1
|
White T, López-Márquez A, Badosa C, Jimenez-Mallebrera C, Samitier J, Giannotti MI, Lagunas A. Nanomechanics of cell-derived matrices as a functional read-out in collagen VI-related congenital muscular dystrophies. J R Soc Interface 2025; 22:20240860. [PMID: 40070338 PMCID: PMC11897821 DOI: 10.1098/rsif.2024.0860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/31/2025] [Accepted: 02/11/2025] [Indexed: 03/15/2025] Open
Abstract
Changes in the mechanical properties of the extracellular matrix (ECM) are a hallmark of disease. Due to its relevance, several in vitro models have been developed for the ECM, including cell-derived matrices (CDMs). CDMs are decellularized natural ECMs assembled by cells that closely mimic the in vivo stromal fibre organization and molecular content. Here, we applied atomic force microscopy-force spectroscopy (AFM-FS) to evaluate the nanomechanical properties of CDMs obtained from patients diagnosed with collagen VI-related congenital muscular dystrophies (COL6-RDs). COL6-RDs are a set of neuromuscular conditions caused by pathogenic variants in any of the three major COL6 genes, which result in deficiency or dysfunction of the COL6 incorporated into the ECM of connective tissues. Current diagnosis includes the genetic confirmation of the disease and categorization of the phenotype based on maximum motor ability, as no direct correlation exists between genotype and phenotype of COL6-RDs. We describe differences in the elastic modulus (E) among CDMs from patients with different clinical phenotypes, as well as the restoration of E in CDMs obtained from genetically edited cells. Results anticipate the potential of the nanomechanical analysis of CDMs as a complementary clinical tool, providing phenotypic information about COL6-RDs and their response to gene therapies.
Collapse
Affiliation(s)
- Tom White
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Arístides López-Márquez
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Institut de Recerca Sant Joan de Déu, Barcelona, Catalunya, Spain
- Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Hospital Sant Joan de Déu, Barcelona, Catalunya, Spain
- CIBER-ER, ISCIII, Madrid, Spain
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Carmen Badosa
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Institut de Recerca Sant Joan de Déu, Barcelona, Catalunya, Spain
- Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Hospital Sant Joan de Déu, Barcelona, Catalunya, Spain
- CIBER-ER, ISCIII, Madrid, Spain
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Ceclila Jimenez-Mallebrera
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Institut de Recerca Sant Joan de Déu, Barcelona, Catalunya, Spain
- Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Hospital Sant Joan de Déu, Barcelona, Catalunya, Spain
- CIBER-ER, ISCIII, Madrid, Spain
| | - Josep Samitier
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- CIBER-BBN, ISCIII, Madrid, Spain
- Department of Electronic and Biomedical Engineering, University of Barcelona, Barcelona, Spain
| | - Marina Inés Giannotti
- CIBER-BBN, ISCIII, Madrid, Spain
- Nanoprobes and Nanoswitches, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Materials Science and Physical Chemistry, University of Barcelona, Barcelona, Spain
| | - Anna Lagunas
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- CIBER-BBN, ISCIII, Madrid, Spain
| |
Collapse
|
2
|
Mascharak S, Guo JL, Griffin M, Berry CE, Wan DC, Longaker MT. Modelling and targeting mechanical forces in organ fibrosis. NATURE REVIEWS BIOENGINEERING 2024; 2:305-323. [PMID: 39552705 PMCID: PMC11567675 DOI: 10.1038/s44222-023-00144-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 11/19/2024]
Abstract
Few efficacious therapies exist for the treatment of fibrotic diseases, such as skin scarring, liver cirrhosis and pulmonary fibrosis, which is related to our limited understanding of the fundamental causes and mechanisms of fibrosis. Mechanical forces from cell-matrix interactions, cell-cell contact, fluid flow and other physical stimuli may play a central role in the initiation and propagation of fibrosis. In this Review, we highlight the mechanotransduction mechanisms by which various sources of physical force drive fibrotic disease processes, with an emphasis on central pathways that may be therapeutically targeted to prevent and reverse fibrosis. We then discuss engineered models of mechanotransduction in fibrosis, as well as molecular and biomaterials-based therapeutic approaches for limiting fibrosis and promoting regenerative healing phenotypes in various organs. Finally, we discuss challenges within fibrosis research that remain to be addressed and that may greatly benefit from next-generation bioengineered model systems.
Collapse
Affiliation(s)
- Shamik Mascharak
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- These authors contributed equally: Shamik Mascharak, Jason L. Guo, Michelle Griffin
| | - Jason L. Guo
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- These authors contributed equally: Shamik Mascharak, Jason L. Guo, Michelle Griffin
| | - Michelle Griffin
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- These authors contributed equally: Shamik Mascharak, Jason L. Guo, Michelle Griffin
| | - Charlotte E. Berry
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Derrick C. Wan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael T. Longaker
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
3
|
Substrate stiffness controls proinflammatory responses in human gingival fibroblasts. Sci Rep 2023; 13:1358. [PMID: 36693942 PMCID: PMC9873657 DOI: 10.1038/s41598-023-28541-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Soft gingiva is often compromised in gingival health; however, the underlying biological mechanisms remain unknown. Extracellular matrix (ECM) stiffness is involved in the progression of various fibroblast-related inflammatory disorders via cellular mechanotransduction. Gingival stiffness might regulate cellular mechanotransduction-mediated proinflammatory responses in gingival fibroblasts. This in vitro study aims to investigate the effects of substrate stiffness on proinflammatory responses in human gingival fibroblasts (hGFs). The hGFs isolated from two healthy donors cultured on type I collagen-coated polydimethylsiloxane substrates with different stiffnesses, representing soft (5 kPa) or hard (25 kPa) gingiva. Expression levels of proinflammatory mediators, prostaglandin E2 or interleukin-1β, in hGFs were significantly higher with the soft substrate than with the hard substrate, even without and with lipopolysaccharide (LPS) to induce inflammation. Expression levels of gingival ECM and collagen cross-linking agents in hGFs were downregulated more with the soft substrate than with the hard substrate through 14 days of culture. The soft substrate suppressed the expression of mechanotransduction-related transcriptional factors and activated the expression of inflammation-related factors, whereas the hard substrate demonstrated the opposite effects. Soft substrate induced proinflammatory responses and inhibition of ECM synthesis in hGFs by inactivating cellular mechanotransduction. This supports the importance of ECM stiffness in gingival health.
Collapse
|
4
|
Saleh M, Fotook Kiaei SZ, Kavianpour M. Application of Wharton jelly-derived mesenchymal stem cells in patients with pulmonary fibrosis. Stem Cell Res Ther 2022; 13:71. [PMID: 35168663 PMCID: PMC8845364 DOI: 10.1186/s13287-022-02746-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Pulmonary fibrosis is a devastating disease that eventually leads to death and respiratory failure. Despite the wide range of drugs, including corticosteroids, endothelin antagonist, and pirfenidone, there is no effective treatment, and the only main goal of treatment is to alleviate the symptoms as much as possible to slow down the progression of the disease and improve the quality of life. Lung transplantation may be a treatment option for a few people if pulmonary fibrosis develops and there is no established treatment. Pulmonary fibrosis caused by the COVID19 virus is another problem that we face in most patients despite the efforts of the international medical communities. Therefore, achieving alternative treatment for patients is a great success. Today, basic research using stem cells on pulmonary fibrosis has published promising results. New stem cell-based therapies can be helpful in patients with pulmonary fibrosis. Wharton jelly-derived mesenchymal stem cells are easily isolated in large quantities and made available for clinical trials without causing ethical problems. These cells have higher flexibility and proliferation potential than other cells isolated from different sources and differentiated into various cells in laboratory environments. More clinical trials are needed to determine the safety and efficacy of these cells. This study will investigate the cellular and molecular mechanisms and possible effects of Wharton jelly-derived mesenchymal stem cells in pulmonary fibrosis.
Collapse
Affiliation(s)
- Mahshid Saleh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyedeh Zahra Fotook Kiaei
- Department of Pulmonary and Critical Care, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maria Kavianpour
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Yeh CF, Chou C, Yang KC. Mechanotransduction in fibrosis: Mechanisms and treatment targets. CURRENT TOPICS IN MEMBRANES 2021; 87:279-314. [PMID: 34696888 DOI: 10.1016/bs.ctm.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
To perceive and integrate the environmental cues, cells and tissues sense and interpret various physical forces like shear, tensile, and compression stress. Mechanotransduction involves the sensing and translation of mechanical forces into biochemical and mechanical signals to guide cell fate and achieve tissue homeostasis. Disruption of this mechanical homeostasis by tissue injury elicits multiple cellular responses leading to pathological matrix deposition and tissue stiffening, and consequent evolution toward pro-inflammatory/pro-fibrotic phenotypes, leading to tissue/organ fibrosis. This review focuses on the molecular mechanisms linking mechanotransduction to fibrosis and uncovers the potential therapeutic targets to halt or resolve fibrosis.
Collapse
Affiliation(s)
- Chih-Fan Yeh
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan; Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Caroline Chou
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan; Washington University in St. Louis, St. Louis, MO, United States
| | - Kai-Chien Yang
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan; Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan; Research Center for Developmental Biology & Regenerative Medicine, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
6
|
Yuan J, Li P, Pan H, Xu Q, Xu T, Li Y, Wei D, Mo Y, Zhang Q, Chen J, Ni C. miR-770-5p inhibits the activation of pulmonary fibroblasts and silica-induced pulmonary fibrosis through targeting TGFBR1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112372. [PMID: 34082245 DOI: 10.1016/j.ecoenv.2021.112372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/13/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
Silicosis is a devastating interstitial lung disease arising from long-term exposure to inhalable silica. Regrettably, no therapy currently can effectively reverse the silica-induced fibrotic lesion. Emerging evidence has indicated that the dysregulation of microRNAs is involved in silica-induced pulmonary fibrosis. The aim of this study is to explore the expression pattern and underlying mechanisms of miR-770-5p in silica-induced pulmonary fibrosis. Consistent with our previous miRNA microarray analysis, the results of qRT-PCR showed that miR-770-5p expression was downregulated in silica-induced pulmonary fibrosis in humans and animal models. Administration of miR-770-5p agomir significantly reduced the fibrotic lesions in the lungs of mice exposed to silica dust. MiR-770-5p also exhibited a dramatic reduction in TGF-β1-activated human pulmonary fibroblasts (MRC-5). Transfection of miR-770-5p mimics significantly decreased the viability, migration ability, and S/G0 phase distribution, as well as the expression of fibronectin, collagen I, and α-SMA in TGF-β1-treated MRC-5 cells. Transforming growth factor-β receptor 1 (TGFBR1) was confirmed as a direct target of regulation by miR-770-5p. The expression of TGFBR1 was significantly increased in pulmonary fibrosis. Knockdown of TGFBR1 blocked the transduction of the TGF-β1 signaling pathway and attenuated the activation of MRC-5 cells, while overexpression of TGFBR1 effectively restored the activation of MRC-5 cells inhibited by miR-770-5p. Together, our results demonstrated that miR-770-5p exerted an anti-fibrotic effect in silica-induced pulmonary fibrosis by targeting TGFBR1. Targeting miR-770-5p might provide a new therapeutic strategy to prevent the abnormal activation of pulmonary fibroblasts in silicosis.
Collapse
Affiliation(s)
- Jiali Yuan
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Ping Li
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Honghong Pan
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Qi Xu
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Tiantian Xu
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Yan Li
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Dong Wei
- The Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Jiangsu 214003, China
| | - Yiqun Mo
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY 40202, USA
| | - Qunwei Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY 40202, USA
| | - Jingyu Chen
- The Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Jiangsu 214003, China
| | - Chunhui Ni
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
7
|
Podolanczuk AJ, Wong AW, Saito S, Lasky JA, Ryerson CJ, Eickelberg O. Update in Interstitial Lung Disease 2020. Am J Respir Crit Care Med 2021; 203:1343-1352. [PMID: 33835899 DOI: 10.1164/rccm.202103-0559up] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Anna J Podolanczuk
- Division of Pulmonary and Critical Care, Department of Medicine, Weill Cornell Medical College, Cornell University, New York, New York
| | - Alyson W Wong
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Shigeki Saito
- Section of Pulmonary Disease, Critical Care and Environmental Medicine, Department of Medicine, Tulane University, New Orleans, Louisiana; and
| | - Joseph A Lasky
- Section of Pulmonary Disease, Critical Care and Environmental Medicine, Department of Medicine, Tulane University, New Orleans, Louisiana; and
| | - Christopher J Ryerson
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Oliver Eickelberg
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
8
|
Šimoliūnas E, Ivanauskienė I, Bagdzevičiūtė L, Rinkūnaitė I, Alksnė M, Baltriukienė D. Surface stiffness depended gingival mesenchymal stem cell sensitivity to oxidative stress. Free Radic Biol Med 2021; 169:62-73. [PMID: 33862162 DOI: 10.1016/j.freeradbiomed.2021.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/16/2022]
Abstract
Mesenchymal stem cells (MSCs) are widely used in the fields of cell therapy and tissue engineering, due to their wide spectrum of differentiation potential, immunomodulation function and ongoing oxidative stress (OS) reduction. Nevertheless, OS impact is often overlooked in these research fields. It is not only responsible for the induction and development of many ailments, e.g., diabetes, lung fibrosis, and cancer, moreover, OS causes stem cell death and senescence during cell therapy and tissue engineering practices. As MSCs are used to treat various tissues, they interact with different tissue-specific mechanical environments, thus it is important to understand how the mechanical environment impacts MSC sensitivity to OS. In this work, for the first time, as known to the authors, it was shown that gingival MSCs (GMSCs) sensitivity to OS depends on the stiffness of the surface, on which the cells are grown. Furthermore, the activity and expression of mitogen activated protein kinases ERK, JNK, and p38 were surface stiffness dependent. GMSCs isolated from intermediate/stiff gingiva tissue (~20 kPa) have shown the best proliferative and survival properties, then grown on the stiffest tissues mimicking polyacrylamide hydrogels (40 kPa). Therefore, MSC source might determine their sensitivity to OS in different stiffness environments and should be accounted when developing a treatment strategy.
Collapse
Affiliation(s)
- Egidijus Šimoliūnas
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania.
| | - Indrė Ivanauskienė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Lina Bagdzevičiūtė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Ieva Rinkūnaitė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Milda Alksnė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Daiva Baltriukienė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|