1
|
Agraval H, Gao J, Schaunaman N, Hua H, Vandivier RW, Numata M, Day BJ, Chu HW. Toll-Interacting Protein Down-Regulation by Cigarette Smoke Exposure Impairs Human Lung Defense against Influenza A Virus Infection. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:1124-1140. [PMID: 40056974 DOI: 10.1016/j.ajpath.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/05/2025] [Accepted: 02/14/2025] [Indexed: 03/22/2025]
Abstract
Cigarette smoking is a primary cause of chronic obstructive pulmonary disease (COPD). Smokers have a higher risk of influenza-related mortality, but the underlying mechanisms remain unclear. Toll-interacting protein (TOLLIP), an immune regulator, inhibits influenza A virus (IAV) infection, but its regulation in COPD has not been well understood. This study was designed to determine whether cigarette smoke (CS) exposure down-regulated TOLLIP expression via epigenetic mechanisms, including histone methylation. TOLLIP and histone-methylating enzymes enhancer of zeste homolog 1/2 (EZH1/2) were measured in healthy and COPD human lungs, human airway epithelial cells cultured under submerged and air-liquid interface conditions, and precision-cut lung slices (PCLSs) exposed to CS with or without IAV infection. EZH1/2 siRNA and inhibitors were used to investigate their effects on TOLLIP expression. In patients with COPD, TOLLIP levels decreased, whereas EZH1 and EZH2 expression increased. Repeated CS exposure decreased TOLLIP and increased EZH1, EZH2, trimethylation of histone H3 at lysine 27 (H3K27me3), and IAV levels in human airway epithelial cells and PCLSs. EZH1/2 siRNA or their pharmacologic inhibitor valemetostat tosylate, in part, restored TOLLIP and reduced IAV levels in CS-exposed airway epithelial cells and PCLSs. These findings suggest that repeated CS exposure during viral infection reduced TOLLIP levels and increased viral load in part through EZH1/EZH2-H3K27me3-mediated epigenetic mechanisms. Targeting EZH1 and EZH2 may serve as one of the potential therapeutic strategies to restore TOLLIP expression and host defense against viral infections in patients with COPD.
Collapse
Affiliation(s)
- Hina Agraval
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Junfeng Gao
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| | | | - Huang Hua
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| | - R William Vandivier
- Division of Pulmonary Science and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Mari Numata
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Brian J Day
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, Colorado.
| |
Collapse
|
2
|
Tanneberger AE, Blomberg R, Bilousova G, Ryan AL, Magin CM. Engineered hydrogel biomaterials facilitate lung progenitor cell differentiation from induced pluripotent stem cells. Am J Physiol Lung Cell Mol Physiol 2025; 328:L379-L388. [PMID: 39884665 DOI: 10.1152/ajplung.00419.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/15/2025] [Accepted: 01/28/2025] [Indexed: 02/01/2025] Open
Abstract
Lung progenitor (LP) cells identified by the expression of transcription factor NK2 homeobox 1 (NKX2.1) are essential for the development of all lung epithelial cell types and hold tremendous potential for pulmonary research and translational regenerative medicine applications. Here, we present engineered hydrogels as a promising alternative to the naturally derived materials that are often used to differentiate human-induced pluripotent stem cells (iPSCs) into LP cells. Poly(ethylene glycol) norbornene (PEGNB) hydrogels with defined composition were used to systematically investigate the role of microenvironmental stiffness, cell origin, and splitting during the differentiation process. Results demonstrated that each factor impacted LP differentiation efficiency and that the soft hydrogels replicating healthy lung stiffness [elastic modulus (E) = 4.00 ± 0.25 kPa] produced the highest proportion of LP cells based on flow cytometric analysis results (54%) relative to the stiff hydrogels (48%) and Matrigel controls (32%) at the end of the nonsplit differentiation protocol. Collectively, these results showed that engineered hydrogels provide a well-defined microenvironment for iPSC-to-LP differentiation and perform as effectively as the current gold standard Matrigel-coated tissue culture plastic. Adopting engineered biomaterials in cell culture protocols may enable greater control over differentiation parameters and has the potential to enhance the clinical translation of iPSC-derived LP cells.NEW & NOTEWORTHY Standard iPSC differentiation protocols rely on Matrigel, a basement membrane extract from mouse sarcoma cells that is poorly defined and exhibits significant batch-to-batch variation. Due to these limitations, Matrigel-derived products have never been approved by the Food and Drug Administration. This study introduces a novel method for differentiating iPSCs into lung progenitor cells using well-defined hydrogel substrates. These biomaterials not only enhance differentiation efficiency but also streamline the regulatory pathway, facilitating their potential therapeutic application.
Collapse
Affiliation(s)
- Alicia E Tanneberger
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, United States
| | - Rachel Blomberg
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, United States
| | - Ganna Bilousova
- Department of Dermatology, Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Amy L Ryan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Chelsea M Magin
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
3
|
Li C, Xiao N, Song W, Lam AHC, Liu F, Cui X, Ye Z, Chen Y, Ren P, Cai J, Lee ACY, Chen H, Ou Z, Chan JFW, Yuen KY, Chu H, Zhang AJX. Chronic lung inflammation and CK14+ basal cell proliferation induce persistent alveolar-bronchiolization in SARS-CoV-2-infected hamsters. EBioMedicine 2024; 108:105363. [PMID: 39326207 PMCID: PMC11470415 DOI: 10.1016/j.ebiom.2024.105363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Post-acute sequalae of COVID-19 defines a wide range of ongoing symptoms and conditions long after SARS-CoV-2 infection including respiratory diseases. The histopathological changes in the lung and underlying mechanism remain elusive. METHODS We investigated lung histopathological and transcriptional changes in SARS-CoV-2-infected male hamsters at 7, 14, 42, 84 and 120dpi, and compared with A (H1N1)pdm09 infection. FINDINGS We demonstrated viral residue, inflammatory and fibrotic changes in lung after SARS-CoV-2 but not H1N1 infection. The most prominent histopathological lesion was multifocal alveolar-bronchiolization observed in every SARS-CoV-2 infected hamster (31/31), from 42dpi to 120dpi. Proliferating (Ki67+) CK14+ basal cells accumulated in alveoli adjacent to bronchioles at 7dpi, where they proliferated and differentiated into SCGB1A+ club cell or Tubulin+ ciliated cells forming alveolar-bronchiolization foci. Molecularly, Notch pathway significantly upregulated with intensive Notch3 and Hes1 protein expression in alveolar-bronchiolization foci at 42 and 120dpi, suggesting Notch signaling involving the persistence of alveolar-bronchiolization. This is further demonstrated by spatial transcriptomic analysis. Intriguingly, significant upregulation of some cell-growth promoting pathways and genes such as Tubb4b, Stxbp4, Grb14 and Mlf1 were spatially overlapping with bronchiolization lesion. INTERPRETATION Incomplete resolution of SARS-CoV-2 infection in lung with viral residue, chronic inflammatory and fibrotic damage and alveolar-bronchiolization impaired respiratory function. Aberrant activation of CK14+ basal cells during tissue regeneration led to persistent alveolar-bronchiolization due to sustained Notch signaling. This study advances our understanding of respiratory PASC, sheds light on disease management and highlights the necessity for monitoring disease progression in people with respiratory PASC. FUNDING Funding is listed in the Acknowledgements section.
Collapse
Affiliation(s)
- Can Li
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Na Xiao
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Wenchen Song
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Alvin Hiu-Chung Lam
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Feifei Liu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | - Zhanhong Ye
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Yanxia Chen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | | | - Jianpiao Cai
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Andrew Chak-Yiu Lee
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Honglin Chen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | | | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, China; Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China; Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, China; Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China; Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, China; Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China.
| | - Anna Jin-Xia Zhang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, China.
| |
Collapse
|
4
|
Zefi O, Waldman S, Marsh A, Shi MK, Sonbolian Y, Khulan B, Siddiqui T, Desai A, Patel D, Okorozo A, Khader S, Dobkin J, Sadoughi A, Shah C, Spivack S, Peter Y. Distinctive field effects of smoking and lung cancer case-control status on bronchial basal cell growth and signaling. Respir Res 2024; 25:317. [PMID: 39160511 PMCID: PMC11334309 DOI: 10.1186/s12931-024-02924-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024] Open
Abstract
RATIONAL Basal cells (BCs) are bronchial progenitor/stem cells that can regenerate injured airway that, in smokers, may undergo malignant transformation. As a model for early stages of lung carcinogenesis, we set out to characterize cytologically normal BC outgrowths from never-smokers and ever-smokers without cancers (controls), as well as from the normal epithelial "field" of ever-smokers with anatomically remote cancers, including lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) (cases). METHODS Primary BCs were cultured and expanded from endobronchial brushings taken remote from the site of clinical or visible lesions/tumors. Donor subgroups were tested for growth, morphology, and underlying molecular features by qRT-PCR, RNAseq, flow cytometry, immunofluorescence, and immunoblot. RESULTS (a) the BC population includes epithelial cell adhesion molecule (EpCAM) positive and negative cell subsets; (b) smoking reduced overall BC proliferation corresponding with a 2.6-fold reduction in the EpCAMpos/ITGA6 pos/CD24pos stem cell fraction; (c) LUSC donor cells demonstrated up to 2.8-fold increase in dysmorphic BCs; and (d) cells procured from LUAD patients displayed increased proliferation and S-phase cell cycle fractions. These differences corresponded with: (i) disparate NOTCH1/NOTCH2 transcript expression and altered expression of potential downstream (ii) E-cadherin (CDH1), tumor protein-63 (TP63), secretoglobin family 1a member 1 (SCGB1A1), and Hairy/enhancer-of-split related with YRPW motif 1 (HEY1); and (iii) reduced EPCAM and increased NK2 homeobox-1 (NKX2-1) mRNA expression in LUAD donor BCs. CONCLUSIONS These and other findings demonstrate impacts of donor age, smoking, and lung cancer case-control status on BC phenotypic and molecular traits and may suggest Notch signaling pathway deregulation during early human lung cancer pathogenesis.
Collapse
Affiliation(s)
- Olsida Zefi
- Department of Biology, Lander College, Touro University, New York, NY, 11367, USA
- Biology and Anatomy, New York Medical College, 10595, Valhalla, NY, USA
| | - Spencer Waldman
- Department of Biology, Lander College, Touro University, New York, NY, 11367, USA
- Biology and Anatomy, New York Medical College, 10595, Valhalla, NY, USA
- Pulmonary Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ava Marsh
- Pulmonary Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Miao Kevin Shi
- Pulmonary Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Yosef Sonbolian
- Department of Biology, Lander College, Touro University, New York, NY, 11367, USA
- Biology and Anatomy, New York Medical College, 10595, Valhalla, NY, USA
| | - Batbayar Khulan
- Pulmonary Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Taha Siddiqui
- Pulmonary Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Aditi Desai
- Pulmonary Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Dhruv Patel
- Pulmonary Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Aham Okorozo
- Pulmonary Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Samer Khader
- Pulmonary Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Jay Dobkin
- Pulmonary Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ali Sadoughi
- Pulmonary Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Chirag Shah
- Pulmonary Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Simon Spivack
- Pulmonary Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Yakov Peter
- Department of Biology, Lander College, Touro University, New York, NY, 11367, USA.
- Biology and Anatomy, New York Medical College, 10595, Valhalla, NY, USA.
- Pulmonary Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Lander College Touro University, 75-31 150th Street, 11367, Kew Garden Hills, NY, USA.
| |
Collapse
|
5
|
Zhou Y, Yang Y, Guo L, Qian J, Ge J, Sinner D, Ding H, Califano A, Cardoso WV. Airway basal cells show regionally distinct potential to undergo metaplastic differentiation. eLife 2022; 11:e80083. [PMID: 36178196 PMCID: PMC9578702 DOI: 10.7554/elife.80083] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 09/29/2022] [Indexed: 02/07/2023] Open
Abstract
Basal cells are multipotent stem cells of a variety of organs, including the respiratory tract, where they are major components of the airway epithelium. However, it remains unclear how diverse basal cells are and how distinct subpopulations respond to airway challenges. Using single cell RNA-sequencing and functional approaches, we report a significant and previously underappreciated degree of heterogeneity in the basal cell pool, leading to identification of six subpopulations in the adult murine trachea. Among these, we found two major subpopulations, collectively comprising the most uncommitted of all the pools, but with distinct gene expression signatures. Notably, these occupy distinct ventral and dorsal tracheal niches and differ in their ability to self-renew and initiate a program of differentiation in response to environmental perturbations in primary cultures and in mouse injury models in vivo. We found that such heterogeneity is acquired prenatally, when the basal cell pool and local niches are still being established, and depends on the integrity of these niches, as supported by the altered basal cell phenotype of tracheal cartilage-deficient mouse mutants. Finally, we show that features that distinguish these progenitor subpopulations in murine airways are conserved in humans. Together, the data provide novel insights into the origin and impact of basal cell heterogeneity on the establishment of regionally distinct responses of the airway epithelium during injury-repair and in disease conditions.
Collapse
Affiliation(s)
- Yizhuo Zhou
- Columbia Center for Human Development, Columbia University Irving Medical CenterNew YorkUnited States
- Department of Medicine, Pulmonary Allergy Critical Care, Columbia University Irving Medical CenterNew YorkUnited States
| | - Ying Yang
- Columbia Center for Human Development, Columbia University Irving Medical CenterNew YorkUnited States
- Department of Genetics and Development, Columbia University Irving Medical CenterNew YorkUnited States
| | - Lihao Guo
- Department of Pharmacy Practice and Science, College of Pharmacy, University of ArizonaTucsonUnited States
| | - Jun Qian
- Columbia Center for Human Development, Columbia University Irving Medical CenterNew YorkUnited States
- Department of Medicine, Pulmonary Allergy Critical Care, Columbia University Irving Medical CenterNew YorkUnited States
| | - Jian Ge
- Columbia Center for Human Development, Columbia University Irving Medical CenterNew YorkUnited States
| | - Debora Sinner
- Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, College of MedicineCincinnatiUnited States
| | - Hongxu Ding
- Department of Pharmacy Practice and Science, College of Pharmacy, University of ArizonaTucsonUnited States
| | - Andrea Califano
- Departments of Systems Biology, Biochemistry & Molecular Biophysics, Biomedical Informatics, Medicine; JP Sulzberger Columbia Genome Center; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical CenterNew YorkUnited States
| | - Wellington V Cardoso
- Columbia Center for Human Development, Columbia University Irving Medical CenterNew YorkUnited States
- Department of Medicine, Pulmonary Allergy Critical Care, Columbia University Irving Medical CenterNew YorkUnited States
| |
Collapse
|