1
|
Zhao T, Su Y. Mechanisms and Therapeutic Potential of Myofibroblast Transformation in Pulmonary Fibrosis. JOURNAL OF RESPIRATORY BIOLOGY AND TRANSLATIONAL MEDICINE 2025; 2:10001. [PMID: 40190620 PMCID: PMC11970920 DOI: 10.70322/jrbtm.2025.10001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, irreversible, and fatal disease with an increasing incidence and limited therapeutic options. It is characterized by the formation and deposition of excess extracellular matrix proteins resulting in the gradual replacement of normal lung architecture by fibrous tissue. The cellular and molecular mechanism of IPF has not been fully understood. A hallmark in IPF is pulmonary fibroblast to myofibroblast transformation (FMT). During excessive lung repair upon exposure to harmful stimuli, lung fibroblasts transform into myofibroblasts under stimulation of cytokines, chemokines, and vesicles from various cells. These mediators interact with lung fibroblasts, initiating multiple signaling cascades, such as TGFβ1, MAPK, Wnt/β-catenin, NF-κB, AMPK, endoplasmic reticulum stress, and autophagy, contributing to lung FMT. Furthermore, single-cell transcriptomic analysis has revealed significant heterogeneity among lung myofibroblasts, which arise from various cell types and are adapted to the altered microenvironment during pathological lung repair. This review provides an overview of recent research on the origins of lung myofibroblasts and the molecular pathways driving their formation, with a focus on the interactions between lung fibroblasts and epithelial cells, endothelial cells, and macrophages in the context of lung fibrosis. Based on these molecular insights, targeting the lung FMT could offer promising avenues for the treatment of IPF.
Collapse
Affiliation(s)
- Tianming Zhao
- Department of Pharmacology & Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Yunchao Su
- Department of Pharmacology & Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
- Research Service, Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30912, USA
| |
Collapse
|
2
|
Ghanem M, Archer G, Justet A, Jaillet M, Vasarmidi E, Mordant P, Castier Y, Mal H, Cazes A, Poté N, Crestani B, Mailleux A. FGF21 Signaling Exerts Antifibrotic Properties during Pulmonary Fibrosis. Am J Respir Crit Care Med 2025; 211:486-498. [PMID: 39637324 DOI: 10.1164/rccm.202311-2021oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/05/2024] [Indexed: 12/07/2024] Open
Abstract
Rationale: Idiopathic pulmonary fibrosis (IPF) is a lethal disease with limited therapeutic options. FGF21 (fibroblast growth factor 21), an endocrine fibroblast growth factor that acts through the FGFR1 (fibroblast growth factor receptor 1)/KLB (β-Klotho) pathway, mitigates liver fibrosis. Objectives: We hypothesized that FGF21 could exert antifibrotic properties in the lung. Methods: The concentrations of FGF21 and KLB in the plasma of patients with IPF and control subjects were assessed. Pulmonary fibrosis development was assessed in Fgf21-deficient mice compared with wild-type littermates, at Day 14 (D14) after the intratracheal injection of bleomycin. We determined the effect of repeated subcutaneous injections of a PEGylated FGF21 analog at D7, D10, D14, and D17 after bleomycin on the development of pulmonary fibrosis. Mice were killed at D21. The effects of FGF21, alone or with KLB, on apoptosis in murine lung epithelial 15 cells and on the phenotype of human lung fibroblasts were assessed in vitro. Measurements and Main Results: In the plasma of patients with IPF, FGF21 concentrations were increased, while KLB concentrations were decreased. Fgf21-deficient mice showed increased sensitivity to bleomycin in comparison with their wild-type littermates. Treatment with PEGylated FGF21 mitigated lung fibrogenesis, as evidenced by a lower injury score and decreased fibrosis markers and profibrotic mediator expression compared with the control group receiving the diluent. In murine lung epithelial 15 cells, stimulation with FGF21 and KLB inhibited apoptosis, through the decrease of BAX and BIM. Fibroblastic phenotype remained unaltered. Conclusions: Our data indicate a possible antifibrotic effect of FGF21 in the lung achieved through the inhibition of alveolar type 2 cell apoptosis.
Collapse
Affiliation(s)
- Mada Ghanem
- Faculté de Médecine Xavier Bichat, Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, UMR1152, FHU APOLLO, Labex INFLAMEX, Paris, France; and
| | - Gabrielle Archer
- Faculté de Médecine Xavier Bichat, Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, UMR1152, FHU APOLLO, Labex INFLAMEX, Paris, France; and
| | - Aurélien Justet
- Faculté de Médecine Xavier Bichat, Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, UMR1152, FHU APOLLO, Labex INFLAMEX, Paris, France; and
| | - Madeleine Jaillet
- Faculté de Médecine Xavier Bichat, Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, UMR1152, FHU APOLLO, Labex INFLAMEX, Paris, France; and
| | - Eirini Vasarmidi
- Faculté de Médecine Xavier Bichat, Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, UMR1152, FHU APOLLO, Labex INFLAMEX, Paris, France; and
| | | | | | - Hervé Mal
- Service de Pneumologie et Transplantation
| | - Aurélie Cazes
- Faculté de Médecine Xavier Bichat, Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, UMR1152, FHU APOLLO, Labex INFLAMEX, Paris, France; and
- Département d'Anatomopathologie, and
| | - Nicolas Poté
- Faculté de Médecine Xavier Bichat, Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, UMR1152, FHU APOLLO, Labex INFLAMEX, Paris, France; and
- Département d'Anatomopathologie, and
| | - Bruno Crestani
- Faculté de Médecine Xavier Bichat, Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, UMR1152, FHU APOLLO, Labex INFLAMEX, Paris, France; and
- Service de Pneumologie A, Centre de Référence des Maladies Pulmonaires Rares, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Paris, France
| | - Arnaud Mailleux
- Faculté de Médecine Xavier Bichat, Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, UMR1152, FHU APOLLO, Labex INFLAMEX, Paris, France; and
| |
Collapse
|
3
|
Ghanem M, Justet A, Jaillet M, Vasarmidi E, Boghanim T, Hachem M, Vadel A, Joannes A, Mordant P, Balayev A, Adams T, Mal H, Cazes A, Poté N, Mailleux A, Crestani B. Identification of FGFR4 as a regulator of myofibroblast differentiation in pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2024; 327:L818-L830. [PMID: 39350729 DOI: 10.1152/ajplung.00184.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 11/13/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease with limited therapeutic options. Fibroblast growth factor receptor-4 (FGFR4) is a known receptor for several paracrine fibroblast growth factors (FGFs). FGFR4 is also the main receptor for FGF19, an endocrine FGF that was demonstrated by our group to have antifibrotic properties in the lung. We aimed to determine whether FGFR4 could modulate pulmonary fibrogenesis. We assessed FGFR4 mRNA and protein levels in IPF and control lungs. In vitro, we determined the effect of transforming growth factor-β (TGF-β), endothelin-1, and platelet-derived growth factor (PDGF) on FGFR4 expression in human lung fibroblasts. We determined the effect of FGFR4 inhibition, using a specific pharmacological inhibitor (FGF401), or genetic deletion in murine embryonic fibroblasts (MEFs) on TGF-β-induced myofibroblastic differentiation. In vivo, we evaluated the development of bleomycin-induced lung fibrosis in Fgfr4-deficient (Fgfr4-/-) mice compared with wild-type littermates (WT) and after FGF401 treatment in WT mice compared with a control group receiving the solvent only. FGFR4 was decreased in IPF lungs, as compared with control lungs, at mRNA and protein levels. In vitro, FGFR4 was downregulated after treatment with TGF-β, endothelin-1, and PDGF. In vitro, FGFR4 inhibition by FGF401 prevented TGF-β1-induced collagen and ACTA2 increase in lung fibroblasts. Similar results were observed in Fgfr4-/- MEFs. In vivo, FGFR4 genetic deficiency or FGFR4 pharmacological inhibition did not modulate bleomycin-induced pulmonary fibrosis. Our data suggest that FGFR4 exerts profibrotic properties by enhancing TGF-β signaling in vitro. However, the inhibition of FGFR4 is not sufficient to prevent the development of pulmonary fibrosis in vivo.NEW & NOTEWORTHY FGFR4 has been reported to have antifibrotic effects in the liver. We aimed to determine the involvement of FGFR4 during IPF. Our data suggest that FGFR4 exerts profibrotic properties by enhancing TGF-β signaling in vitro. However, the inhibition of FGFR4 is not sufficient to prevent the development of pulmonary fibrosis in vivo. To our knowledge, this is the first study to assess the profibrotic action of FGFR4 during pulmonary fibrosis.
Collapse
Affiliation(s)
- Mada Ghanem
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, UMR1152, FHU APOLLO, Labex INFLAMEX, Faculté de médecine Xavier Bichat, Paris, France
| | - Aurélien Justet
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, UMR1152, FHU APOLLO, Labex INFLAMEX, Faculté de médecine Xavier Bichat, Paris, France
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Madeleine Jaillet
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, UMR1152, FHU APOLLO, Labex INFLAMEX, Faculté de médecine Xavier Bichat, Paris, France
| | - Eirini Vasarmidi
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, UMR1152, FHU APOLLO, Labex INFLAMEX, Faculté de médecine Xavier Bichat, Paris, France
| | - Tiara Boghanim
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, UMR1152, FHU APOLLO, Labex INFLAMEX, Faculté de médecine Xavier Bichat, Paris, France
| | - Mouna Hachem
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, UMR1152, FHU APOLLO, Labex INFLAMEX, Faculté de médecine Xavier Bichat, Paris, France
| | - Aurélie Vadel
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, UMR1152, FHU APOLLO, Labex INFLAMEX, Faculté de médecine Xavier Bichat, Paris, France
| | - Audrey Joannes
- INSERM U1085, IRSET Institut de Recherche sur la Santé, l'Environnement et le Travail, Université de Rennes-1, Rennes, France
| | - Pierre Mordant
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, UMR1152, FHU APOLLO, Labex INFLAMEX, Faculté de médecine Xavier Bichat, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service de Chirurgie Thoracique et vasculaire, Paris, France
| | - Agshin Balayev
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Taylor Adams
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Hervé Mal
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, UMR1152, FHU APOLLO, Labex INFLAMEX, Faculté de médecine Xavier Bichat, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service de Pneumologie et Transplantation, Paris, France
| | - Aurélie Cazes
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, UMR1152, FHU APOLLO, Labex INFLAMEX, Faculté de médecine Xavier Bichat, Paris, France
- Assistance Publique des Hôpitaux de Paris, Hôpital Bichat, Département d'Anatomopathologie, Paris, France
| | - Nicolas Poté
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, UMR1152, FHU APOLLO, Labex INFLAMEX, Faculté de médecine Xavier Bichat, Paris, France
- Assistance Publique des Hôpitaux de Paris, Hôpital Bichat, Département d'Anatomopathologie, Paris, France
| | - Arnaud Mailleux
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, UMR1152, FHU APOLLO, Labex INFLAMEX, Faculté de médecine Xavier Bichat, Paris, France
| | - Bruno Crestani
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, UMR1152, FHU APOLLO, Labex INFLAMEX, Faculté de médecine Xavier Bichat, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service de Pneumologie A, Centre de Référence des Maladies Pulmonaires Rares, Paris, France
| |
Collapse
|
4
|
Li D, Wang J, Zeng J, Li S, Sun D, Qiu L, Huang Z, Wang K, Fu G, Gou D, Zhang Y. Identification and Validation of Genes Exhibiting Dynamic Alterations in Response to Bleomycin-Induced Pulmonary Fibrosis. Mol Biotechnol 2024; 66:3323-3335. [PMID: 37924392 DOI: 10.1007/s12033-023-00943-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/09/2023] [Indexed: 11/06/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) carries a high mortality rate and has a poor prognosis. The pathogenesis of pulmonary fibrosis (PF) is highly related to dysregulation of multiple RNAs. This study aims to identify and validate dysregulated RNAs that exhibited dynamic alterations in response to bleomycin (BLM)-induced PF. The results will provide therapeutic targets for patients suffering from IPF. Whole transcriptomic profiles of BLM-induced PF were obtained through high-throughput RNA sequencing. miRNA profiling was downloaded from GSE45789 database in the Gene Expression Omnibus (GEO). We identified the differentially expressed RNAs (DERNAs) that exhibited dynamic alterations in response to BLM-induced PF. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway enrichment analysis were conducted to discovery regulatory processes of PF. Weighted gene co-expression network analysis (WGCNA), protein-protein interaction (PPI) analysis, and co-expression analysis were performed to identify key genes and pathogenic pattern during the progression of PF. MiRanda, miRcode, and TargetScan were utilized to predict target relationships in the potential competing endogenous RNA (ceRNA) network. The results were verified by qRT-PCR analysis. In the context of BLM-induced PF, this study identified a total of 167 differentially expressed messenger RNAs (DEmRNAs), 115 differentially expressed long non-coding RNAs (DElncRNAs), 45 differentially expressed circular RNAs (DEcircRNAs), and 87 differentially expressed microRNAs (DEmiRNAs). These RNA molecules showed dynamic alterations in response to BLM-induced PF. These DEmRNAs exhibited a predominant association with the biological processes pertaining to the organization of extracellular matrix. A regulatory network was built in PF, encompassing 31 DEmRNAs, 18 DE lncRNAs, 13 DEcircRNAs, and 13 DEmiRNAs. Several DERNA molecules were subjected to validate using additional BLM-induced PF model. The outcomes of this validation process shown a strong correlation with the results obtained from RNA sequencing analysis. The GSE213001 dataset was utilized to validate the expression levels and diagnostic efficacy of four specific hub mRNAs (CCDC80, CLU, COL5A1, and COL6A3) in individuals diagnosed with PF. In this study, we identified and validated several RNA molecules that exhibited dynamic alternations in response to BLM-induced PF. These dysregulated RNAs participated in the pathogenesis of PF and can be used as therapeutic targets for early-stage IPF. Although more work must be done to confirm the results, our study may provide directions for future studies.
Collapse
Affiliation(s)
- Dengyuan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650022, China
| | - Jun Wang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Jie Zeng
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650022, China
| | - Shujin Li
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Danxiong Sun
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650022, China
| | - Lin Qiu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Zhenming Huang
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650022, China
| | - Ku Wang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Gaohui Fu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Deming Gou
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China.
| | - Yunhui Zhang
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650022, China.
| |
Collapse
|
5
|
Li Y, You L, Nepovimova E, Adam V, Heger Z, Jomova K, Valko M, Wu Q, Kuca K. c-Jun N-terminal kinase signaling in aging. Front Aging Neurosci 2024; 16:1453710. [PMID: 39267721 PMCID: PMC11390425 DOI: 10.3389/fnagi.2024.1453710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/01/2024] [Indexed: 09/15/2024] Open
Abstract
Aging encompasses a wide array of detrimental effects that compromise physiological functions, elevate the risk of chronic diseases, and impair cognitive abilities. However, the precise underlying mechanisms, particularly the involvement of specific molecular regulatory proteins in the aging process, remain insufficiently understood. Emerging evidence indicates that c-Jun N-terminal kinase (JNK) serves as a potential regulator within the intricate molecular clock governing aging-related processes. JNK demonstrates the ability to diminish telomerase reverse transcriptase activity, elevate β-galactosidase activity, and induce telomere shortening, thereby contributing to immune system aging. Moreover, the circadian rhythm protein is implicated in JNK-mediated aging. Through this comprehensive review, we meticulously elucidate the intricate regulatory mechanisms orchestrated by JNK signaling in aging processes, offering unprecedented molecular insights with significant implications and highlighting potential therapeutic targets. We also explore the translational impact of targeting JNK signaling for interventions aimed at extending healthspan and promoting longevity.
Collapse
Affiliation(s)
- Yihao Li
- College of Life Science, Yangtze University, Jingzhou, China
| | - Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| |
Collapse
|
6
|
Ghanem M, Archer G, Crestani B, Mailleux AA. The endocrine FGFs axis: A systemic anti-fibrotic response that could prevent pulmonary fibrogenesis? Pharmacol Ther 2024; 259:108669. [PMID: 38795981 DOI: 10.1016/j.pharmthera.2024.108669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/22/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal disease for which therapeutic options are limited, with an unmet need to identify new therapeutic targets. IPF is thought to be the consequence of repeated microlesions of the alveolar epithelium, leading to aberrant epithelial-mesenchymal communication and the accumulation of extracellular matrix proteins. The reactivation of developmental pathways, such as Fibroblast Growth Factors (FGFs), is a well-described mechanism during lung fibrogenesis. Secreted FGFs with local paracrine effects can either exert an anti-fibrotic or a pro-fibrotic action during this pathological process through their FGF receptors (FGFRs) and heparan sulfate residues as co-receptors. Among FGFs, endocrine FGFs (FGF29, FGF21, and FGF23) play a central role in the control of metabolism and tissue homeostasis. They are characterized by a low affinity for heparan sulfate, present in the cell vicinity, allowing them to have endocrine activity. Nevertheless, their interaction with FGFRs requires the presence of mandatory co-receptors, alpha and beta Klotho proteins (KLA and KLB). Endocrine FGFs are of growing interest for their anti-fibrotic action during liver, kidney, or myocardial fibrosis. Innovative therapies based on FGF19 or FGF21 analogs are currently being studied in humans during liver fibrosis. Recent data report a similar anti-fibrotic action of endocrine FGFs in the lung, suggesting a systemic regulation of the pulmonary fibrotic process. In this review, we summarize the current knowledge on the protective effect of endocrine FGFs during the fibrotic processes, with a focus on pulmonary fibrosis.
Collapse
Affiliation(s)
- Mada Ghanem
- Université Paris Cité, Inserm, Physiopathologie et Épidémiologie des Maladies Respiratoires, F-75018 Paris, France
| | - Gabrielle Archer
- Université Paris Cité, Inserm, Physiopathologie et Épidémiologie des Maladies Respiratoires, F-75018 Paris, France
| | - Bruno Crestani
- Université Paris Cité, Inserm, Physiopathologie et Épidémiologie des Maladies Respiratoires, F-75018 Paris, France; Assistance Publique des Hôpitaux de Paris, Hôpital Bichat, Service de Pneumologie A, FHU APOLLO, Paris, France
| | - Arnaud A Mailleux
- Université Paris Cité, Inserm, Physiopathologie et Épidémiologie des Maladies Respiratoires, F-75018 Paris, France.
| |
Collapse
|
7
|
Sun Y, Xu H, Lu T, Li T, Wang Y, Fan X, Jiang Y, Cai M, He P, Liu J. Progress in Understanding the Role and Therapeutic Targets of Polarized Subtypes of Macrophages in Pulmonary Fibrosis. Cell Biochem Biophys 2023; 81:673-682. [PMID: 37749443 DOI: 10.1007/s12013-023-01182-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/17/2023] [Indexed: 09/27/2023]
Abstract
Pulmonary fibrosis represents the advanced phase of diverse pulmonary ailments, and at present, a definitive cure for these ailments is lacking. Furthermore, underlying mechanisms causative of these ailments remain elusive. Macrophages are immune cells that resist external stimuli in the early stages after birth. These cells can polarize into the classically (M1) and alternatively (M2) activated macrophages. When stimulated owing to the presence of toxic factors, M1 macrophages produce several pro-inflammatory factors, which mediate the inflammatory injury response of the alveolar tissue. The secretion of diverse growth factors by M2 macrophages contributes to the pathogenesis of aberrant alveolar structural fibrosis and remodeling. The abnormal activity of M2 macrophages is considered a critical factor in the formation of pulmonary fibrosis. In this mini-review, to highlight the clinical implications of research studies, we summarize the role and therapeutic targets of polarized subtypes of macrophages in pulmonary fibrosis and the role of targeting macrophages for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Yan Sun
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Hao Xu
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Tang Lu
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Tong Li
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yaqi Wang
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xinting Fan
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yuanyuan Jiang
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Meihan Cai
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Peishuang He
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jun Liu
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- The Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- The Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
8
|
Smith DJF, Jenkins RG. Contemporary Concise Review 2022: Interstitial lung disease. Respirology 2023; 28:627-635. [PMID: 37121779 DOI: 10.1111/resp.14511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023]
Abstract
Novel genetic associations for idiopathic pulmonary fibrosis (IPF) risk have been identified. Common genetic variants associated with IPF are also associated with chronic hypersensitivity pneumonitis. The characterization of underlying mechanisms, such as pathways involved in myofibroblast differentiation, may reveal targets for future treatments. Newly identified circulating biomarkers are associated with disease progression and mortality. Deep learning and machine learning may increase accuracy in the interpretation of CT scans. Novel treatments have shown benefit in phase 2 clinical trials. Hospitalization with COVID-19 is associated with residual lung abnormalities in a substantial number of patients. Inequalities exist in delivering and accessing interstitial lung disease specialist care.
Collapse
Affiliation(s)
- David J F Smith
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Interstitial Lung Disease, Royal Brompton and Harefield Hospital, Guys and St Thomas' NHS Foundation Trust, London, UK
| | - R Gisli Jenkins
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Interstitial Lung Disease, Royal Brompton and Harefield Hospital, Guys and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
9
|
Rostgaard N, Olsen MH, Capion T, MacAulay N, Juhler M. Inflammatory Markers as Predictors of Shunt Dependency and Functional Outcome in Patients with Aneurysmal Subarachnoid Hemorrhage. Biomedicines 2023; 11:biomedicines11040997. [PMID: 37189615 DOI: 10.3390/biomedicines11040997] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/28/2023] Open
Abstract
The mechanisms underlying post-hemorrhagic hydrocephalus (PHH) development following subarachnoid hemorrhage (SAH) are not fully understood, which complicates informed clinical decisions regarding the duration of external ventricular drain (EVD) treatment and prevents the prediction of shunt-dependency in the individual patient. The aim of this study was to identify potential inflammatory cerebrospinal fluid (CSF) biomarkers of PHH and, thus, shunt-dependency and functional outcome in patients with SAH. This study was a prospective observational study designed to evaluate inflammatory markers in ventricular CSF. In total, 31 Patients with SAH who required an EVD between June 2019 and September 2021 at the Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark, were included. CSF samples were collected twice from each patient and analyzed for 92 inflammatory markers via proximity extension assay (PEA), and the prognostic ability of the markers was investigated. In total, 12 patients developed PHH, while 19 were weaned from their EVD. Their 6-month functional outcome was determined with the modified Rankin Scale. Of the 92 analyzed inflammatory biomarkers, 79 were identified in the samples. Seven markers (SCF, OPG, LAP TGFβ1, Flt3L, FGF19, CST5, and CSF1) were found to be predictors of shunt dependency, and four markers (TNFα, CXCL5, CCL20, and IL8) were found to be predictors of functional outcome. In this study, we identified promising inflammatory biomarkers that are able to predict (i) the functional outcome in patients with SAH and (ii) the development of PHH and, thus, the shunt dependency of the individual patients. These inflammatory markers may have the potential to be employed as predictive biomarkers of shunt dependency and functional outcome following SAH and could, as such, be applied in the clinic.
Collapse
|
10
|
El Husseini K, Poté N, Jaillet M, Mordant P, Mal H, Frija-Masson J, Borie R, Cazes A, Crestani B, Mailleux A. [Adipocytes, adipokines and metabolic alterations in pulmonary fibrosis]. Rev Mal Respir 2023; 40:225-229. [PMID: 36740493 DOI: 10.1016/j.rmr.2023.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 02/07/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal respiratory disease characterized by severe remodeling of the lung parenchyma, with an accumulation of activated myofibroblasts and extracellular matrix, along with aberrant cellular differentiation. Within the subpleural fibrous zones, ectopic adipocyte deposits often appear. In addition, alterations in lipid homeostasis have been associated with IPF pathophysiology. In this mini-review, we will discuss the potential involvement of the adipocyte secretome and its paracrine or endocrine-based contribution to the pathophysiology of IPF, via protein or lipid mediators in particular.
Collapse
Affiliation(s)
- K El Husseini
- Service de pneumologie A, Hôpital Bichat, AP-HP ; Inserm Unit 1152, Université de Paris, Paris, France; Inserm Unité 1152 - PHERE, Université de Paris, Paris, France.
| | - N Poté
- Service d'anatomopathologie, Hôpital Bichat, AP-HP ; Inserm Unité 1152 - PHERE, Université de Paris, Paris, France
| | - M Jaillet
- Inserm Unité 1152 - PHERE, Université de Paris, Paris, France
| | - P Mordant
- Service de chirurgie vasculaire et thoracique, Hôpital Bichat, AP-HP, Paris, France
| | - H Mal
- Service de pneumologie B, Hôpital Bichat, AP-HP ; Inserm Unité 1152 - PHERE, Université de Paris, Paris, France
| | - J Frija-Masson
- Service de physiologie-explorations fonctionnelles respiratoires, Hôpital Bichat, AP-HP, Paris, France
| | - R Borie
- Service de pneumologie A, Hôpital Bichat, AP-HP ; Inserm Unit 1152, Université de Paris, Paris, France
| | - A Cazes
- Service d'anatomopathologie, Hôpital Bichat, AP-HP ; Inserm Unité 1152 - PHERE, Université de Paris, Paris, France
| | - B Crestani
- Service de pneumologie A, Hôpital Bichat, AP-HP ; Inserm Unit 1152, Université de Paris, Paris, France; Inserm Unité 1152 - PHERE, Université de Paris, Paris, France
| | - A Mailleux
- Inserm Unité 1152 - PHERE, Université de Paris, Paris, France
| |
Collapse
|
11
|
Ghanem M, Mailleux A, Crestani B. [Fibroblast growth factor (FGF) endocrines and pulmonary fibrogenesis]. Rev Mal Respir 2023; 40:239-242. [PMID: 36828676 DOI: 10.1016/j.rmr.2023.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 02/25/2023]
Abstract
As key actors in embryogenesis and organogenesis, fibroblast growth factors (FGFs) can assume a protective or an aggravative role in pulmonary fibrosis pathophysiology. Among the FGFs, endocrine FGFs (FGF19, FGF21 and FGF23), are characterized by low affinity to FGF receptors (FGFRs), enabling them to deploy endocrine activity in several organs. More specifically, their anti-fibrotic role has been reported in liver, kidney or myocardial fibrosis. Endocrine FGFs are of growing interest on account of their potential anti-fibrotic role in pulmonary fibrogenesis, as well. In this review, we aim to summarize current knowledge on the protective effects of endocrine FGFs in pulmonary fibrosis.
Collapse
Affiliation(s)
- M Ghanem
- Inserm Unité 1152, Université Paris Cité, Paris, France.
| | - A Mailleux
- Inserm Unité 1152, Université Paris Cité, Paris, France
| | - B Crestani
- Inserm Unité 1152, Université Paris Cité, Paris, France; Service de pneumologie A, Hôpital Bichat, AP-HP, Paris, France
| |
Collapse
|
12
|
The Molecular Mechanisms of Systemic Sclerosis-Associated Lung Fibrosis. Int J Mol Sci 2023; 24:ijms24032963. [PMID: 36769282 PMCID: PMC9917655 DOI: 10.3390/ijms24032963] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Systemic sclerosis (SSc), also known as scleroderma, is an autoimmune disorder that affects the connective tissues and has the highest mortality rate among the rheumatic diseases. One of the hallmarks of SSc is fibrosis, which may develop systemically, affecting the skin and virtually any visceral organ in the body. Fibrosis of the lungs leads to interstitial lung disease (ILD), which is currently the leading cause of death in SSc. The identification of effective treatments to stop or reverse lung fibrosis has been the main challenge in reducing SSc mortality and improving patient outcomes and quality of life. Thus, understanding the molecular mechanisms, altered pathways, and their potential interactions in SSc lung fibrosis is key to developing potential therapies. In this review, we discuss the diverse molecular mechanisms involved in SSc-related lung fibrosis to provide insights into the altered homeostasis state inherent to this fatal disease complication.
Collapse
|
13
|
Serum Fibroblast Growth Factor 19 as a Biomarker in Hepatitis B Virus-Related Liver Disease. HEPATITIS MONTHLY 2022. [DOI: 10.5812/hepatmon-130652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Background: Past research has found that fibroblast growth factor 19 (FGF19) is associated with several hepatic disorders, such as alcoholic liver disease and primary biliary cirrhosis. However, there is currently a lack of relevant studies on the relationship between FGF19 and hepatitis B virus (HBV)-related liver disease. Objectives: This study aimed to assess the role of serum FGF19 as a new biomarker for HBV-related liver disease and provide scientific data to show the clinical value of this biomarker. Methods: A retrospective study included 37 patients with chronic hepatitis B (CHB), 33 patients with HBV-related cirrhosis (HBV-cirrhosis), and 32 patients with HBV-related hepatocellular carcinoma (HBV-HCC). Furthermore, 33 normal people were randomly selected as healthy controls. The serum levels of FGF19 were measured by ELISA. Results: Serum FGF19 levels were increased sequentially in the CHB group, HBV-cirrhosis group, and HBV-HCC group. Furthermore, serum FGF19 levels positively correlated with alpha-fetoprotein, prothrombin time, international normalized ratio, total bilirubin, direct bilirubin, alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl-transferase, alkaline phosphatase, total bile acid, serum markers for liver fibrosis, ascites, cirrhosis, Child-Pugh classification and model for end-stage liver disease sodium (MELD-Na) score, while negatively correlated with platelet count, prothrombin activity, and albumin. The diagnostic threshold of serum FGF19 for HBV-related HCC was 165.32 pg/mL, with a sensitivity of 81.25% and specificity of 58.57%. Conclusions: Serum FGF19 levels are positively associated with cholestasis, hepatocyte damage, and liver fibrosis but negatively correlated with liver synthetic function and liver functional reserve in HBV-related liver disease. Diverse changes in serum FGF19 may be used as a predictive marker for the progression of HBV-related liver disease. In addition, serum FGF19 has a potential role in monitoring carcinogenesis in patients with HBV-related liver disease.
Collapse
|