1
|
Wang L, Pan M, Dong J, He Z, Wang W, Shu J, Wang T, Wang Y. Investigating cigarette smoke-induced airway inflammation and sperm activity impairment in rats based on cilia-associated proteins. 3 Biotech 2025; 15:136. [PMID: 40260407 PMCID: PMC12009257 DOI: 10.1007/s13205-025-04302-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/02/2025] [Indexed: 04/23/2025] Open
Abstract
The aim of this study was to investigate the mechanism of smoking-induced chronic obstructive pulmonary disease (COPD) and its impact on reproductive function in male rats and its relationship with chronic lung inflammation. The study used various methodologies including lung function tests, sperm quality assessment, serum hormone level measurement, and ultrastructural observations of airway cilia and sperm flagella to elucidate the effects of smoking on the reproductive and respiratory systems of rats. The results showed that smoking significantly induced lung damage and reduced sperm quality in rats, and the trend of lung damage and decreased sperm quality became more obvious with the increased duration of smoking. Transmission electron microscopy revealed that smoking exposure led to structural abnormalities of airway cilia and sperm flagella, and exposure after a period of three months showed significant damage to cilia and flagellar structures. Western blot and immunohistochemistry results indicated that the relative expression of NE proteins was significantly higher in the rats of the CS group, whereas the expression of FOXJ1 and SPAG6 proteins was notably lower in these rats after three months of smoking. In summary, smoke causes damage to the respiratory and reproductive systems of male rats, and the mechanism may be related to the destruction of airway cilia and sperm flagellar structures and the down-regulation of the expression of key ciliary proteins by smoke.
Collapse
Affiliation(s)
- Lei Wang
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012 China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230061 China
| | - Min Pan
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012 China
| | - Jinhui Dong
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012 China
| | - Zengyang He
- Technology Center of China Tobacco Anhui Industrial Co., LTD, Hefei, 230088 China
| | - Wenbin Wang
- Technology Center of China Tobacco Anhui Industrial Co., LTD, Hefei, 230088 China
| | - Junsheng Shu
- Technology Center of China Tobacco Anhui Industrial Co., LTD, Hefei, 230088 China
| | - Tongsheng Wang
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012 China
| | - Yajuan Wang
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012 China
| |
Collapse
|
2
|
Jairaman A, Prakriya M. Calcium Signaling in Airway Epithelial Cells: Current Understanding and Implications for Inflammatory Airway Disease. Arterioscler Thromb Vasc Biol 2024; 44:772-783. [PMID: 38385293 PMCID: PMC11090472 DOI: 10.1161/atvbaha.123.318339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Airway epithelial cells play an indispensable role in protecting the lung from inhaled pathogens and allergens by releasing an array of mediators that orchestrate inflammatory and immune responses when confronted with harmful environmental triggers. While this process is undoubtedly important for containing the effects of various harmful insults, dysregulation of the inflammatory response can cause lung diseases including asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis. A key cellular mechanism that underlies the inflammatory responses in the airway is calcium signaling, which stimulates the production and release of chemokines, cytokines, and prostaglandins from the airway epithelium. In this review, we discuss the role of major Ca2+ signaling pathways found in airway epithelial cells and their contributions to airway inflammation, mucociliary clearance, and surfactant production. We highlight the importance of store-operated Ca2+ entry as a major signaling hub in these processes and discuss therapeutic implications of targeting Ca2+ signaling for airway inflammation.
Collapse
Affiliation(s)
- Amit Jairaman
- Department of Physiology and Biophysics, School of Medicine, University of California-Irvine (UCI) (A.J.)
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (M.P.)
| |
Collapse
|
3
|
Shipman JG, Onyenwoke RU, Sivaraman V. Vaping-Dependent Pulmonary Inflammation Is Ca 2+ Mediated and Potentially Sex Specific. Int J Mol Sci 2024; 25:1785. [PMID: 38339063 PMCID: PMC10855597 DOI: 10.3390/ijms25031785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Here we use the SCIREQ InExpose system to simulate a biologically relevant vaping model in mice to investigate the role of calcium signaling in vape-dependent pulmonary disease as well as to investigate if there is a gender-based difference of disease. Male and female mice were vaped with JUUL Menthol (3% nicotine) using the SCIREQ InExpose system for 2 weeks. Additionally, 2-APB, a known calcium signaling inhibitor, was administered as a prophylactic for lung disease and damage caused by vaping. After 2 weeks, mice were exposed to lipopolysaccharide (LPS) to mimic a bacterial infection. Post-infection (24 h), mice were sacrificed, and bronchoalveolar lavage fluid (BALF) and lungs were taken. Vaping primed the lungs for worsened disease burden after microbial challenge (LPS) for both males and females, though females presented increased neutrophilia and inflammatory cytokines post-vape compared to males, which was assessed by flow cytometry, and cytokine and histopathological analysis. This increased inflammatory burden was controlled by calcium signaling inhibition, suggesting that calcium dysregulation may play a role in lung injury caused by vaping in a gender-dependent manner.
Collapse
Affiliation(s)
- Jeffrey G. Shipman
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA; (J.G.S.); (R.U.O.)
| | - Rob U. Onyenwoke
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA; (J.G.S.); (R.U.O.)
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC 27707, USA
| | - Vijay Sivaraman
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA; (J.G.S.); (R.U.O.)
- The Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| |
Collapse
|
4
|
Petit LMG, Belgacemi R, Ancel J, Saber Cherif L, Polette M, Perotin JM, Spassky N, Pilette C, Al Alam D, Deslée G, Dormoy V. Airway ciliated cells in adult lung homeostasis and COPD. Eur Respir Rev 2023; 32:230106. [PMID: 38056888 PMCID: PMC10698550 DOI: 10.1183/16000617.0106-2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/07/2023] [Indexed: 12/08/2023] Open
Abstract
Cilia are organelles emanating from the cell surface, consisting of an axoneme of microtubules that extends from a basal body derived from the centrioles. They are either isolated and nonmotile (primary cilia), or grouped and motile (motile cilia). Cilia are at the centre of fundamental sensory processes and are involved in a wide range of human disorders. Pulmonary cilia include motile cilia lining the epithelial cells of the conductive airways to orchestrate mucociliary clearance, and primary cilia found on nondifferentiated epithelial and mesenchymal cells acting as sensors and cell cycle keepers. Whereas cilia are essential along the airways, their regulatory molecular mechanisms remain poorly understood, resulting in a lack of therapeutic strategies targeting their structure or functions. This review summarises the current knowledge on cilia in the context of lung homeostasis and COPD to provide a comprehensive overview of the (patho)biology of cilia in respiratory medicine with a particular emphasis on COPD.
Collapse
Affiliation(s)
- Laure M G Petit
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France
| | - Randa Belgacemi
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Julien Ancel
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France
- CHU Reims, Hôpital Maison Blanche, Service de Pneumologie, Reims, France
| | - Lynda Saber Cherif
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France
| | - Myriam Polette
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France
- CHU Reims, Hôpital Maison Blanche, Laboratoire de Biopathologie, Reims, France
| | - Jeanne-Marie Perotin
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France
- CHU Reims, Hôpital Maison Blanche, Service de Pneumologie, Reims, France
| | - Nathalie Spassky
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris, Paris, France
| | - Charles Pilette
- Université Catholique de Louvain (UCL), Institute of Experimental and Clinical Research - Pole of Pneumology, ENT, Dermatology and Pulmonology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Denise Al Alam
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Gaëtan Deslée
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France
- CHU Reims, Hôpital Maison Blanche, Service de Pneumologie, Reims, France
| | - Valérian Dormoy
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France
| |
Collapse
|
5
|
Paul P, Tiwari B. Organelles are miscommunicating: Membrane contact sites getting hijacked by pathogens. Virulence 2023; 14:2265095. [PMID: 37862470 PMCID: PMC10591786 DOI: 10.1080/21505594.2023.2265095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 09/25/2023] [Indexed: 10/22/2023] Open
Abstract
Membrane Contact Sites (MCS) are areas of close apposition of organelles that serve as hotspots for crosstalk and direct transport of lipids, proteins and metabolites. Contact sites play an important role in Ca2+ signalling, phospholipid synthesis, and micro autophagy. Initially, altered regulation of vesicular trafficking was regarded as the key mechanism for intracellular pathogen survival. However, emerging studies indicate that pathogens hijack MCS elements - a novel strategy for survival and replication in an intracellular environment. Several pathogens exploit MCS to establish direct contact between organelles and replication inclusion bodies, which are essential for their survival within the cell. By establishing this direct control, pathogens gain access to cytosolic compounds necessary for replication, maintenance, escaping endocytic maturation and circumventing lysosome fusion. MCS components such as VAP A/B, OSBP, and STIM1 are targeted by pathogens through their effectors and secretion systems. In this review, we delve into the mechanisms which operate in the evasion of the host immune system when intracellular pathogens hostage MCS. We explore targeting MCS components as a novel therapeutic approach, modifying molecular pathways and signalling to address the disease's mechanisms and offer more effective, tailored treatments for affected individuals.
Collapse
Affiliation(s)
- Pratyashaa Paul
- Department of Biological Sciences, Indian Institute of Science Education and Research, India
| | - Bhavana Tiwari
- Department of Biological Sciences, Indian Institute of Science Education and Research, India
| |
Collapse
|
6
|
Shin S, Gombedza FC, Awuah Boadi E, Yiu AJ, Roy SK, Bandyopadhyay BC. Reduction of TRPC1/TRPC3 mediated Ca 2+-signaling protects oxidative stress-induced COPD. Cell Signal 2023; 107:110681. [PMID: 37062436 PMCID: PMC10542863 DOI: 10.1016/j.cellsig.2023.110681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/14/2023] [Accepted: 04/13/2023] [Indexed: 04/18/2023]
Abstract
Oxidative stress is a predisposing factor in Chronic Obstructive Pulmonary Disease (COPD). Specifically, pulmonary epithelial (PE) cells reduce antioxidant capacity during COPD because of the continuous production of reactive oxygen species (ROS). However, the molecular pathogenesis that governs such ROS activity is unclear. Here we show that the dysregulation of intracellular calcium concentration ([Ca2+]i) in PE cells from COPD patients, compared to the healthy PE cells, is associated with the robust functional expressions of Transient Receptor Potential Canonical (TRPC)1 and TRPC3 channels, and Ca2+ entry (SOCE) components, Stromal Interaction Molecule 1 (STIM1) and ORAI1 channels. Additionally, the elevated expression levels of fibrotic, inflammatory, oxidative, and apoptotic markers in cells from COPD patients suggest detrimental pathway activation, thereby reducing the ability of lung remodeling. To further delineate the mechanism, we used human lung epithelial cell line, A549, since the behavior of SOCE and the expression patterns of TRPC1/C3, STIM1, and ORAI1 were much like PE cells. Notably, the knockdown of TRPC1/C3 in A549 cells substantially reduced the SOCE-induced [Ca2+]i rise, and reversed the ROS-mediated oxidative, fibrotic, inflammatory, and apoptotic responses, thus confirming the role of TRPC1/C3 in SOCE driven COPD-like condition. Higher TRPC1/C3, STIM1, and ORAI1 expressions, along with a greater Ca2+ entry, via SOCE in ROS-induced A549 cells, led to the rise in oxidative, fibrotic, inflammatory, and apoptotic gene expression, specifically through the extracellular signal-regulated kinase (ERK) pathway. Abatement of TRPC1 and/or TRPC3 reduced the mobilization of [Ca2+]i and reversed apoptotic gene expression and ERK activation, signifying the involvement of TRPC1/C3. Together these data suggest that TRPC1/C3 and SOCE facilitate the COPD condition through ROS-mediated cell death, thus implicating their likely roles as potential therapeutic targets for COPD. SUMMARY: Alterations in Ca2+ signaling modalities in normal pulmonary epithelial cells exhibit COPD through oxidative stress and cellular injury, compromising repair, which was alleviated through inhibition of store-operated calcium entry. SUBJECT AREA: Calcium, ROS, Cellular signaling, lung disease.
Collapse
Affiliation(s)
- Samuel Shin
- From Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, United States of America
| | - Farai C Gombedza
- From Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, United States of America
| | - Eugenia Awuah Boadi
- From Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, United States of America
| | - Allen J Yiu
- From Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, United States of America
| | - Sanjit K Roy
- From Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, United States of America
| | - Bidhan C Bandyopadhyay
- From Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, United States of America.
| |
Collapse
|
7
|
Zhang Y, Xue X, Meng L, Li D, Qiao W, Wang J, Xie D. Roles of autophagy-related genes in the therapeutic effects of Xuanfei Pingchuan capsules on chronic obstructive pulmonary disease based on transcriptome sequencing analysis. Front Pharmacol 2023; 14:1123882. [PMID: 37274101 PMCID: PMC10232735 DOI: 10.3389/fphar.2023.1123882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/24/2023] [Indexed: 06/06/2023] Open
Abstract
Objective: Autophagy plays an important role in the occurrence and development of chronic obstructive pulmonary disease (COPD). We evaluated the effect of Xuanfei Pingchuan capsule (XFPC) on autophagy-related genes of COPD by a bioinformatics analysis and experimental verification. Methods: The best treatment duration was screened by CCK8 assays. HBE cells were divided into three groups: blank, CSE and XFPC. After intervened by XFPC, HBE cells were collected and sent to Shenzhen Huada Gene Company for transcriptome sequencing. Subsequently, differential expression analyses, target gene prediction, and function enrichment analyses were carried out. Expression changes were verified in HBE cells by real-time Quantitative PCR (RT-qPCR) and western blotting (WB). Results: The result of differential expression analysis displayed that 125 target genes of HBE cells were mainly related to mitogen-activated protein kinase (MKK) binding, interleukin 33 binding, 1-Pyrroline-5-carboxylate dehydrogenase activity, and the mitogen-activated protein kinase (MAPK) signal pathway. Among the target genes, the core genes related to autophagy obtained by maximum neighborhood component algorithm were CSF1, AREG, MAPK9, MAP3K7, and AKT3. RT-qPCR and WB methods were used to verify the result, it showed similar expression changes in CSF1, MAPK9, MAP3K7, and AKT3 in bronchial epithelial cells to those in the bioinformatics analysis. Conclusion: Through transcriptome sequencing and validation analysis, we predicted that CSF1, MAPK9, MAP3K7, and AKT3 may be the potential autophagy-related genes that play an important role in the pathogenesis of COPD. XFPC may regulate autophagy by down-regulating the expression of CSF1, MAPK9, MAP3K7, and AKT3, thus achieving the purpose of treating chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
| | - Xiaoming Xue
- Graduate School, Shanxi University of Chinese Medicine, Taiyuan, China
| | | | | | | | | | | |
Collapse
|
8
|
Weidinger D, Jamal Jameel K, Alisch D, Jacobsen J, Bürger P, Ruhe M, Yusuf F, Rohde S, Störtkuhl K, Kaufmann P, Kronsbein J, Peters M, Hatt H, Giannakis N, Knobloch J. OR2AT4 and OR1A2 counterregulate molecular pathophysiological processes of steroid-resistant inflammatory lung diseases in human alveolar macrophages. Mol Med 2022; 28:150. [PMID: 36503361 PMCID: PMC9743598 DOI: 10.1186/s10020-022-00572-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 11/08/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Therapeutic options for steroid-resistant non-type 2 inflammation in obstructive lung diseases are lacking. Alveolar macrophages are central in the progression of these diseases by releasing proinflammatory cytokines, making them promising targets for new therapeutic approaches. Extra nasal expressed olfactory receptors (ORs) mediate various cellular processes, but clinical data are lacking. This work investigates whether ORs in human primary alveolar macrophages could impact pathophysiological processes and could be considered as therapeutic targets. METHODS Human primary alveolar macrophages were isolated from bronchoalveolar lavages of 50 patients with pulmonary diseases. The expression of ORs was validated using RT-PCR, immunocytochemical staining, and Western blot. Changes in intracellular calcium levels were analyzed in real-time by calcium imaging. A luminescent assay was used to measure the cAMP concentration after OR stimulation. Cytokine secretion was measured in cell supernatants 24 h after stimulation by ELISA. Phagocytic ability was measured by the uptake of fluorescent-labeled beads by flow cytometry. RESULTS We demonstrated the expression of functional OR2AT4 and OR1A2 on mRNA and protein levels. Both ORs were primarily located in the plasma membrane. Stimulation with Sandalore, the ligand of OR2AT4, and Citronellal, the ligand of OR1A2, triggered a transient increase of intracellular calcium and cAMP. In the case of Sandalore, this calcium increase was based on a cAMP-dependent signaling pathway. Stimulation of alveolar macrophages with Sandalore and Citronellal reduced phagocytic capacity and release of proinflammatory cytokines. CONCLUSION These are the first indications for utilizing olfactory receptors as therapeutic target molecules in treating steroid-resistant lung diseases with non-type 2 inflammation.
Collapse
Affiliation(s)
- Daniel Weidinger
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Kaschin Jamal Jameel
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Desiree Alisch
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Julian Jacobsen
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Paul Bürger
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Matthias Ruhe
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Faisal Yusuf
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Simon Rohde
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Klemens Störtkuhl
- grid.5570.70000 0004 0490 981XAG Physiology of Senses, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Peter Kaufmann
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Juliane Kronsbein
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Marcus Peters
- grid.5570.70000 0004 0490 981XDepartment of Molecular Immunology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Hanns Hatt
- grid.5570.70000 0004 0490 981XDepartment of Cell Physiology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Nikolaos Giannakis
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Jürgen Knobloch
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| |
Collapse
|
9
|
Zhu X, Huang H, Zong Y, Zhang L. SRY-related high-mobility group box 9 (SOX9) alleviates cigarette smoke extract (CSE)-induced inflammatory injury in human bronchial epithelial cells by suppressing stromal interaction molecule 1 (STIM1) expression. Inflamm Res 2022; 71:565-576. [PMID: 35488927 DOI: 10.1007/s00011-022-01576-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/02/2022] [Accepted: 04/10/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Chronic obstructive pulmonary disease (COPD) is a chronic airway disease with airflow limitation and abnormal inflammatory response. It has been verified that SOX9 plays a key role in lung function of various lung diseases and SOX9 is closely associated with COPD. Additionally, literature has reported that STIM1 is involved in lung injury and is highly expressed in neutrophils from COPD patients. This study aimed to characterize the biological roles of SOX9 and STIM1 in the pathogenesis of COPD and to elucidate the regulatory mechanism. METHODS Human bronchial epithelial cells (BEAS-2B) were treated with CSE to construct in vitro COPD model. The levels of SOX9 and STIM1 in CSE-treated BEAS-2B cells were detected by western blot and RT-qPCR assay. Then, JASPAR datasets were utilized to analyze SOX9 binding sites in the promoter region of STIM1. Besides, luciferase reporter assay and ChIP assay were employed to validate the binding sites in STIM1 promoter region to SOX9. In addition, viability and apoptosis of BEAS-2B cells were assessed by utilizing MTT assay and TUNEL staining. ELISA kits and corresponding commercial kits were applied to measure the levels of TNF-α, IL-6, IL-1β, SOD, GSH-Px and MDA. RESULTS CSE treatment dose- and time-dependently reduced SOX9 expression in BEAS-2B cells. SOX9 overexpression enhanced the viability and suppressed the apoptosis of CSE-treated BEAS-2B cells as well as attenuated CSE-induced inflammation and oxidative stress. Then, it was validated that SOX9 bound to the promoter region of STIM1. Moreover, SOX9 overexpression-mediated impacts on cell viability, cell apoptosis, inflammation and oxidative stress in CSE-treated BEAS-2B cells were partially abolished by upregulation of STIM1. CONCLUSION To sum up, results here suggested that overexpression of SOX9 could mitigate inflammatory injury in CSE-treated bronchial epithelial cells by suppressing STIM1.
Collapse
Affiliation(s)
- Xiaohan Zhu
- Nursing School, Zheng Zhou Railway Vocational and Technical College, Zhengzhou, 451460, Henan, China
| | - Hemei Huang
- Nursing School, Zheng Zhou Railway Vocational and Technical College, Zhengzhou, 451460, Henan, China
| | - Yijun Zong
- Department of Medical Nursing, College of Nursing, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
| | - Linghui Zhang
- Department of Internal Medicine, Shijiazhuang Medical College, No. 1 Tongxin Road, Lingshou County, Shijiazhuang, 050599, Hebei, China.
- Department of Clinical Medicine, Shijiazhuang Medical College, No. 1 Tongxin Road, Lingshou County, Shijiazhuang, 050599, Hebei, China.
| |
Collapse
|
10
|
Shipman JG, Onyenwoke RU, Sivaraman V. Calcium-Dependent Pulmonary Inflammation and Pharmacological Interventions and Mediators. BIOLOGY 2021; 10:1053. [PMID: 34681152 PMCID: PMC8533358 DOI: 10.3390/biology10101053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 12/17/2022]
Abstract
Pulmonary diseases present a significant burden worldwide and lead to severe morbidity and mortality. Lung inflammation caused by interactions with either viruses, bacteria or fungi is a prominent characteristic of many pulmonary diseases. Tobacco smoke and E-cig use ("vaping") are considered major risk factors in the development of pulmonary disease as well as worsening disease prognosis. However, at present, relatively little is known about the mechanistic actions by which smoking and vaping may worsen the disease. One theory suggests that long-term vaping leads to Ca2+ signaling dysregulation. Ca2+ is an important secondary messenger in signal transduction. Cellular Ca2+ concentrations are mediated by a complex series of pumps, channels, transporters and exchangers that are responsible for triggering various intracellular processes such as cell death, proliferation and secretion. In this review, we provide a detailed understating of the complex series of components that mediate Ca2+ signaling and how their dysfunction may result in pulmonary disease. Furthermore, we summarize the recent literature investigating the negative effects of smoking and vaping on pulmonary disease, cell toxicity and Ca2+ signaling. Finally, we summarize Ca2+-mediated pharmacological interventions that could potentially lead to novel treatments for pulmonary diseases.
Collapse
Affiliation(s)
- Jeffrey G. Shipman
- Department of Biological and Biomedical Sciences, College of Health and Sciences, North Carolina Central University, Durham, NC 27707, USA;
| | - Rob U. Onyenwoke
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC 27707, USA;
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC 27707, USA
| | - Vijay Sivaraman
- Department of Biological and Biomedical Sciences, College of Health and Sciences, North Carolina Central University, Durham, NC 27707, USA;
| |
Collapse
|
11
|
Ancel J, Belgacemi R, Diabasana Z, Perotin JM, Bonnomet A, Dewolf M, Launois C, Mulette P, Deslée G, Polette M, Dormoy V. Impaired Ciliary Beat Frequency and Ciliogenesis Alteration during Airway Epithelial Cell Differentiation in COPD. Diagnostics (Basel) 2021; 11:diagnostics11091579. [PMID: 34573921 PMCID: PMC8469815 DOI: 10.3390/diagnostics11091579] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/19/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a frequent respiratory disease. However, its pathophysiology remains partially elucidated. Epithelial remodeling including alteration of the cilium is a major hallmark of COPD, but specific assessments of the cilium have been rarely investigated as a diagnostic tool in COPD. Here we explore the dysregulation of the ciliary function (ciliary beat frequency (CBF)) and differentiation (multiciliated cells formation in air-liquid interface cultures) of bronchial epithelial cells from COPD (n = 17) and non-COPD patients (n = 15). CBF was decreased by 30% in COPD (11.15 +/- 3.37 Hz vs. 7.89 +/- 3.39 Hz, p = 0.037). Ciliary differentiation was altered during airway epithelial cell differentiation from COPD patients. While the number of multiciliated cells decreased (p < 0.005), the number of primary ciliated cells increased (p < 0.05) and primary cilia were shorter (p < 0.05). Altogether, we demonstrate that COPD can be considered as a ciliopathy through both primary non-motile cilia modifications (related to airway epithelial cell repair and remodeling) and motile cilia function impairment (associated with decrease sputum clearance and clinical respiratory symptoms). These observations encourage considering cilia-associated features in the complex COPD physiopathology and highlight the potential of cilia-derived biomarkers for diagnosis.
Collapse
Affiliation(s)
- Julien Ancel
- Inserm UMR-S1250, P3Cell, Université de Reims Champagne Ardenne, SFR CAP-SANTE, 51092 Reims, France; (J.A.); (R.B.); (Z.D.); (J.-M.P.); (A.B.); (P.M.); (G.D.); (M.P.)
- Department of Respiratory Diseases, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, 51092 Reims, France; (M.D.); (C.L.)
| | - Randa Belgacemi
- Inserm UMR-S1250, P3Cell, Université de Reims Champagne Ardenne, SFR CAP-SANTE, 51092 Reims, France; (J.A.); (R.B.); (Z.D.); (J.-M.P.); (A.B.); (P.M.); (G.D.); (M.P.)
| | - Zania Diabasana
- Inserm UMR-S1250, P3Cell, Université de Reims Champagne Ardenne, SFR CAP-SANTE, 51092 Reims, France; (J.A.); (R.B.); (Z.D.); (J.-M.P.); (A.B.); (P.M.); (G.D.); (M.P.)
| | - Jeanne-Marie Perotin
- Inserm UMR-S1250, P3Cell, Université de Reims Champagne Ardenne, SFR CAP-SANTE, 51092 Reims, France; (J.A.); (R.B.); (Z.D.); (J.-M.P.); (A.B.); (P.M.); (G.D.); (M.P.)
- Department of Respiratory Diseases, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, 51092 Reims, France; (M.D.); (C.L.)
| | - Arnaud Bonnomet
- Inserm UMR-S1250, P3Cell, Université de Reims Champagne Ardenne, SFR CAP-SANTE, 51092 Reims, France; (J.A.); (R.B.); (Z.D.); (J.-M.P.); (A.B.); (P.M.); (G.D.); (M.P.)
- Platform of Cellular and Tissular Imaging (PICT), Université de Reims Champagne Ardenne, 51097 Reims, France
| | - Maxime Dewolf
- Department of Respiratory Diseases, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, 51092 Reims, France; (M.D.); (C.L.)
| | - Claire Launois
- Department of Respiratory Diseases, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, 51092 Reims, France; (M.D.); (C.L.)
| | - Pauline Mulette
- Inserm UMR-S1250, P3Cell, Université de Reims Champagne Ardenne, SFR CAP-SANTE, 51092 Reims, France; (J.A.); (R.B.); (Z.D.); (J.-M.P.); (A.B.); (P.M.); (G.D.); (M.P.)
- Department of Respiratory Diseases, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, 51092 Reims, France; (M.D.); (C.L.)
| | - Gaëtan Deslée
- Inserm UMR-S1250, P3Cell, Université de Reims Champagne Ardenne, SFR CAP-SANTE, 51092 Reims, France; (J.A.); (R.B.); (Z.D.); (J.-M.P.); (A.B.); (P.M.); (G.D.); (M.P.)
- Department of Respiratory Diseases, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, 51092 Reims, France; (M.D.); (C.L.)
| | - Myriam Polette
- Inserm UMR-S1250, P3Cell, Université de Reims Champagne Ardenne, SFR CAP-SANTE, 51092 Reims, France; (J.A.); (R.B.); (Z.D.); (J.-M.P.); (A.B.); (P.M.); (G.D.); (M.P.)
- Department of Biopathology, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, 51092 Reims, France
| | - Valérian Dormoy
- Inserm UMR-S1250, P3Cell, Université de Reims Champagne Ardenne, SFR CAP-SANTE, 51092 Reims, France; (J.A.); (R.B.); (Z.D.); (J.-M.P.); (A.B.); (P.M.); (G.D.); (M.P.)
- Correspondence:
| |
Collapse
|
12
|
Mitochondrial Dysfunction in Chronic Respiratory Diseases: Implications for the Pathogenesis and Potential Therapeutics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5188306. [PMID: 34354793 PMCID: PMC8331273 DOI: 10.1155/2021/5188306] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/30/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023]
Abstract
Mitochondria are indispensable for energy metabolism and cell signaling. Mitochondrial homeostasis is sustained with stabilization of mitochondrial membrane potential, balance of mitochondrial calcium, integrity of mitochondrial DNA, and timely clearance of damaged mitochondria via mitophagy. Mitochondrial dysfunction is featured by increased generation of mitochondrial reactive oxygen species, reduced mitochondrial membrane potential, mitochondrial calcium imbalance, mitochondrial DNA damage, and abnormal mitophagy. Accumulating evidence indicates that mitochondrial dysregulation causes oxidative stress, inflammasome activation, apoptosis, senescence, and metabolic reprogramming. All these cellular processes participate in the pathogenesis and progression of chronic respiratory diseases, including chronic obstructive pulmonary disease, pulmonary fibrosis, and asthma. In this review, we provide a comprehensive and updated overview of the impact of mitochondrial dysfunction on cellular processes involved in the development of these respiratory diseases. This not only implicates mechanisms of mitochondrial dysfunction for the pathogenesis of chronic lung diseases but also provides potential therapeutic approaches for these diseases by targeting dysfunctional mitochondria.
Collapse
|
13
|
Sivaraman V, Onyenwoke RU. Calcium Signaling Derangement and Disease Development and Progression. BIOLOGY 2021; 10:291. [PMID: 33918192 PMCID: PMC8066495 DOI: 10.3390/biology10040291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023]
Abstract
The importance of intracellular calcium (Ca2+) in regulating integral biological functions such as cell division, cell motility, autophagy, apoptosis and gene transcription through its capacity as a ubiquitous second messenger is clear [...].
Collapse
Affiliation(s)
- Vijay Sivaraman
- Department of Biological and Biomedical Sciences, College of Health and Sciences, North Carolina Central University, Durham, NC 27707, USA
| | - Rob U. Onyenwoke
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Room 2029, 1801 Fayetteville St., Durham, NC 27707, USA
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC 27707, USA
| |
Collapse
|
14
|
Deng Z, Kalin GT, Shi D, Kalinichenko VV. Nanoparticle Delivery Systems with Cell-Specific Targeting for Pulmonary Diseases. Am J Respir Cell Mol Biol 2021; 64:292-307. [PMID: 33095997 PMCID: PMC7909340 DOI: 10.1165/rcmb.2020-0306tr] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
Respiratory disorders are among the most important medical problems threatening human life. The conventional therapeutics for respiratory disorders are hindered by insufficient drug concentrations at pathological lesions, lack of cell-specific targeting, and various biobarriers in the conducting airways and alveoli. To address these critical issues, various nanoparticle delivery systems have been developed to serve as carriers of specific drugs, DNA expression vectors, and RNAs. The unique properties of nanoparticles, including controlled size and distribution, surface functional groups, high payload capacity, and drug release triggering capabilities, are tailored to specific requirements in drug/gene delivery to overcome major delivery barriers in pulmonary diseases. To avoid off-target effects and improve therapeutic efficacy, nanoparticles with high cell-targeting specificity are essential for successful nanoparticle therapies. Furthermore, low toxicity and high degradability of the nanoparticles are among the most important requirements in the nanoparticle designs. In this review, we provide the most up-to-date research and clinical outcomes in nanoparticle therapies for pulmonary diseases. We also address the current critical issues in key areas of pulmonary cell targeting, biosafety and compatibility, and molecular mechanisms for selective cellular uptake.
Collapse
Affiliation(s)
- Zicheng Deng
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio; and
- Center for Lung Regenerative Medicine
- Division of Pulmonary Biology, and
| | - Gregory T Kalin
- Center for Lung Regenerative Medicine
- Division of Pulmonary Biology, and
| | - Donglu Shi
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio; and
| | - Vladimir V Kalinichenko
- Center for Lung Regenerative Medicine
- Division of Pulmonary Biology, and
- Department of Pediatrics, College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
15
|
Alter P, Baker JR, Dauletbaev N, Donnelly LE, Pistenmaa C, Schmeck B, Washko G, Vogelmeier CF. Update in Chronic Obstructive Pulmonary Disease 2019. Am J Respir Crit Care Med 2020; 202:348-355. [PMID: 32407642 PMCID: PMC8054880 DOI: 10.1164/rccm.202002-0370up] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Peter Alter
- Department of Medicine, Pulmonary and Critical Care Medicine, Member of the German Center for Lung Research (DZL)
| | - Jonathan R. Baker
- Airway Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Nurlan Dauletbaev
- Department of Medicine, Pulmonary and Critical Care Medicine, Member of the German Center for Lung Research (DZL),Department of Pediatrics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada,Faculty of Medicine and Healthcare, al-Farabi Kazakh National University, Almaty, Kazakhstan; and
| | - Louise E. Donnelly
- Airway Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Carrie Pistenmaa
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Bernd Schmeck
- Department of Medicine, Pulmonary and Critical Care Medicine, Member of the German Center for Lung Research (DZL),Institute for Lung Research, Member of the DZL and of the German Center of Infection Research (DZIF), and,Center for Synthetic Microbiology (SYNMIKRO), Philipps University of Marburg, Marburg, Germany
| | - George Washko
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Claus F. Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, Member of the German Center for Lung Research (DZL)
| |
Collapse
|
16
|
Liu H, Liu X, Zhuang H, Fan H, Zhu D, Xu Y, He P, Liu J, Feng D. Mitochondrial Contact Sites in Inflammation-Induced Cardiovascular Disease. Front Cell Dev Biol 2020; 8:692. [PMID: 32903766 PMCID: PMC7438832 DOI: 10.3389/fcell.2020.00692] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022] Open
Abstract
The mitochondrion, the ATP-producing center, is both physically and functionally associated with almost all other organelles in the cell. Mitochondrial-associated membranes (MAMs) are involved in a variety of biological processes, such as lipid exchange, protein transport, mitochondrial fission, mitophagy, and inflammation. Several inflammation-related diseases in the cardiovascular system involve several intracellular events including mitochondrial dysfunction as well as disruption of MAMs. Therefore, an in-depth exploration of the function of MAMs will be of great significance for us to understand the initiation, progression, and clinical complications of cardiovascular disease (CVD). In this review, we summarize the recent advances in our knowledge of MAM regulation and function in CVD-related cells. We discuss the potential roles of MAMs in activating inflammation to influence the development of CVD.
Collapse
Affiliation(s)
- Hao Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiao Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Haixia Zhuang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Hualin Fan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Guangdong Provincial People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Dongxing Zhu
- Guangzhou Institute of Cardiovascular Diseases, The Second Affiliated Hospital, Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yiming Xu
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Pengcheng He
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jinbao Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Du Feng
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
17
|
Janssen-Heininger Y, Reynaert NL, van der Vliet A, Anathy V. Endoplasmic reticulum stress and glutathione therapeutics in chronic lung diseases. Redox Biol 2020; 33:101516. [PMID: 32249209 PMCID: PMC7251249 DOI: 10.1016/j.redox.2020.101516] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 02/07/2023] Open
Affiliation(s)
- Yvonne Janssen-Heininger
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, VT, 05405, USA.
| | - Niki L Reynaert
- Department of Respiratory Medicine and School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center, Maastricht, the Netherlands
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, VT, 05405, USA
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, VT, 05405, USA
| |
Collapse
|
18
|
McAlinden KD, Eapen MS, Ghavami S, Sohal SS, Sharma P. Altered Calcium in Ciliary Dysfunction: Potential Role of Endoplasmic Reticulum Stress and Ciliophagy. Am J Respir Cell Mol Biol 2019; 61:794-795. [PMID: 31774335 DOI: 10.1165/rcmb.2019-0157le] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
| | | | | | | | - Pawan Sharma
- Thomas Jefferson UniversityPhiladelphia, Pennsylvania
| |
Collapse
|
19
|
|