1
|
Li Y, Pan G, Wang S, Li Z, Yang R, Jiang Y, Chen Y, Li SC, Shen B. Comprehensive human respiratory genome catalogue underlies the high resolution and precision of the respiratory microbiome. Brief Bioinform 2024; 26:bbae620. [PMID: 39581874 PMCID: PMC11586125 DOI: 10.1093/bib/bbae620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/04/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024] Open
Abstract
The human respiratory microbiome plays a crucial role in respiratory health, but there is no comprehensive respiratory genome catalogue (RGC) for studying the microbiome. In this study, we collected whole-metagenome shotgun sequencing data from 4067 samples and sequenced long reads of 124 samples, yielding 9.08 and 0.42 Tbp of short- and long-read data, respectively. By submitting these data with a novel assembly algorithm, we obtained a comprehensive human RGC. This high-quality RGC contains 190,443 contigs over 1 kbps and an N50 length exceeding 13 kbps; it comprises 159 high-quality and 393 medium-quality genomes, including 117 previously uncharacterized respiratory bacteria. Moreover, the RGC contains 209 respiratory-specific species not captured by the unified human gastrointestinal genome. Using the RGC, we revisited a study on a pediatric pneumonia dataset and identified 17 pneumonia-specific respiratory pathogens, reversing an inaccurate etiological conclusion due to the previous incomplete reference. Furthermore, we applied the RGC to the data of 62 participants with a clinical diagnosis of infection. Compared to the Nucleotide database, the RGC yielded greater specificity (0 versus 0.444, respectively) and sensitivity (0.852 versus 0.881, respectively), suggesting that the RGC provides superior sensitivity and specificity for the clinical diagnosis of respiratory diseases.
Collapse
Affiliation(s)
- Yinhu Li
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No. 2222 Xinchuan Road, Gaoxin District, Chengdu 610212, China
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen–Hong Kong Institute of Brain Science–Shenzhen Fundamental Research Institutions, No. 1068 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China
| | - Guangze Pan
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Shuai Wang
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Zhengtu Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, No. 1 Kangda Road, Haizhu District, Guangzhou 510120, China
| | - Ru Yang
- Department of Neonatology Nursing, West China Second University Hospital, West China School of Nursing, Sichuan University, No. 1416 Chenglong Avenue, Jinjiang District, Chengdu 610041, China
| | - Yiqi Jiang
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Yu Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen–Hong Kong Institute of Brain Science–Shenzhen Fundamental Research Institutions, No. 1068 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China
| | - Shuai Cheng Li
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No. 2222 Xinchuan Road, Gaoxin District, Chengdu 610212, China
| |
Collapse
|
2
|
Dörner PJ, Anandakumar H, Röwekamp I, Fiocca Vernengo F, Millet Pascual-Leone B, Krzanowski M, Sellmaier J, Brüning U, Fritsche-Guenther R, Pfannkuch L, Kurth F, Milek M, Igbokwe V, Löber U, Gutbier B, Holstein M, Heinz GA, Mashreghi MF, Schulte LN, Klatt AB, Caesar S, Wienhold SM, Offermanns S, Mack M, Witzenrath M, Jordan S, Beule D, Kirwan JA, Forslund SK, Wilck N, Bartolomaeus H, Heimesaat MM, Opitz B. Clinically used broad-spectrum antibiotics compromise inflammatory monocyte-dependent antibacterial defense in the lung. Nat Commun 2024; 15:2788. [PMID: 38555356 PMCID: PMC10981692 DOI: 10.1038/s41467-024-47149-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
Hospital-acquired pneumonia (HAP) is associated with high mortality and costs, and frequently caused by multidrug-resistant (MDR) bacteria. Although prior antimicrobial therapy is a major risk factor for HAP, the underlying mechanism remains incompletely understood. Here, we demonstrate that antibiotic therapy in hospitalized patients is associated with decreased diversity of the gut microbiome and depletion of short-chain fatty acid (SCFA) producers. Infection experiments with mice transplanted with patient fecal material reveal that these antibiotic-induced microbiota perturbations impair pulmonary defense against MDR Klebsiella pneumoniae. This is dependent on inflammatory monocytes (IMs), whose fatty acid receptor (FFAR)2/3-controlled and phagolysosome-dependent antibacterial activity is compromized in mice transplanted with antibiotic-associated patient microbiota. Collectively, we characterize how clinically relevant antibiotics affect antimicrobial defense in the context of human microbiota, and reveal a critical impairment of IM´s antimicrobial activity. Our study provides additional arguments for the rational use of antibiotics and offers mechanistic insights for the development of novel prophylactic strategies to protect high-risk patients from HAP.
Collapse
Affiliation(s)
- Patrick J Dörner
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Harithaa Anandakumar
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ivo Röwekamp
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Facundo Fiocca Vernengo
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Belén Millet Pascual-Leone
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marta Krzanowski
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Josua Sellmaier
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulrike Brüning
- Metabolomics Platform, Berlin Institute of Health at Charité, Berlin, Germany
| | | | - Lennart Pfannkuch
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Florian Kurth
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Miha Milek
- Core Unit Bioinformatics, Berlin Institute of Health at Charité, Berlin, Germany
| | - Vanessa Igbokwe
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulrike Löber
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Birgitt Gutbier
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Markus Holstein
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gitta Anne Heinz
- German Rheumatism Research Center, a Leibniz Institute, Berlin, Germany
| | | | - Leon N Schulte
- Department of Medicine, Institute for Lung Research, Philipps University Marburg, Marburg, Germany
- German center for lung research (DZL), Marburg, Germany
| | - Ann-Brit Klatt
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sandra Caesar
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sandra-Maria Wienhold
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Offermanns
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Matthias Mack
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German center for lung research (DZL), Berlin, Germany
| | - Stefan Jordan
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health at Charité, Berlin, Germany
| | - Jennifer A Kirwan
- Metabolomics Platform, Berlin Institute of Health at Charité, Berlin, Germany
| | - Sofia K Forslund
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Nicola Wilck
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hendrik Bartolomaeus
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Markus M Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bastian Opitz
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- German center for lung research (DZL), Berlin, Germany.
| |
Collapse
|
3
|
Sankova MV, Nikolenko VN, Sankov SV, Sinelnikov MY. SARS-CoV-2 and microbiome. AUTOIMMUNITY, COVID-19, POST-COVID19 SYNDROME AND COVID-19 VACCINATION 2023:279-337. [DOI: 10.1016/b978-0-443-18566-3.00023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Wang X, Xu X, Chen Y, Li Z, Zhang M, Zhao C, Lian B, Zhao J, Guo Y, Liu Q. Liu Shen Capsule Alters Airway Microbiota Composition and Metabolite Profiles in Healthy Humans. Front Pharmacol 2022; 12:824180. [PMID: 35153770 PMCID: PMC8831732 DOI: 10.3389/fphar.2021.824180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/31/2021] [Indexed: 12/31/2022] Open
Abstract
Alteration in airway microbiota composition and perturbations in microbe-metabolites interactions have been proposed as markers of many diseases. Liu Shen (LS) capsule, a traditional Chinese medicine, was proved as favorable in treating respiratory diseases. However, the effects of the LS capsule in terms of regulating human microorganisms and metabolite profiles are not well known. This study aimed to define and compare the respiratory microbiota composition and circulating and fecal metabolite profiles before and after LS capsule administration. A total of 30 healthy volunteers were recruited. The pharyngeal swab samples were collected for 16S rRNA gene sequencing. The serum and fecal samples were collected to analyze the non-targeted ultra-performance liquid chromatography-tandem mass spectrometry metabolomics. The airway microbial compositions were profoundly altered after LS capsule administration, as evidenced by increased microbial diversity and altered microbial taxa distribution. The increasing abundance of bacterial Bifidobacteria, and Lactobacillus characterized the after-administration groups, and the increasing of abundance bacterial Proteobacteria, Veillonella, Prevotella, Neisseria, and Actinomyces characterized the before-administration groups. Significant discriminations were observed in both serum and fecal metabolic profiles between the before- and after-administration groups. A total number of 134 and 71 significant HMDB taxonomic metabolites including glycerophospholipids, fatty acyls, and prenol lipids in the serum and fecal samples were identified respectively between the before- and after-administration groups. The integrated analysis showed that some altered airway microbiota phylum, such as Bacteroidetes and Proteobacteria, significantly correlated with metabolites in serum and fecal. Hence, our study reported the alternations in the composition and functions of the airway microbial community and the changes in circulating and fecal metabolite profiles after LS capsule administration in healthy humans, thus providing a novel insight into the mechanisms underlying the role of LS capsule treating and preventing related diseases.
Collapse
Affiliation(s)
- Xuerui Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
- Beijing Institute of Chinese Medicine, Beijing, China
| | - Xiaolong Xu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
- Beijing Institute of Chinese Medicine, Beijing, China
| | - Yishan Chen
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Zhenxuan Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Mina Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Chunxia Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Bo Lian
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jingxia Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Institute of Chinese Medicine, Beijing, China
| | - Yuhong Guo
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
- Beijing Institute of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Bruno A, Ferrante G, Di Vincenzo S, Pace E, La Grutta S. Leptin in the Respiratory Tract: Is There a Role in SARS-CoV-2 Infection? Front Physiol 2022; 12:776963. [PMID: 35002761 PMCID: PMC8727443 DOI: 10.3389/fphys.2021.776963] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/26/2021] [Indexed: 12/23/2022] Open
Abstract
Leptin is a pleiotropic adipocytokine involved in several physiologic functions, with a known role in innate and adaptive immunity as well as in tissue homeostasis. Long- and short-isoforms of leptin receptors are widely expressed in many peripheral tissues and organs, such as the respiratory tract. Similar to leptin, microbiota affects the immune system and may interfere with lung health through the bidirectional crosstalk called the “gut-lung axis.” Obesity leads to impaired protective immunity and altered susceptibility to pulmonary infections, as those by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although it is known that leptin and microbiota link metabolism and lung health, their role within the SARS-CoV2 coronavirus disease 2019 (COVID-19) deserves further investigations. This review aimed to summarize the available evidence about: (i) the role of leptin in immune modulation; (ii) the role of gut microbiota within the gut-lung axis in modulating leptin sensitivity; and (iii) the role of leptin in the pathophysiology of COVID-19.
Collapse
Affiliation(s)
- Andreina Bruno
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Giuliana Ferrante
- Pediatric Division, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| | - Serena Di Vincenzo
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Elisabetta Pace
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Stefania La Grutta
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| |
Collapse
|
6
|
Fonseca W, Malinczak CA, Fujimura K, Li D, McCauley K, Li J, Best SKK, Zhu D, Rasky AJ, Johnson CC, Bermick J, Zoratti EM, Ownby D, Lynch SV, Lukacs NW, Ptaschinski C. Maternal gut microbiome regulates immunity to RSV infection in offspring. J Exp Med 2021; 218:212680. [PMID: 34613328 PMCID: PMC8500238 DOI: 10.1084/jem.20210235] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/26/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022] Open
Abstract
Development of the immune system can be influenced by diverse extrinsic and intrinsic factors that influence the risk of disease. Severe early life respiratory syncytial virus (RSV) infection is associated with persistent immune alterations. Previously, our group had shown that adult mice orally supplemented with Lactobacillus johnsonii exhibited decreased airway immunopathology following RSV infection. Here, we demonstrate that offspring of mice supplemented with L. johnsonii exhibit reduced airway mucus and Th2 cell–mediated response to RSV infection. Maternal supplementation resulted in a consistent gut microbiome in mothers and their offspring. Importantly, supplemented maternal plasma and breastmilk, and offspring plasma, exhibited decreased inflammatory metabolites. Cross-fostering studies showed that prenatal Lactobacillus exposure led to decreased Th2 cytokines and lung inflammation following RSV infection, while postnatal Lactobacillus exposure diminished goblet cell hypertrophy and mucus production in the lung in response to airway infection. These studies demonstrate that Lactobacillus modulation of the maternal microbiome and associated metabolic reprogramming enhance airway protection against RSV in neonates.
Collapse
Affiliation(s)
- Wendy Fonseca
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | | | - Kei Fujimura
- Department of Medicine-Gastroenterology, University of California, San Francisco, San Francisco, CA
| | - Danny Li
- Department of Medicine-Gastroenterology, University of California, San Francisco, San Francisco, CA
| | - Kathryn McCauley
- Department of Medicine-Gastroenterology, University of California, San Francisco, San Francisco, CA
| | - Jia Li
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI
| | | | - Diana Zhu
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Andrew J Rasky
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | | | - Jennifer Bermick
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | - Edward M Zoratti
- Division of Allergy and Clinical Immunology, Department of Medicine, Henry Ford Health System, Detroit, MI
| | - Dennis Ownby
- Department of Pediatrics, Augusta University, Augusta, GA
| | - Susan V Lynch
- Department of Medicine-Gastroenterology, University of California, San Francisco, San Francisco, CA
| | - Nicholas W Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, MI.,Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI
| | - Catherine Ptaschinski
- Department of Pathology, University of Michigan, Ann Arbor, MI.,Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI
| |
Collapse
|
7
|
Sililas P, Huang L, Thonusin C, Luewan S, Chattipakorn N, Chattipakorn S, Tongsong T. Association between Gut Microbiota and Development of Gestational Diabetes Mellitus. Microorganisms 2021; 9:microorganisms9081686. [PMID: 34442765 PMCID: PMC8400162 DOI: 10.3390/microorganisms9081686] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/23/2021] [Accepted: 08/06/2021] [Indexed: 12/31/2022] Open
Abstract
Background: It is well known that women with gestational diabetes mellitus (GDM) have gut dysbiosis. However, the dynamic alterations of gut microbiota in GDM are unclear. Additionally, the effects of maternal gut microbiota on the gut microbiota of their newborns remains controversial. The primary objective of this study is to determine the association between types and amounts of gut microbiota and development of gestational diabetes mellitus (GDM). Methods: Eighty-eight pregnant women, including 39 non-GDM and 49 GDM, and their 88 offspring were enrolled. Maternal feces were collected at the time of GDM diagnosis (24–28 weeks of gestation) and at before delivery (≥37 weeks of gestation). Meconium and the first feces of their newborns were also obtained. Results: from quantitative polymerase chain reaction (qPCR) showed that maternal Lactobacillales was decreased from baseline to the time before delivery in both non-GDM and GDM. Firmicutes/Bacteroidetes (F/B) ratio at before delivery was higher in the GDM group. However, there was no difference of neonatal gut microbiota between groups. Conclusions: Although we found only few gut microbiota that demonstrated the difference between GDM and non-GDM, gut microbiota may play a more important role in the development of severer GDM. Therefore, a further study comparing the gut microbiota composition among non-GDM, GDM with diet modification only, GDM with insulin therapy, GDM with successful treatment, and GDM with failure of treatment is needed.
Collapse
Affiliation(s)
- Palin Sililas
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (T.T.)
| | - Lingling Huang
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (L.H.); (C.T.); (N.C.)
- Center of Excellence in Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chanisa Thonusin
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (L.H.); (C.T.); (N.C.)
- Center of Excellence in Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Suchaya Luewan
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (T.T.)
- Correspondence: (S.L.); (S.C.)
| | - Nipon Chattipakorn
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (L.H.); (C.T.); (N.C.)
- Center of Excellence in Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn Chattipakorn
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (L.H.); (C.T.); (N.C.)
- Center of Excellence in Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (S.L.); (S.C.)
| | - Theera Tongsong
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (T.T.)
| |
Collapse
|
8
|
Hussien H, Nastasa A, Apetrii M, Nistor I, Petrovic M, Covic A. Different aspects of frailty and COVID-19: points to consider in the current pandemic and future ones. BMC Geriatr 2021; 21:389. [PMID: 34176479 PMCID: PMC8236311 DOI: 10.1186/s12877-021-02316-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 06/06/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Older adults at a higher risk of adverse outcomes and mortality if they get infected with Severe acute respiratory syndrome coronavirus 2 (SARS- CoV-2). These undesired outcomes are because ageing is associated with other conditions like multimorbidity, frailty and disability. This paper describes the impact of frailty on coronavirus disease 2019 (COVID-19) management and outcomes. We also try to point out the role of inflamm-ageing, immunosenescence and reduced microbiota diversity in developing a severe form of COVID-19 and a different response to COVID-19 vaccination among older frail adults. Additionally, we attempt to highlight the impact of frailty on intensive care unit (ICU) outcomes, and hence, the rationale behind using frailty as an exclusion criterion for critical care admission. Similarly, the importance of using a time-saving, validated, sensitive, and user-friendly tool for frailty screening in an acute setting as COVID-19 triage. We performed a narrative review. Publications from 1990 to March 2021 were identified by searching the electronic databases MEDLINE, CINAHL and SCOPUS. Based on this search, we have found that in older frail adults, many mechanisms contribute to the severity of COVID-19, particularly cytokine storm; those mechanisms include lower immunological capacity and status of ongoing chronic inflammation and reduced gut microbiota diversity. Higher degrees of frailty were associated with poor outcomes and higher mortality rates during and after ICU admission. Also, the response to COVID-19 vaccination among frail older adults might differ from the general population regarding effectiveness and side effects. Researches also had shown that there are many tools for identifying frailty in an acute setting that could be used in COVID-19 triage, and before ICU admission, the clinical frailty scale (CFS) was the most recommended tool. CONCLUSION Older frail adults have a pre-existing immunopathological base that puts them at a higher risk of undesired outcomes and mortality due to COVID-19 and poor response to COVID-19 vaccination. Also, their admission in ICU should depend on their degree of frailty rather than their chronological age, which is better to be screened using the CFS.
Collapse
Affiliation(s)
- Hani Hussien
- Dr C I Parhon University Hospital, Department of Nephrology, Iasi, Romania
- Department of Internal Medicine, Nephrology and Geriatrics, Grigore T Popa University of Medicine and Pharmacy, Faculty of Medicine, Bd Carol nr 50, Iasi, Romania
| | - Andra Nastasa
- Department of Internal Medicine, Nephrology and Geriatrics, Grigore T Popa University of Medicine and Pharmacy, Faculty of Medicine, Bd Carol nr 50, Iasi, Romania.
| | - Mugurel Apetrii
- Dr C I Parhon University Hospital, Department of Nephrology, Iasi, Romania
- Department of Internal Medicine, Nephrology and Geriatrics, Grigore T Popa University of Medicine and Pharmacy, Faculty of Medicine, Bd Carol nr 50, Iasi, Romania
| | - Ionut Nistor
- Dr C I Parhon University Hospital, Department of Nephrology, Iasi, Romania
- Department of Internal Medicine, Nephrology and Geriatrics, Grigore T Popa University of Medicine and Pharmacy, Faculty of Medicine, Bd Carol nr 50, Iasi, Romania
| | - Mirko Petrovic
- Section of Geriatrics, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Adrian Covic
- Dr C I Parhon University Hospital, Department of Nephrology, Iasi, Romania
- Department of Internal Medicine, Nephrology and Geriatrics, Grigore T Popa University of Medicine and Pharmacy, Faculty of Medicine, Bd Carol nr 50, Iasi, Romania
| |
Collapse
|
9
|
Hérivaux A, Willis JR, Mercier T, Lagrou K, Gonçalves SM, Gonçales RA, Maertens J, Carvalho A, Gabaldón T, Cunha C. Lung microbiota predict invasive pulmonary aspergillosis and its outcome in immunocompromised patients. Thorax 2021; 77:283-291. [PMID: 34172558 PMCID: PMC8867272 DOI: 10.1136/thoraxjnl-2020-216179] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 05/26/2021] [Indexed: 11/17/2022]
Abstract
Rationale Recent studies have revealed that the lung microbiota of critically ill patients is altered and predicts clinical outcomes. The incidence of invasive fungal infections, namely, invasive pulmonary aspergillosis (IPA), in immunocompromised patients is increasing, but the clinical significance of variations in lung bacterial communities is unknown. Objectives To define the contribution of the lung microbiota to the development and course of IPA. Methods and measurements We performed an observational cohort study to characterise the lung microbiota in 104 immunocompromised patients using bacterial 16S ribosomal RNA gene sequencing on bronchoalveolar lavage samples sampled on clinical suspicion of infection. Associations between lung dysbiosis in IPA and pulmonary immunity were evaluated by quantifying alveolar cytokines and chemokines and immune cells. The contribution of microbial signatures to patient outcome was assessed by estimating overall survival. Main results Patients diagnosed with IPA displayed a decreased alpha diversity, driven by a markedly increased abundance of the Staphylococcus, Escherichia, Paraclostridium and Finegoldia genera and a decreased proportion of the Prevotella and Veillonella genera. The overall composition of the lung microbiome was influenced by the neutrophil counts and associated with differential levels of alveolar cytokines. Importantly, the degree of bacterial diversity at the onset of IPA predicted the survival of infected patients. Conclusions Our results reveal the lung microbiota as an understudied source of clinical variation in patients at risk of IPA and highlight its potential as a diagnostic and therapeutic target in the context of respiratory fungal diseases.
Collapse
Affiliation(s)
- Anaïs Hérivaux
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Jesse R Willis
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Toine Mercier
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium.,Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.,Clinical Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Samuel M Gonçalves
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Relber A Gonçales
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Johan Maertens
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium.,Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain .,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal .,ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| |
Collapse
|
10
|
Lipinski JH, Falkowski NR, Huffnagle GB, Erb-Downward JR, Dickson RP, Moore BB, O'Dwyer DN. Toll-like receptors, environmental caging, and lung dysbiosis. Am J Physiol Lung Cell Mol Physiol 2021; 321:L404-L415. [PMID: 34159791 DOI: 10.1152/ajplung.00002.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recent studies have implicated lung microbiota in shaping local alveolar immune responses. Toll-like receptors are major sensors of microbiota and determinants of local epithelial homeostasis. The impact of toll-like receptor deficiency on lung microbiota is unknown. To determine whether the absence of toll-like receptors results in altered lung microbiota or dysbiosis, we compared lung microbiota in wild-type and toll-like receptor-deficient experimental mice using 16S ribosomal RNA gene quantification and sequencing. We used a randomized environmental caging strategy to determine the impact of toll-like receptors on lung microbiota. Lung microbiota are detectable in toll-like receptor-deficient experimental mice and exhibit considerable variability. The lung microbiota of toll-like receptor-deficient mice are altered in community composition (PERMANOVA P < 0.001), display reduced diversity (t test P = 0.0075), and bacterial burden (t test P = 0.016) compared with wild-type mice with intact toll-like receptors and associated signaling pathways. The lung microbiota of wild-type mice when randomized to cages with toll-like receptor-deficient mice converged with no significant difference in community composition (PERMANOVA P > 0.05) after 3 wk of cohousing. The lung microbiome of toll-like receptor-deficient mice is distinct from wild-type mice and may be less susceptible to the effects of caging as an environmental variable. Our observations support a role for toll-like receptor signaling in the shaping of lung microbiota.
Collapse
Affiliation(s)
- Jay H Lipinski
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Nicole R Falkowski
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Gary B Huffnagle
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan.,Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - John R Erb-Downward
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Robert P Dickson
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Beth B Moore
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - David N O'Dwyer
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
11
|
Search for Promising Strains of Probiotic Microbiota Isolated from Different Biotopes of Healthy Cats for Use in the Control of Surgical Infections. Pathogens 2021; 10:pathogens10060667. [PMID: 34071725 PMCID: PMC8228694 DOI: 10.3390/pathogens10060667] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
Despite the introduction of modern methods of treatment, the creation of new generations of antibacterial agents, and the constant improvement of aseptic and antiseptic methods, the treatment of purulent–inflammatory processes remains one of the most complex and urgent problems in veterinary practice. The article presents the results of the isolation of indigenous microbiota from various biotopes of healthy cats, as well as the study of their biological marker properties for the selection of the most optimal strains in probiotic medicines for the control of surgical infections. It was demonstrated that isolated cultures of bifidobacteria and lactobacilli, which we isolated, revealed high sensitivity to antibiotics of the β-lactam group (excepting L. acidophilus No. 24, L. plantarum “Victoria” No. 22, L. rhamnosus No. 5, L. rhamnosus No. 20, and L. rhamnosus No. 26, which showed a significant variability in sensitivity to antibacterial drugs of this group, indicating the great potential of these microorganisms) and resistance to aminoglycosides, lincosamides, and fluoroquinolones (with the exception of gatifloxacin, which showed high efficiency in relation to all lactic acid microorganisms). The adhesive properties of the isolated lactobacteria and bifidobacteria were variable, even within the same species. It was found that the B. adolescentis No. 23 strain of the Bifidobacterium genus, as well as the L. plantarum No. 8, L. plantarum “Victoria” No. 22, L. rhamnosus No. 6, L. rhamnosus No. 26, L. acidophilus No. 12, and L. acidophilus No. 24 strains of the Lactobacillus genus had the highest adhesive activity. Thus, when conducting a detailed analysis of the biological marker properties of candidate cultures (determining their sensitivity to antimicrobial agents, studying the adhesive properties, and antagonistic activity in relation to causative agents of surgical infection in cats), it was found that the most promising are L. plantarum “Victoria” No. 22, L. rhamnosus No. 26, and L. acidophilus No. 24.
Collapse
|
12
|
d'Enfert C, Kaune AK, Alaban LR, Chakraborty S, Cole N, Delavy M, Kosmala D, Marsaux B, Fróis-Martins R, Morelli M, Rosati D, Valentine M, Xie Z, Emritloll Y, Warn PA, Bequet F, Bougnoux ME, Bornes S, Gresnigt MS, Hube B, Jacobsen ID, Legrand M, Leibundgut-Landmann S, Manichanh C, Munro CA, Netea MG, Queiroz K, Roget K, Thomas V, Thoral C, Van den Abbeele P, Walker AW, Brown AJP. The impact of the Fungus-Host-Microbiota interplay upon Candida albicans infections: current knowledge and new perspectives. FEMS Microbiol Rev 2021; 45:fuaa060. [PMID: 33232448 PMCID: PMC8100220 DOI: 10.1093/femsre/fuaa060] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Candida albicans is a major fungal pathogen of humans. It exists as a commensal in the oral cavity, gut or genital tract of most individuals, constrained by the local microbiota, epithelial barriers and immune defences. Their perturbation can lead to fungal outgrowth and the development of mucosal infections such as oropharyngeal or vulvovaginal candidiasis, and patients with compromised immunity are susceptible to life-threatening systemic infections. The importance of the interplay between fungus, host and microbiota in driving the transition from C. albicans commensalism to pathogenicity is widely appreciated. However, the complexity of these interactions, and the significant impact of fungal, host and microbiota variability upon disease severity and outcome, are less well understood. Therefore, we summarise the features of the fungus that promote infection, and how genetic variation between clinical isolates influences pathogenicity. We discuss antifungal immunity, how this differs between mucosae, and how individual variation influences a person's susceptibility to infection. Also, we describe factors that influence the composition of gut, oral and vaginal microbiotas, and how these affect fungal colonisation and antifungal immunity. We argue that a detailed understanding of these variables, which underlie fungal-host-microbiota interactions, will present opportunities for directed antifungal therapies that benefit vulnerable patients.
Collapse
Affiliation(s)
- Christophe d'Enfert
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Ann-Kristin Kaune
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Leovigildo-Rey Alaban
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Sayoni Chakraborty
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Neugasse 25, 07743 Jena, Germany
| | - Nathaniel Cole
- Gut Microbiology Group, Rowett Institute, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Margot Delavy
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Daria Kosmala
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Benoît Marsaux
- ProDigest BV, Technologiepark 94, B-9052 Gent, Belgium
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links, 9000 Ghent, Belgium
| | - Ricardo Fróis-Martins
- Immunology Section, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, Zurich 8057, Switzerland
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Moran Morelli
- Mimetas, Biopartner Building 2, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Diletta Rosati
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Marisa Valentine
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Zixuan Xie
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Yoan Emritloll
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Peter A Warn
- Magic Bullet Consulting, Biddlecombe House, Ugbrook, Chudleigh Devon, TQ130AD, UK
| | - Frédéric Bequet
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
| | - Marie-Elisabeth Bougnoux
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Stephanie Bornes
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF0545, 20 Côte de Reyne, 15000 Aurillac, France
| | - Mark S Gresnigt
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Bernhard Hube
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Ilse D Jacobsen
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Mélanie Legrand
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Salomé Leibundgut-Landmann
- Immunology Section, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, Zurich 8057, Switzerland
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Chaysavanh Manichanh
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Carol A Munro
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Karla Queiroz
- Mimetas, Biopartner Building 2, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Karine Roget
- NEXBIOME Therapeutics, 22 allée Alan Turing, 63000 Clermont-Ferrand, France
| | - Vincent Thomas
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
| | - Claudia Thoral
- NEXBIOME Therapeutics, 22 allée Alan Turing, 63000 Clermont-Ferrand, France
| | | | - Alan W Walker
- Gut Microbiology Group, Rowett Institute, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Alistair J P Brown
- MRC Centre for Medical Mycology, Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
13
|
Impacts of gut microbiota on gestational diabetes mellitus: a comprehensive review. Eur J Nutr 2021; 60:2343-2360. [PMID: 33512587 DOI: 10.1007/s00394-021-02483-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is a condition that seriously threatens mother and child health. The incidence of GDM has increased worldwide in the past decades. In addition, the complications of GDM such as type 2 diabetes (T2DM) and neonatal malformations could negatively affect the living quality of mothers and their children. AIM It has been widely known that the imbalance of gut microbiota or called 'gut dysbiosis' plays a key role in the development of insulin resistance and chronic low-grade inflammation in T2DM patients. However, the impacts of gut microbiota on GDM remain controversial. Here, we aim to comprehensively review the alterations of gut microbiota in GDM mothers and their offspring. RESULTS The alterations of Firmicutes/Bacteroidetes (F/B) ratio, short-chain fatty acid (SCFA)-producing bacteria, bacteria with probiotics properties and gram-negative lipopolysaccharide (LPS)-producing bacteria play a vital role in the development of GDM. The beneficial roles of gut microbiota modification (probiotics, synbiotics and lifestyle modification) as a treatment of GDM were found in some, but not all studies. CONCLUSION In the near future, gut microbiota modification may be considered as one of the standard treatments for GDM. Moreover, further studies regarding the specific gut microbiota that are associated with the early development of GDM are required. This may contribute to the novel diagnostic markers for early stages of GDM.
Collapse
|
14
|
Thibeault C, Suttorp N, Opitz B. The microbiota in pneumonia: From protection to predisposition. Sci Transl Med 2021; 13:13/576/eaba0501. [PMID: 33441423 DOI: 10.1126/scitranslmed.aba0501] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 06/30/2020] [Indexed: 12/12/2022]
Abstract
Mucosal surfaces of the upper respiratory tract and gut are physiologically colonized with their own collection of microbes, the microbiota. The normal upper respiratory tract and gut microbiota protects against pneumonia by impeding colonization by potentially pathogenic bacteria and by regulating immune responses. However, antimicrobial therapy and critical care procedures perturb the microbiota, thus compromising its function and predisposing to lung infections (pneumonia). Interindividual variations and age-related alterations in the microbiota also affect vulnerability to pneumonia. We discuss how the healthy microbiota protects against pneumonia and how host factors and medical interventions alter the microbiota, thus influencing susceptibility to pneumonia.
Collapse
Affiliation(s)
- Charlotte Thibeault
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Norbert Suttorp
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Bastian Opitz
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany.
| |
Collapse
|