Medicine, Denver, Colorado
| | - Jagdev Singh
- Department of Respiratory Medicine, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Mary E Robbins
- Division of Neonatology, Ann and Robert H. Lurie Children's Hospital, Chicago, Illinois; and.,Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Hiran Selvadurai
- Department of Respiratory Medicine, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Paul T Schumacker
- Division of Neonatology, Ann and Robert H. Lurie Children's Hospital, Chicago, Illinois; and.,Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Paul D Robinson
- Department of Respiratory Medicine, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
10
|
Zhao Y, Pinskey J, Lin J, Yin W, Sears PR, Daniels LA, Zariwala MA, Knowles MR, Ostrowski LE, Nicastro D. Structural insights into the cause of human RSPH4A primary ciliary dyskinesia. Mol Biol Cell 2021; 32:1202-1209. [PMID: 33852348 PMCID: PMC8351563 DOI: 10.1091/mbc.e20-12-0806] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/25/2021] [Accepted: 04/06/2021] [Indexed: 11/30/2022] Open
Abstract
Cilia and flagella are evolutionarily conserved eukaryotic organelles involved in cell motility and signaling. In humans, mutations in Radial Spoke Head Component 4A (RSPH4A) can lead to primary ciliary dyskinesia (PCD), a life-shortening disease characterized by chronic respiratory tract infections, abnormal organ positioning, and infertility. Despite its importance for human health, the location of RSPH4A in human cilia has not been resolved, and the structural basis of RSPH4A-/- PCD remains elusive. Here, we present the native three-dimensional structure of RSPH4A-/- human respiratory cilia using samples collected noninvasively from a PCD patient. Using cryo-electron tomography (cryo-ET) and subtomogram averaging, we compared the structures of control and RSPH4A-/- cilia, revealing primary defects in two of the three radial spokes (RSs) within the axonemal repeat and secondary (heterogeneous) defects in the central pair complex. Similar to RSPH1-/- cilia, the radial spoke heads of RS1 and RS2, but not RS3, were missing in RSPH4A-/- cilia. However, RSPH4A-/- cilia also exhibited defects within the arch domains adjacent to the RS1 and RS2 heads, which were not observed with RSPH1 loss. Our results provide insight into the underlying structural basis for RSPH4A-/- PCD and highlight the benefits of applying cryo-ET directly to patient samples for molecular structure determination.
Collapse
Affiliation(s)
- Yanhe Zhao
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Justine Pinskey
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jianfeng Lin
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Weining Yin
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC 27599
| | - Patrick R Sears
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC 27599
| | - Leigh A Daniels
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC 27599
- Department of Medicine
| | - Maimoona A Zariwala
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC 27599
- Department of Pathology and Laboratory Medicine, and
| | - Michael R Knowles
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC 27599
- Department of Medicine
| | - Lawrence E Ostrowski
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC 27599
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Daniela Nicastro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
11
|
Lee L, Ostrowski LE. Motile cilia genetics and cell biology: big results from little mice. Cell Mol Life Sci 2020; 78:769-797. [PMID: 32915243 DOI: 10.1007/s00018-020-03633-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/11/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022]
Abstract
Our understanding of motile cilia and their role in disease has increased tremendously over the last two decades, with critical information and insight coming from the analysis of mouse models. Motile cilia form on specific epithelial cell types and typically beat in a coordinated, whip-like manner to facilitate the flow and clearance of fluids along the cell surface. Defects in formation and function of motile cilia result in primary ciliary dyskinesia (PCD), a genetically heterogeneous disorder with a well-characterized phenotype but no effective treatment. A number of model systems, ranging from unicellular eukaryotes to mammals, have provided information about the genetics, biochemistry, and structure of motile cilia. However, with remarkable resources available for genetic manipulation and developmental, pathological, and physiological analysis of phenotype, the mouse has risen to the forefront of understanding mammalian motile cilia and modeling PCD. This is evidenced by a large number of relevant mouse lines and an extensive body of genetic and phenotypic data. More recently, application of innovative cell biological techniques to these models has enabled substantial advancement in elucidating the molecular and cellular mechanisms underlying the biogenesis and function of mammalian motile cilia. In this article, we will review genetic and cell biological studies of motile cilia in mouse models and their contributions to our understanding of motile cilia and PCD pathogenesis.
Collapse
Affiliation(s)
- Lance Lee
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA. .,Department of Pediatrics, Sanford School of Medicine of the University of South Dakota, Sioux Falls, SD, USA.
| | - Lawrence E Ostrowski
- Marsico Lung Institute/Cystic Fibrosis Center and Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
12
|
Zhang X, Yue X, Cui Y, Zhao Z, Huang Y, Cai S, Wang G, Wang W, Hugh S, Pan X, Wu C, Tan W. A Systematic Safety Evaluation of Nanoporous Mannitol Material as a Dry-Powder Inhalation Carrier System. J Pharm Sci 2020; 109:1692-1702. [PMID: 31987851 DOI: 10.1016/j.xphs.2020.01.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/28/2019] [Accepted: 01/15/2020] [Indexed: 12/14/2022]
Abstract
For carrier-based dry-powder inhaler (DPI) formulations, the adhesion between carrier particles and active pharmaceutical ingredients (API) particles have a significant influence on the aerosolization performance of the API-carrier complexes and the desired detachment of the API for efficient pulmonary delivery. In our previous study, nanoporous mannitol material was successfully fabricated as carriers by a one-step nonorganic solvent spray drying method with the thermal degradation of ammonium carbonate. These carriers were shown to achieve excellent aerosolization performance. In addition, no residue of ammonium carbonate was detected on the powder surface. However, the safety of nanoporous mannitol carriers (Nano-PMCs) during pulmonary administration/delivery was still unknown because the lung is vulnerable to the inhaled particles. To address this question, the present study was conducted to construct a systematic safety evaluation for DPIs carriers to investigate the safety of Nano-PMCs in the whole inhalation, which would make up for the lack of detailed and standardized method in this field. In vitro safety evaluation was carried out using respiratory and pulmonary cytotoxicity tests, hemolysis assay, and ciliotoxicity test. In vivo safety evaluation was studied by measuring inflammatory indicators in the bronchoalveolar lavage fluid, assessing the pulmonary function and observing pulmonary pathological changes. Nano-PMCs showed satisfactory biocompatibility on respiratory tracts and lungs in vitro and in vivo. It was suggested that Nano-PMCs were safe for intrapulmonary delivery and potential as DPI carriers.
Collapse
Affiliation(s)
- Xuejuan Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006 Guangdong, P. R. China; School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong, P. R. China
| | - Xiao Yue
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong, P. R. China
| | - Yingtong Cui
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong, P. R. China
| | - Ziyu Zhao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong, P. R. China
| | - Ying Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong, P. R. China; College of Pharmacy, Jinan University, Guangzhou, 511443 Guangdong, P. R. China.
| | - Shihao Cai
- College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712
| | - Guanlin Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong, P. R. China
| | - Wenhao Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong, P. R. China
| | - Smyth Hugh
- College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong, P. R. China.
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong, P. R. China; College of Pharmacy, Jinan University, Guangzhou, 511443 Guangdong, P. R. China
| | - Wen Tan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006 Guangdong, P. R. China
| |
Collapse
|