1
|
Yegambaram M, Pokharel MD, Sun X, Lu Q, Soto J, Aggarwal S, Maltepe E, Fineman JR, Wang T, Black SM. Restoration of pp60 Src Re-Establishes Electron Transport Chain Complex I Activity in Pulmonary Hypertensive Endothelial Cells. Int J Mol Sci 2025; 26:3815. [PMID: 40332450 PMCID: PMC12027647 DOI: 10.3390/ijms26083815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/02/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
It is well-established that mitochondrial dysfunction plays a critical role in the development of pulmonary hypertension (PH). However, the molecular mechanisms and how the individual electron transport complexes (ETC) may be affected are poorly understood. In this study, we identified decreased ETC Complex I activity and assembly and linked these changes to disrupted mitochondrial bioenergetics in pulmonary arterial endothelial cells (PAECs) isolated from a lamb model of PH with increased pulmonary blood flow (Shunt). These derangements were associated with decreased mitochondrial activity of the protein tyrosine kinase, pp60Src. Treating Control PAECs with either the Src family kinase inhibitor, PP2, or the siRNA-mediated knockdown of pp60Src was able to recapitulate the adverse effects on ETC Complex I activity and assembly and mitochondrial bioenergetics. Conversely, restoring pp60Src activity in lamb PH PAECs re-established ETC Complex I activity, improved ETC Complex I assembly and enhanced mitochondrial bioenergetics. Phosphoprotein enrichment followed by two-dimensional gel electrophoresis and tandem mass spectrometry was used to identify three ETC Complex I subunits (NDUFS1, NDUFAF5, and NDUFV2) as pp60Src substrates. Finally, we demonstrated that the pY levels of NDUFS1, NDUFAF5, and NDUFV2 are decreased in lamb PH PAECs. Enhancing mitochondrial pp60Src activity could be a therapeutic strategy to reverse PH-related mitochondrial dysfunction.
Collapse
Affiliation(s)
- Manivannan Yegambaram
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL 34987-2352, USA; (M.Y.); (M.D.P.); (X.S.); (Q.L.); (J.S.); (T.W.)
| | - Marissa D. Pokharel
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL 34987-2352, USA; (M.Y.); (M.D.P.); (X.S.); (Q.L.); (J.S.); (T.W.)
| | - Xutong Sun
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL 34987-2352, USA; (M.Y.); (M.D.P.); (X.S.); (Q.L.); (J.S.); (T.W.)
| | - Qing Lu
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL 34987-2352, USA; (M.Y.); (M.D.P.); (X.S.); (Q.L.); (J.S.); (T.W.)
| | - Jamie Soto
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL 34987-2352, USA; (M.Y.); (M.D.P.); (X.S.); (Q.L.); (J.S.); (T.W.)
| | - Saurabh Aggarwal
- Department of Cellular Biology & Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
| | - Emin Maltepe
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA; (E.M.); (J.R.F.)
| | - Jeffery R. Fineman
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA; (E.M.); (J.R.F.)
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94143, USA
| | - Ting Wang
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL 34987-2352, USA; (M.Y.); (M.D.P.); (X.S.); (Q.L.); (J.S.); (T.W.)
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Stephen M. Black
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL 34987-2352, USA; (M.Y.); (M.D.P.); (X.S.); (Q.L.); (J.S.); (T.W.)
- Department of Cellular Biology & Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
2
|
Sun X, Yegambaram M, Lu Q, Garcia Flores AE, Pokharel MD, Soto J, Aggarwal S, Wang T, Fineman JR, Black SM. Mitochondrial fission produces a Warburg effect via the oxidative inhibition of prolyl hydroxylase domain-2. Redox Biol 2025; 81:103529. [PMID: 39978304 PMCID: PMC11889635 DOI: 10.1016/j.redox.2025.103529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/15/2025] [Accepted: 02/02/2025] [Indexed: 02/22/2025] Open
Abstract
Excessive mitochondrial fission and a shift to a Warburg phenotype are hallmarks of pulmonary hypertension (PH), although the mechanistic link between these processes remains unclear. We show that in pulmonary arterial endothelial cells (PAEC), Drp1 overexpression induces mitochondrial fission and increases glycolytic ATP production and glycolysis. This is due to mitochondrial reactive oxygen species (mito-ROS)-mediated activation of hypoxia-inducible factor-1α (HIF-1α) signaling, and this is linked to hydrogen peroxide (H2O2)-mediated inhibition of prolyl hydroxylase domain-2 (PHD2) due to its cysteine 326 oxidation and dimerization. Furthermore, these findings are validated in PAEC isolated from a lamb model of PH, which are glycolytic (Shunt PAEC), exhibit increases in both H2O2 and PHD2 dimer levels. The overexpression of catalase reversed the PHD2 dimerization, decreased HIF-1α levels, and attenuated glycolysis in Shunt PAEC. Our data suggest that reducing PHD2 dimerization could be a potential therapeutic target for PH.
Collapse
Affiliation(s)
- Xutong Sun
- Florida International University, Center for Translational Science, Port Saint Lucie, FL, 34987, USA
| | - Manivannan Yegambaram
- Florida International University, Center for Translational Science, Port Saint Lucie, FL, 34987, USA
| | - Qing Lu
- Florida International University, Center for Translational Science, Port Saint Lucie, FL, 34987, USA
| | - Alejandro E Garcia Flores
- Florida International University, Center for Translational Science, Port Saint Lucie, FL, 34987, USA
| | - Marissa D Pokharel
- Florida International University, Center for Translational Science, Port Saint Lucie, FL, 34987, USA; The Departments of Cellular & Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Jamie Soto
- Florida International University, Center for Translational Science, Port Saint Lucie, FL, 34987, USA
| | - Saurabh Aggarwal
- The Departments of Cellular & Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Ting Wang
- Florida International University, Center for Translational Science, Port Saint Lucie, FL, 34987, USA; The Departments of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Jeffrey R Fineman
- The Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94143, USA; The Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Stephen M Black
- Florida International University, Center for Translational Science, Port Saint Lucie, FL, 34987, USA; The Departments of Cellular & Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA; The Departments of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
3
|
Campos OA, Garcia-Herreros A, Sánchez AL, Fineman JR, Pawlak G. A Multichamber Pulsating-Flow Device With Optimized Spatial Shear Stress and Pressure for Endothelial Cell Testing. J Biomech Eng 2025; 147:011006. [PMID: 39382480 PMCID: PMC11625645 DOI: 10.1115/1.4066800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Design and analysis are presented for a new device to test the response of endothelial cells to the simultaneous action of cyclic shear stresses and pressure fluctuations. The design consists of four pulsatile-flow chambers connected in series, where shear stress is identical in all four chambers and pressure amplitude decreases in successive chambers. Each flow chamber is bounded above and below by two parallel plates separated by a small gap. The design of the chamber planform must ensure that cells within the testing region experience spatially uniform time-periodic shear stress. For conditions typically encountered in applications, the viscous unsteady flow exhibits order-unity values of the associated Womersley number. The corresponding solution to the unsteady lubrication problem, with general nonsinusoidal flowrate, is formulated in terms of a stream function satisfying Laplace's equation, which can be integrated numerically to determine the spatial distribution of shear stresses for chambers of general planform. The results are used to optimize the design of a device with a hexagonal planform. Accompanying experiments using particle tracking velocimetry (PTV) in a fabricated chamber were conducted to validate theoretical predictions. Pressure readings indicate that intrachamber pressure variations associated with viscous pressure losses and acoustic fluctuations are relatively small, so that all cells in a given testing region experience nearly equal pressure forces.
Collapse
Affiliation(s)
- Obed A. Campos
- Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093-0411
| | - Antoni Garcia-Herreros
- Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093-0411
| | - Antonio L. Sánchez
- Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093-0411
| | - Jeffrey R. Fineman
- Department of Pediatrics, University of San Francisco, San Francisco, CA 94158; Cardiovascular Research Institute, University of San Francisco, San Francisco, CA 94158
| | - Geno Pawlak
- Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093-0411
| |
Collapse
|
4
|
Szafron JM, Yang W, Feinstein JA, Rabinovitch M, Marsden AL. A computational growth and remodeling framework for adaptive and maladaptive pulmonary arterial hemodynamics. Biomech Model Mechanobiol 2023; 22:1935-1951. [PMID: 37658985 PMCID: PMC10929588 DOI: 10.1007/s10237-023-01744-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/05/2023] [Indexed: 09/05/2023]
Abstract
Hemodynamic loading is known to contribute to the development and progression of pulmonary arterial hypertension (PAH). This loading drives changes in mechanobiological stimuli that affect cellular phenotypes and lead to pulmonary vascular remodeling. Computational models have been used to simulate mechanobiological metrics of interest, such as wall shear stress, at single time points for PAH patients. However, there is a need for new approaches that simulate disease evolution to allow for prediction of long-term outcomes. In this work, we develop a framework that models the pulmonary arterial tree through adaptive and maladaptive responses to mechanical and biological perturbations. We coupled a constrained mixture theory-based growth and remodeling framework for the vessel wall with a morphometric tree representation of the pulmonary arterial vasculature. We show that non-uniform mechanical behavior is important to establish the homeostatic state of the pulmonary arterial tree, and that hemodynamic feedback is essential for simulating disease time courses. We also employed a series of maladaptive constitutive models, such as smooth muscle hyperproliferation and stiffening, to identify critical contributors to development of PAH phenotypes. Together, these simulations demonstrate an important step toward predicting changes in metrics of clinical interest for PAH patients and simulating potential treatment approaches.
Collapse
Affiliation(s)
- Jason M Szafron
- Department of Pediatrics (Cardiology), Stanford University, Stanford, CA, 94305, USA
- Cardiovascular Institute, Stanford University, Palo Alto, CA, 94305, USA
| | - Weiguang Yang
- Department of Pediatrics (Cardiology), Stanford University, Stanford, CA, 94305, USA
| | - Jeffrey A Feinstein
- Department of Pediatrics (Cardiology), Stanford University, Stanford, CA, 94305, USA
- Cardiovascular Institute, Stanford University, Palo Alto, CA, 94305, USA
| | - Marlene Rabinovitch
- Department of Pediatrics (Cardiology), Stanford University, Stanford, CA, 94305, USA
- Cardiovascular Institute, Stanford University, Palo Alto, CA, 94305, USA
| | - Alison L Marsden
- Department of Pediatrics (Cardiology), Stanford University, Stanford, CA, 94305, USA.
- Cardiovascular Institute, Stanford University, Palo Alto, CA, 94305, USA.
| |
Collapse
|
5
|
Baenen O, Carreño-Martínez AC, Abraham TP, Rugonyi S. Energetics of Cardiac Blood Flow in Hypertrophic Cardiomyopathy through Individualized Computational Modeling. J Cardiovasc Dev Dis 2023; 10:411. [PMID: 37887858 PMCID: PMC10607792 DOI: 10.3390/jcdd10100411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a congenital heart disease characterized by thickening of the heart's left ventricle (LV) wall that can lead to cardiac dysfunction and heart failure. Ventricular wall thickening affects the motion of cardiac walls and blood flow within the heart. Because abnormal cardiac blood flow in turn could lead to detrimental remodeling of heart walls, aberrant ventricular flow patterns could exacerbate HCM progression. How blood flow patterns are affected by hypertrophy and inter-patient variability is not known. To address this gap in knowledge, we present here strategies to generate personalized computational fluid dynamics (CFD) models of the heart LV from patient cardiac magnetic resonance (cMR) images. We performed simulations of CFD LV models from three cases (one normal, two HCM). CFD computations solved for blood flow velocities, from which flow patterns and the energetics of flow within the LV were quantified. We found that, compared to a normal heart, HCM hearts exhibit anomalous flow patterns and a mismatch in the timing of energy transfer from the LV wall to blood flow, as well as changes in kinetic energy flow patterns. While our results are preliminary, our presented methodology holds promise for in-depth analysis of HCM patient hemodynamics in clinical practice.
Collapse
Affiliation(s)
- Owen Baenen
- Department of Mechanical Engineering, Rice University, Houston, TX 77005, USA;
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97239, USA
| | - Angie Carolina Carreño-Martínez
- USCF HCM Center, Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA (T.P.A.)
| | - Theodore P. Abraham
- USCF HCM Center, Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA (T.P.A.)
| | - Sandra Rugonyi
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
6
|
Soares JHN, Raff GW, Fineman JR, Datar SA. Respiratory mechanics and gas exchange in an ovine model of congenital heart disease with increased pulmonary blood flow and pressure. Front Physiol 2023; 14:1188824. [PMID: 37362431 PMCID: PMC10288580 DOI: 10.3389/fphys.2023.1188824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
In a model of congenital heart disease (CHD), we evaluated if chronically increased pulmonary blood flow and pressure were associated with altered respiratory mechanics and gas exchange. Respiratory mechanics and gas exchange were evaluated in 6 shunt, 7 SHAM, and 7 control age-matched lambs. Lambs were anesthetized and mechanically ventilated for 15 min with tidal volume of 10 mL/kg, positive end-expiratory pressure of 5 cmH2O, and inspired oxygen fraction of 0.21. Respiratory system, lung and chest wall compliances (Crs, CL and Ccw, respectively) and resistances (Rrs, RL and Rcw, respectively), and the profile of the elastic pressure-volume curve (%E2) were evaluated. Arterial blood gases and volumetric capnography variables were collected. Comparisons between groups were performed by one-way ANOVA followed by Tukey-Kramer test for normally distributed data and with Kruskal-Wallis test followed by Steel-Dwass test for non-normally distributed data. Average Crs and CL in shunt lambs were 30% and 58% lower than in control, and 56% and 68% lower than in SHAM lambs, respectively. Ccw was 52% and 47% higher and Rcw was 53% and 40% lower in shunt lambs compared to controls and SHAMs, respectively. No difference in %E2 was identified between groups. No difference in respiratory mechanics was observed between control and SHAM lambs. In shunt lambs, Rcw, Crs and CL were decreased and Ccw was increased when compared to control and SHAM lambs. Pulmonary gas exchange did not seem to be impaired in shunt lambs when compared to controls and SHAMs.
Collapse
Affiliation(s)
- Joao Henrique N. Soares
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Gary W. Raff
- Department of Surgery, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Jeffrey R. Fineman
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
- Department of Pediatrics, School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Sanjeev A. Datar
- Department of Pediatrics, School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
7
|
Chakraborty A, Nathan A, Orcholski M, Agarwal S, Shamskhou EA, Auer N, Mitra A, Guardado ES, Swaminathan G, Condon DF, Yu J, McCarra M, Juul NH, Mallory A, Guzman-Hernandez RA, Yuan K, Rojas V, Crossno JT, Yung LM, Yu PB, Spencer T, Winn RA, Frump A, Karoor V, Lahm T, Hedlin H, Fineman JR, Lafyatis R, Knutsen CNF, Alvira CM, Cornfield DN, de Jesus Perez VA. Wnt7a deficit is associated with dysfunctional angiogenesis in pulmonary arterial hypertension. Eur Respir J 2023; 61:2201625. [PMID: 37024132 PMCID: PMC10259331 DOI: 10.1183/13993003.01625-2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/21/2023] [Indexed: 04/08/2023]
Abstract
INTRODUCTION Pulmonary arterial hypertension (PAH) is characterised by loss of microvessels. The Wnt pathways control pulmonary angiogenesis but their role in PAH is incompletely understood. We hypothesised that Wnt activation in pulmonary microvascular endothelial cells (PMVECs) is required for pulmonary angiogenesis, and its loss contributes to PAH. METHODS Lung tissue and PMVECs from healthy and PAH patients were screened for Wnt production. Global and endothelial-specific Wnt7a -/- mice were generated and exposed to chronic hypoxia and Sugen-hypoxia (SuHx). RESULTS Healthy PMVECs demonstrated >6-fold Wnt7a expression during angiogenesis that was absent in PAH PMVECs and lungs. Wnt7a expression correlated with the formation of tip cells, a migratory endothelial phenotype critical for angiogenesis. PAH PMVECs demonstrated reduced vascular endothelial growth factor (VEGF)-induced tip cell formation as evidenced by reduced filopodia formation and motility, which was partially rescued by recombinant Wnt7a. We discovered that Wnt7a promotes VEGF signalling by facilitating Y1175 tyrosine phosphorylation in vascular endothelial growth factor receptor 2 (VEGFR2) through receptor tyrosine kinase-like orphan receptor 2 (ROR2), a Wnt-specific receptor. We found that ROR2 knockdown mimics Wnt7a insufficiency and prevents recovery of tip cell formation with Wnt7a stimulation. While there was no difference between wild-type and endothelial-specific Wnt7a -/- mice under either chronic hypoxia or SuHx, global Wnt7a +/- mice in hypoxia demonstrated higher pulmonary pressures and severe right ventricular and lung vascular remodelling. Similar to PAH, Wnt7a +/- PMVECs exhibited an insufficient angiogenic response to VEGF-A that improved with Wnt7a. CONCLUSIONS Wnt7a promotes VEGF signalling in lung PMVECs and its loss is associated with an insufficient VEGF-A angiogenic response. We propose that Wnt7a deficiency contributes to progressive small vessel loss in PAH.
Collapse
Affiliation(s)
- Ananya Chakraborty
- Division of Pulmonary and Critical Care, Stanford University, Palo Alto, CA, USA
- These authors contributed equally
| | - Abinaya Nathan
- Division of Pulmonary and Critical Care, Stanford University, Palo Alto, CA, USA
- These authors contributed equally
| | - Mark Orcholski
- Department of Medicine, University of Laval, Quebec City, QC, Canada
| | - Stuti Agarwal
- Division of Pulmonary and Critical Care, Stanford University, Palo Alto, CA, USA
| | | | - Natasha Auer
- Division of Pulmonary and Critical Care, Stanford University, Palo Alto, CA, USA
| | - Ankita Mitra
- Division of Pulmonary and Critical Care, Stanford University, Palo Alto, CA, USA
| | | | - Gowri Swaminathan
- Division of Pulmonary and Critical Care, Stanford University, Palo Alto, CA, USA
| | - David F Condon
- Division of Pulmonary and Critical Care, Stanford University, Palo Alto, CA, USA
| | - Joyce Yu
- Division of Pulmonary and Critical Care, Stanford University, Palo Alto, CA, USA
| | - Matthew McCarra
- Division of Pulmonary and Critical Care, Stanford University, Palo Alto, CA, USA
| | - Nicholas H Juul
- Division of Pulmonary and Critical Care, Stanford University, Palo Alto, CA, USA
| | | | | | - Ke Yuan
- Boston Children's Hospital, Boston, MA, USA
| | | | - Joseph T Crossno
- Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Paul B Yu
- Brigham and Women's Hospital, Boston, MA, USA
| | | | - Robert A Winn
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | - Tim Lahm
- National Jewish Center, Denver, CO, USA
| | - Haley Hedlin
- Division of Pulmonary and Critical Care, Stanford University, Palo Alto, CA, USA
| | - Jeffrey R Fineman
- Department of Pediatrics and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Robert Lafyatis
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Carsten N F Knutsen
- Division of Pediatric Critical Care Medicine, Stanford University, Palo Alto, CA, USA
| | - Cristina M Alvira
- Division of Pediatric Critical Care Medicine, Stanford University, Palo Alto, CA, USA
| | - David N Cornfield
- Division of Pediatric Pulmonary and Critical Care Medicine, Stanford University, Palo Alto, CA, USA
| | | |
Collapse
|
8
|
Lu Q, Sun X, Yegambaram M, Ornatowski W, Wu X, Wang H, Garcia-Flores A, Da Silva V, Zemskov EA, Tang H, Fineman JR, Tieu K, Wang T, Black SM. Nitration-mediated activation of the small GTPase RhoA stimulates cellular glycolysis through enhanced mitochondrial fission. J Biol Chem 2023; 299:103067. [PMID: 36841483 PMCID: PMC10060112 DOI: 10.1016/j.jbc.2023.103067] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/27/2023] Open
Abstract
Mitochondrial fission and a Warburg phenotype of increased cellular glycolysis are involved in the pathogenesis of pulmonary hypertension (PH). The purpose of this study was to determine whether increases in mitochondrial fission are involved in a glycolytic switch in pulmonary arterial endothelial cells (PAECs). Mitochondrial fission is increased in PAEC isolated from a sheep model of PH induced by pulmonary overcirculation (Shunt PAEC). In Shunt PAEC we identified increases in the S616 phosphorylation responsible for dynamin-related protein 1 (Drp1) activation, the mitochondrial redistribution of Drp1, and increased cellular glycolysis. Reducing mitochondrial fission attenuated cellular glycolysis in Shunt PAEC. In addition, we observed nitration-mediated activation of the small GTPase RhoA in Shunt PAEC, and utilizing a nitration-shielding peptide, NipR1 attenuated RhoA nitration and reversed the Warburg phenotype. Thus, our data identify a novel link between RhoA, mitochondrial fission, and cellular glycolysis and suggest that targeting RhoA nitration could have therapeutic benefits for treating PH.
Collapse
Affiliation(s)
- Qing Lu
- Center of Translational Science, Florida International University, Port St Lucie, Florida, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
| | - Xutong Sun
- Center of Translational Science, Florida International University, Port St Lucie, Florida, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
| | | | - Wojciech Ornatowski
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Xiaomin Wu
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Hui Wang
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Alejandro Garcia-Flores
- Center of Translational Science, Florida International University, Port St Lucie, Florida, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
| | - Victoria Da Silva
- Center of Translational Science, Florida International University, Port St Lucie, Florida, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
| | - Evgeny A Zemskov
- Center of Translational Science, Florida International University, Port St Lucie, Florida, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Haiyang Tang
- Center of Translational Science, Florida International University, Port St Lucie, Florida, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
| | - Jeffrey R Fineman
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA; Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, USA
| | - Kim Tieu
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
| | - Ting Wang
- Center of Translational Science, Florida International University, Port St Lucie, Florida, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
| | - Stephen M Black
- Center of Translational Science, Florida International University, Port St Lucie, Florida, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, Florida, USA.
| |
Collapse
|
9
|
NMR-Based Metabolomic Analysis of Plasma in Patients with Adult Congenital Heart Disease and Associated Pulmonary Arterial Hypertension: A Pilot Study. Metabolites 2022; 12:metabo12090845. [PMID: 36144249 PMCID: PMC9504385 DOI: 10.3390/metabo12090845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
Patients with unrepaired congenital heart disease (CHD) are prone to pulmonary arterial hypertension (PAH). The ovine pulmonary arterial smooth muscle cells exposed to increased pulmonary blood flow (PBF) exhibited hyperproliferation and metabolic alterations, but the metabolic disorders of patients with CHD and associated PAH (PAH-CHD) have not yet been fully understood. Adult CHD patients were prospectively included and divided into the PAH-CHD group (n = 24) and CHD group (n = 38), while healthy adults were included as healthy control (HC) group (n = 29). Plasma from each subject was prepared for nuclear magnetic resonance (NMR) detection. 1H-NMR spectra were acquired using 850 MHz NMR spectrometer. A total of 28 metabolites were identified from the NMR spectra and their relative concentrations were calculated and analyzed by multivariate and univariate statistical analyses and metabolic pathway analysis. Receiver operating characteristic (ROC) curve analysis and correlation analysis were performed to identify potential biomarkers and assess their roles in clinical assessment. Multivariate statistical analysis showed that the metabolic profile of PAH-CHD was altered relative to CHD or HC, while that of CHD was altered relative to HC. The identified characteristic metabolites were alanine, glucose, glycine, threonine and lactate, and the areas under the ROC curves (AUCs) were 0.769, 0.808, 0.711, 0.842 and 0.817, respectively. Multivariate ROC curve analysis showed AUCs ranging from 0.895 to 0.955 for the combination of these characteristic metabolites. The correlation analysis indicated that lactate and threonine were significantly correlated with mean pulmonary arterial pressure, pulmonary vascular resistance and N-terminal pro-B-type natriuretic peptide. The increased PBF could trigger global metabolic alterations in patients with CHD, which were more severe in patients with PAH-CHD. The characteristic metabolites have the potential to be biomarkers of PAH-CHD, which could be used for its noninvasive diagnosis, severity and prognosis assessment, thereby improving the management of PAH-CHD.
Collapse
|
10
|
Jenkins KJ, Fineman JR. Progress in Pulmonary Vein Stenosis: Lessons from Success in Treating Pulmonary Arterial Hypertension. CHILDREN 2022; 9:children9060799. [PMID: 35740736 PMCID: PMC9222029 DOI: 10.3390/children9060799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022]
Abstract
Pulmonary vein stenosis (PVS) is a rare and poorly understood condition that can be classified as primary, acquired, status-post surgical repair of PVS, and/or associated with developmental lung disease. Immunohistochemical studies demonstrate that obstruction of the large (extrapulmonary) pulmonary veins is associated with the neointimal proliferation of myofibroblasts. This rare disorder is likely multifactorial with a spectrum of pathobiology. Treatments have been historically surgical, with an increasing repetitive interventional approach. Understanding the biology of these disorders is in its infancy; thus, medical management has lagged behind. Throughout medical history, an increased understanding of the underlying biology of a disorder has led to significant improvements in care and outcomes. One example is the treatment of pulmonary arterial hypertension (PAH). PAH shares several common themes with PVS. These include the spectrum of disease and biological alterations, such as vascular remodeling and vasoconstriction. Over the past two decades, an exponential increase in the understanding of the pathobiology of PAH has led to a dramatic increase in medical therapies that have changed the landscape of the disease. We believe that a similar approach to PVS can generate novel medical therapeutic targets that will markedly improve the outcome of these vulnerable patients.
Collapse
Affiliation(s)
- Kathy J. Jenkins
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA;
| | - Jeffrey R. Fineman
- Department of Pediatrics, University of California, San Francisco, CA 94143, USA
- Correspondence:
| |
Collapse
|
11
|
Dong ML, Lan IS, Yang W, Rabinovitch M, Feinstein JA, Marsden AL. Computational simulation-derived hemodynamic and biomechanical properties of the pulmonary arterial tree early in the course of ventricular septal defects. Biomech Model Mechanobiol 2021; 20:2471-2489. [PMID: 34585299 DOI: 10.1007/s10237-021-01519-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 09/12/2021] [Indexed: 01/15/2023]
Abstract
Untreated ventricular septal defects (VSDs) can lead to pulmonary arterial hypertension (PAH) characterized by elevated pulmonary artery (PA) pressure and vascular remodeling, known as PAH associated with congenital heart disease (PAH-CHD). Though previous studies have investigated hemodynamic effects on vascular mechanobiology in late-stage PAH, hemodynamics leading to PAH-CHD initiation have not been fully quantified. We hypothesize that abnormal hemodynamics from left-to-right shunting in early stage VSDs affects PA biomechanical properties leading to PAH initiation. To model PA hemodynamics in healthy, small, moderate, and large VSD conditions prior to the onset of vascular remodeling, computational fluid dynamics simulations were performed using a 3D finite element model of a healthy 1-year-old's proximal PAs and a body-surface-area-scaled 0D distal PA tree. VSD conditions were modeled with increased pulmonary blood flow to represent degrees of left-to-right shunting. In the proximal PAs, pressure, flow, strain, and wall shear stress (WSS) increased with increasing VSD size; oscillatory shear index decreased with increasing VSD size in the larger PA vessels. WSS was higher in smaller diameter vessels and increased with VSD size, with the large VSD condition exhibiting WSS >100 dyn/cm[Formula: see text], well above values typically used to study dysfunctional mechanotransduction pathways in PAH. This study is the first to estimate hemodynamic and biomechanical metrics in the entire pediatric PA tree with VSD severity at the stage leading to PAH initiation and has implications for future studies assessing effects of abnormal mechanical stimuli on endothelial cells and vascular wall mechanics that occur during PAH-CHD initiation and progression.
Collapse
Affiliation(s)
- Melody L Dong
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Ingrid S Lan
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Weiguang Yang
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | | | - Jeffrey A Feinstein
- Department of Pediatrics and Bioengineering, Stanford University, Stanford, CA, USA
| | - Alison L Marsden
- Department of Pediatrics and Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
12
|
Singampalli KL, Jui E, Shani K, Ning Y, Connell JP, Birla RK, Bollyky PL, Caldarone CA, Keswani SG, Grande-Allen KJ. Congenital Heart Disease: An Immunological Perspective. Front Cardiovasc Med 2021; 8:701375. [PMID: 34434978 PMCID: PMC8380780 DOI: 10.3389/fcvm.2021.701375] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/13/2021] [Indexed: 12/28/2022] Open
Abstract
Congenital heart disease (CHD) poses a significant global health and economic burden-despite advances in treating CHD reducing the mortality risk, globally CHD accounts for approximately 300,000 deaths yearly. Children with CHD experience both acute and chronic cardiac complications, and though treatment options have improved, some remain extremely invasive. A challenge in addressing these morbidity and mortality risks is that little is known regarding the cause of many CHDs and current evidence suggests a multifactorial etiology. Some studies implicate an immune contribution to CHD development; however, the role of the immune system is not well-understood. Defining the role of the immune and inflammatory responses in CHD therefore holds promise in elucidating mechanisms underlying these disorders and improving upon current diagnostic and treatment options. In this review, we address the current knowledge coinciding CHDs with immune and inflammatory associations, emphasizing conditions where this understanding would provide clinical benefit, and challenges in studying these mechanisms.
Collapse
Affiliation(s)
- Kavya L. Singampalli
- Department of Bioengineering, Rice University, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| | - Elysa Jui
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - Kevin Shani
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
| | - Yao Ning
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| | | | - Ravi K. Birla
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
- Division of Congenital Heart Surgery, Departments of Surgery and Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| | - Paul L. Bollyky
- Division of Infectious Diseases, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Christopher A. Caldarone
- Division of Congenital Heart Surgery, Departments of Surgery and Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| | - Sundeep G. Keswani
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| | | |
Collapse
|
13
|
Forno E, Abman SH, Singh J, Robbins ME, Selvadurai H, Schumacker PT, Robinson PD. Update in Pediatrics 2020. Am J Respir Crit Care Med 2021; 204:274-284. [PMID: 34126039 DOI: 10.1164/rccm.202103-0605up] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Erick Forno
- Division of Pediatric Pulmonary Medicine, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Steven H Abman
- Department of Pediatrics, Children's Hospital Colorado, Denver, Colorado.,University of Colorado Anschutz School of Medicine, Denver, Colorado
| | - Jagdev Singh
- Department of Respiratory Medicine, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Mary E Robbins
- Division of Neonatology, Ann and Robert H. Lurie Children's Hospital, Chicago, Illinois; and.,Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Hiran Selvadurai
- Department of Respiratory Medicine, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Paul T Schumacker
- Division of Neonatology, Ann and Robert H. Lurie Children's Hospital, Chicago, Illinois; and.,Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Paul D Robinson
- Department of Respiratory Medicine, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
14
|
Rufaihah AJ, Chen CK, Yap CH, Mattar CNZ. Mending a broken heart: In vitro, in vivo and in silico models of congenital heart disease. Dis Model Mech 2021; 14:dmm047522. [PMID: 33787508 PMCID: PMC8033415 DOI: 10.1242/dmm.047522] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Birth defects contribute to ∼0.3% of global infant mortality in the first month of life, and congenital heart disease (CHD) is the most common birth defect among newborns worldwide. Despite the significant impact on human health, most treatments available for this heterogenous group of disorders are palliative at best. For this reason, the complex process of cardiogenesis, governed by multiple interlinked and dose-dependent pathways, is well investigated. Tissue, animal and, more recently, computerized models of the developing heart have facilitated important discoveries that are helping us to understand the genetic, epigenetic and mechanobiological contributors to CHD aetiology. In this Review, we discuss the strengths and limitations of different models of normal and abnormal cardiogenesis, ranging from single-cell systems and 3D cardiac organoids, to small and large animals and organ-level computational models. These investigative tools have revealed a diversity of pathogenic mechanisms that contribute to CHD, including genetic pathways, epigenetic regulators and shear wall stresses, paving the way for new strategies for screening and non-surgical treatment of CHD. As we discuss in this Review, one of the most-valuable advances in recent years has been the creation of highly personalized platforms with which to study individual diseases in clinically relevant settings.
Collapse
Affiliation(s)
- Abdul Jalil Rufaihah
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
| | - Ching Kit Chen
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
| | - Choon Hwai Yap
- Division of Cardiology, Department of Paediatrics, Khoo Teck Puat -National University Children's Medical Institute, National University Health System, Singapore 119228
- Department of Bioengineering, Imperial College London, London, UK
| | - Citra N Z Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
- Department of Obstetrics and Gynaecology, National University Health System, Singapore 119228
| |
Collapse
|
15
|
Liu MN, Luo G, Gao WJ, Yang SJ, Zhou H. miR-29 family: A potential therapeutic target for cardiovascular disease. Pharmacol Res 2021; 166:105510. [PMID: 33610720 DOI: 10.1016/j.phrs.2021.105510] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 01/11/2023]
Abstract
Cardiovascular disease (CVD), including heart failure, myocardial fibrosis and myocardial infarction, etc, remains one of the leading causes of mortality worldwide. Evidence shows that miRNA plays an important role in the pathogenesis of CVD. miR-29 family is one of miRNA, and over the past decades, many studies have demonstrated that miR-29 is involved in maintaining the integrity of arteries and in the regulation of atherosclerosis, especially in the process of myocardial fibrosis. Besides, heart failure, myocardial fibrosis and myocardial infarction are inseparable from the regulatory role of miR-29. Here, we comprehensively review recent studies regarding miR-29 and CVD, illustrate the possibility of miR-29 as a potential marker for prevention, treatment and prognostic observation.
Collapse
Affiliation(s)
- Meng-Nan Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, China; National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| | - Gang Luo
- National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| | - Wan-Jiao Gao
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, China
| | - Si-Jin Yang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, China; National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, Sichuan, China.
| | - Hua Zhou
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, China.
| |
Collapse
|
16
|
Andersen A, van der Feen DE, Andersen S, Schultz JG, Hansmann G, Bogaard HJ. Animal models of right heart failure. Cardiovasc Diagn Ther 2020; 10:1561-1579. [PMID: 33224774 PMCID: PMC7666958 DOI: 10.21037/cdt-20-400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022]
Abstract
Right heart failure may be the ultimate cause of death in patients with acute or chronic pulmonary hypertension (PH). As PH is often secondary to other cardiovascular diseases, the treatment goal is to target the underlying disease. We do however know, that right heart failure is an independent risk factor, and therefore, treatments that improve right heart function may improve morbidity and mortality in patients with PH. There are no therapies that directly target and support the failing right heart and translation from therapies that improve left heart failure have been unsuccessful, with the exception of mineralocorticoid receptor antagonists. To understand the underlying pathophysiology of right heart failure and to aid in the development of new treatments we need solid animal models that mimic the pathophysiology of human disease. There are several available animal models of acute and chronic PH. They range from flow induced to pressure overload induced right heart failure and have been introduced in both small and large animals. When initiating new pre-clinical or basic research studies it is key to choose the right animal model to ensure successful translation to the clinical setting. Selecting the right animal model for the right study is hence important, but may be difficult due to the plethora of different models and local availability. In this review we provide an overview of the available animal models of acute and chronic right heart failure and discuss the strengths and limitations of the different models.
Collapse
Affiliation(s)
- Asger Andersen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Diederik E. van der Feen
- Center for Congenital Heart Diseases, University Medical Center Groningen, Groningen, The Netherlands
| | - Stine Andersen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
| | - Harm Jan Bogaard
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Goncharova EA, Chan SY, Ventetuolo CE, Weissmann N, Schermuly RT, Mullin CJ, Gladwin MT. Update in Pulmonary Vascular Diseases and Right Ventricular Dysfunction 2019. Am J Respir Crit Care Med 2020; 202:22-28. [PMID: 32311291 PMCID: PMC7328315 DOI: 10.1164/rccm.202003-0576up] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022] Open
Affiliation(s)
- Elena A. Goncharova
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute
- Division of Pulmonary, Allergy and Critical Care Medicine
| | - Stephen Y. Chan
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute
- Center for Pulmonary Vascular Biology and Medicine, and
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Medicine, Alpert Medical School, and
| | - Corey E. Ventetuolo
- Department of Medicine, Alpert Medical School, and
- Department of Health Services, Policy, and Practice, School of Public Health, Brown University, Providence, Rhode Island; and
| | - Norbert Weissmann
- Department of Internal Medicine, Justus-Liebig University Giessen, Giessen, Germany
| | - Ralph T. Schermuly
- Department of Internal Medicine, Justus-Liebig University Giessen, Giessen, Germany
| | | | - Mark T. Gladwin
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute
- Division of Pulmonary, Allergy and Critical Care Medicine
| |
Collapse
|
18
|
Zhu T, Chiacchia S, Kameny RJ, Garcia De Herreros A, Gong W, Raff GW, Boehme JB, Maltepe E, Lasheras JC, Black SM, Datar SA, Fineman JR. Mechanical forces alter endothelin-1 signaling: comparative ovine models of congenital heart disease. Pulm Circ 2020; 10:2045894020922118. [PMID: 32489641 PMCID: PMC7238833 DOI: 10.1177/2045894020922118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/01/2020] [Indexed: 11/27/2022] Open
Abstract
The risk and progression of pulmonary vascular disease in patients with congenital heart disease is dependent on the hemodynamics associated with different lesions. However, the underlying mechanisms are not understood. Endothelin-1 is a potent vasoconstrictor that plays a key role in the pathology of pulmonary vascular disease. We utilized two ovine models of congenital heart disease: (1) fetal aortopulmonary graft placement (shunt), resulting in increased flow and pressure; and (2) fetal ligation of the left pulmonary artery resulting in increased flow and normal pressure to the right lung, to investigate the hypothesis that high pressure and flow, but not flow alone, upregulates endothelin-1 signaling. Lung tissue and pulmonary arterial endothelial cells were harvested from control, shunt, and the right lung of left pulmonary artery lambs at 3–7 weeks of age. We found that lung preproendothelin-1 mRNA and protein expression were increased in shunt lambs compared to controls. Preproendothelin-1 mRNA expression was modestly increased, and protein was unchanged in left pulmonary artery lambs. These changes resulted in increased lung endothelin-1 levels in shunt lambs, while left pulmonary artery levels were similar to controls. Pulmonary arterial endothelial cells exposed to increased shear stress decreased endothelin-1 levels by five-fold, while cyclic stretch increased levels by 1.5-fold. These data suggest that pressure or an additive effect of pressure and flow, rather than increased flow alone, is the principal driver of increased endothelin signaling in congenital heart disease. Defining the molecular drivers of the pathobiology of pulmonary vascular disease due to differing mechanical forces will allow for a more targeted therapeutic approach.
Collapse
Affiliation(s)
- Terry Zhu
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Samuel Chiacchia
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Rebecca J Kameny
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | | | - Wenhui Gong
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Gary W Raff
- Department of Surgery, University of California, Davis, CA, USA
| | - Jason B Boehme
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Emin Maltepe
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Juan C Lasheras
- Institute of Engineering in Medicine, University of California, San Diego, CA, USA
| | - Stephen M Black
- Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Sanjeev A Datar
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Jeffrey R Fineman
- Department of Pediatrics, University of California, San Francisco, CA, USA.,Cardiovascular Research Institute, University of California, San Francisco, CA, USA These authors contributed equally
| |
Collapse
|
19
|
Opotowsky AR, Cedars A, Kutty S. Atrial septal defects and pulmonary hemodynamics: a time for holey reflection. Am J Physiol Heart Circ Physiol 2020; 318:H1159-H1161. [DOI: 10.1152/ajpheart.00226.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Alexander R. Opotowsky
- Heart Institute, Department of Pediatrics, Cincinnati Children's Hospital, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Ari Cedars
- The Helen B. Taussig Heart Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shelby Kutty
- The Helen B. Taussig Heart Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|