1
|
Norris PAA, Kubes P. Innate immunity of the lungs in homeostasis and disease. Mucosal Immunol 2025:S1933-0219(25)00039-X. [PMID: 40220792 DOI: 10.1016/j.mucimm.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/30/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025]
Abstract
Humans breathe thousands of litres of non-sterile air each day containing bacteria, viruses, and fungi, as well as pollutants, allergens, and other particles. The continual exposure to foreign particles is juxtaposed with the vast surface area of the blood-air-barrier which becomes extremely thin to allow for efficient gas exchange. To prevent infection and injury, the healthy lung relies on a robust innate immune system to protect itself. Critically, this innate immune system must clear insults while maintaining immune tolerance and minimizing inflammation to avoid disrupting the lung's vital gas exchange function. In this review, we discuss how the innate immune system protects the lung from its environment.
Collapse
Affiliation(s)
- Peter A A Norris
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Paul Kubes
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
2
|
Wu X, Qin L, Song M, Zhang C, Guo J, Yang Z, Gao Z, Qiu M. Metagenomics combined with untargeted metabolomics to study the mechanism of miRNA-150-5p on SiO 2 -induced acute lung injury. J Pharm Biomed Anal 2025; 252:116515. [PMID: 39413681 DOI: 10.1016/j.jpba.2024.116515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/02/2024] [Accepted: 10/06/2024] [Indexed: 10/18/2024]
Abstract
Acute lung injury is a significant global health issue, and its treatment is becoming a hot topic of the researchers. To investigate the feasibility of miRNA-150-5p tail vein injection in the treatment of SiO2-induced acute lung injury through the regulation of gut microbiota and serum metabolites based on multiomics technology. Twenty-four mice were randomly divided into the control, SiO2 and miRNA-150-5p intervention groups. The SiO2 and miRNA-150-5p intervention groups received a single intranasal dose of 100 µL 4 % SiO2 suspension. Meanwhile, the miRNA-150-5p intervention group was administered with two tail vein injections of miRNA-150-5p (15 nmol each per mouse) on the day of successful modelling and on the third day post modelling. Metagenomics and metabolomics techniques were used to measure gut microbiota and serum metabolites, respectively. Tail vein injection of miRNA-150-5p improved SiO2-induced acute lung injury and reduced the secretion of inflammatory factors interleukin (IL)-6, tumour necrosis factor-α and IL-1β. These conditions altered the structure of gut microbiota, which resulted in the notable modulation of eight species at the species level. In addition, tail vein injection of miRNA-150-5p considerably reduced the levels of substances, such as phosphatidylethanolamine, phosphatidylcholine and phosphatidylinositol, in the glycerophospholipid metabolism and glycosylphosphatidylinositol-anchor biosynthesis pathways. Tail vein injection of miRNA-150-5p can alleviate acute lung injury. Combined metagenomics and untargeted metabolomics revealed the miRNA-150-5p-mitigated SiO2-induced acute lung injury that occurred through the regulation of gut microbiota and serum metabolites.
Collapse
Affiliation(s)
| | - Ling Qin
- Baotou Medical College, Baotou, China; The First Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Miao Song
- Baotou Medical College, Baotou, China
| | | | | | - Zheng Yang
- Baotou Medical College, Baotou, China; The First Affiliated Hospital of Baotou Medical College, Baotou, China.
| | - Zhixiang Gao
- Baotou Medical College, Baotou, China; Inner Mongolia Medical University, Hohhot, China.
| | - Min Qiu
- Baotou Medical College, Baotou, China.
| |
Collapse
|
3
|
Kulkarni HS, Tague LK, Calabrese DR, Liao F, Liu Z, Garnica L, Shankar N, Wu X, Kulkarni DH, Bernardt C, Byers D, Chen C, Huang HJ, Witt CA, Hachem RR, Kreisel D, Atkinson JP, Greenland JR, Gelman AE. Impaired complement regulation drives chronic lung allograft dysfunction after lung transplantation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.17.623951. [PMID: 39605452 PMCID: PMC11601477 DOI: 10.1101/2024.11.17.623951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
A greater understanding of chronic lung allograft dysfunction (CLAD) pathobiology, the primary cause of mortality after lung transplantation, is needed to improve outcomes. The complement system links innate to adaptive immune responses and is activated early post-lung transplantation to form the C3 convertase, a critical enzyme that cleaves the central complement component C3. We hypothesized that LTx recipients with a genetic predisposition to enhanced complement activation have worse CLAD-free survival mediated through increased adaptive alloimmunity. We interrogated a known functional C3 polymorphism (C3R102G) that increases complement activation through impaired C3 convertase inactivation in two independent LTx recipient cohorts. C3R102G, identified in at least one out of three LTx recipients, was associated with worse CLAD-free survival, particularly in the subset of recipients who developed donor-specific antibodies (DSA). In a mouse orthotopic lung transplantation model, impaired recipient complement regulation resulted in more severe obstructive airway lesions when compared to wildtype controls, despite only moderate differences in graft-infiltrating effector T cells. Impaired complement regulation promoted the intragraft accumulation of memory B cells and antibody-secreting cells, resulting in increased DSA levels. In summary, genetic predisposition to complement activation is associated with B cell activation and worse CLAD-free survival.
Collapse
Affiliation(s)
- Hrishikesh S. Kulkarni
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, David Geffen School of Medicine at the University of California-Los Angeles, Los Angeles, CA, USA
| | - Laneshia K. Tague
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel R. Calabrese
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Medical Service, Veterans Affairs Health Care System, San Francisco, California, USA
| | - Fuyi Liao
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhiyi Liu
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Lorena Garnica
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Nishanth Shankar
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaobo Wu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Devesha H. Kulkarni
- Department of Medicine, David Geffen School of Medicine at the University of California-Los Angeles, Los Angeles, CA, USA
| | - Cory Bernardt
- Department of Pathology, Washington University School of Medicine, St. Louis, MO, USA
| | - Derek Byers
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Catherine Chen
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Howard J. Huang
- Department of Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Chad A. Witt
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ramsey R. Hachem
- Department of Internal Medicine, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - John P. Atkinson
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - John R. Greenland
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Medical Service, Veterans Affairs Health Care System, San Francisco, California, USA
| | - Andrew E. Gelman
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
4
|
Silawal S, Gögele C, Pelikan P, Werner C, Levidou G, Mahato R, Schulze-Tanzil G. A Histological Analysis and Detection of Complement Regulatory Protein CD55 in SARS-CoV-2 Infected Lungs. Life (Basel) 2024; 14:1058. [PMID: 39337843 PMCID: PMC11432792 DOI: 10.3390/life14091058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND A complement imbalance in lung alveolar tissue can play a deteriorating role in COVID-19, leading to acute respiratory distress syndrome (ARDS). CD55 is a transmembrane glycoprotein that inhibits the activation of the complement system at the intermediate cascade level, blocking the activity of the C3 convertase. OBJECTIVE In our study, lung specimens from COVID-19 and ARDS-positive COVID+/ARDS+ patients were compared with COVID-19 and ARDS-negative COVID-/ARDS- as well as COVID-/ARDS+ patients. METHODS Histochemical staining and immunolabeling of CD55 protein were performed. RESULTS The COVID-/ARDS- specimen showed higher expression and homogeneous distribution of glycosaminoglycans as well as compactly arranged elastic and collagen fibers of the alveolar walls in comparison to ARDS-affected lungs. In addition, COVID-/ARDS- lung tissues revealed stronger and homogenously distributed CD55 expression on the alveolar walls in comparison to the disrupted COVID-/ARDS+ lung tissues. CONCLUSIONS Even though the collapse of the alveolar linings and the accumulation of cellular components in the alveolar spaces were characteristic of COVID+/ARDS+ lung tissues, evaluating CD55 expression could be relevant to understand its relation to the disease. Furthermore, targeting CD55 upregulation as a potential therapy could be an option for post-infectious complications of COVID-19 and other inflammatory lung diseases in the future.
Collapse
Affiliation(s)
- Sandeep Silawal
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, General Hospital Nuremberg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| | - Clemens Gögele
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, General Hospital Nuremberg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| | - Petr Pelikan
- Institute for Pathology, Paracelsus Medical University, Nuremberg, General Hospital, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| | - Christian Werner
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, General Hospital Nuremberg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| | - Georgia Levidou
- Institute for Pathology, Paracelsus Medical University, Nuremberg, General Hospital, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| | - Raman Mahato
- Department of Emergency and Intensive Care Medicine, Klinikum Ernst von Bergmann, Charlottenstraße 72, 14467 Potsdam, Germany
| | - Gundula Schulze-Tanzil
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, General Hospital Nuremberg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| |
Collapse
|
5
|
Ito Y, Sun T, Tawada M, Kinashi H, Yamaguchi M, Katsuno T, Kim H, Mizuno M, Ishimoto T. Pathophysiological Mechanisms of Peritoneal Fibrosis and Peritoneal Membrane Dysfunction in Peritoneal Dialysis. Int J Mol Sci 2024; 25:8607. [PMID: 39201294 PMCID: PMC11354376 DOI: 10.3390/ijms25168607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/04/2024] [Indexed: 09/02/2024] Open
Abstract
The characteristic feature of chronic peritoneal damage in peritoneal dialysis (PD) is a decline in ultrafiltration capacity associated with pathological fibrosis and angiogenesis. The pathogenesis of peritoneal fibrosis is attributed to bioincompatible factors of PD fluid and peritonitis. Uremia is associated with peritoneal membrane inflammation that affects fibrosis, neoangiogenesis, and baseline peritoneal membrane function. Net ultrafiltration volume is affected by capillary surface area, vasculopathy, peritoneal fibrosis, and lymphangiogenesis. Many inflammatory cytokines induce fibrogenic growth factors, with crosstalk between macrophages and fibroblasts. Transforming growth factor (TGF)-β and vascular endothelial growth factor (VEGF)-A are the key mediators of fibrosis and angiogenesis, respectively. Bioincompatible factors of PD fluid upregulate TGF-β expression by mesothelial cells that contributes to the development of fibrosis. Angiogenesis and lymphangiogenesis can progress during fibrosis via TGF-β-VEGF-A/C pathways. Complement activation occurs in fungal peritonitis and progresses insidiously during PD. Analyses of the human peritoneal membrane have clarified the mechanisms by which encapsulating peritoneal sclerosis develops. Different effects of dialysates on the peritoneal membrane were also recognized, particularly in terms of vascular damage. Understanding the pathophysiologies of the peritoneal membrane will lead to preservation of peritoneal membrane function and improvements in technical survival, mortality, and quality of life for PD patients.
Collapse
Affiliation(s)
- Yasuhiko Ito
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan (H.K.); (M.Y.); (T.I.)
| | - Ting Sun
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan (H.K.); (M.Y.); (T.I.)
| | - Mitsuhiro Tawada
- Department of Nephrology, Imaike Jin Clinic, Nagoya 464-0850, Japan
| | - Hiroshi Kinashi
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan (H.K.); (M.Y.); (T.I.)
| | - Makoto Yamaguchi
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan (H.K.); (M.Y.); (T.I.)
| | - Takayuki Katsuno
- Department of Nephrology and Rheumatology, Aichi Medical University Medical Center, Okazaki 444-2148, Japan;
| | - Hangsoo Kim
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (H.K.); (M.M.)
| | - Masashi Mizuno
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (H.K.); (M.M.)
| | - Takuji Ishimoto
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan (H.K.); (M.Y.); (T.I.)
| |
Collapse
|
6
|
Kulkarni DH, Starick M, Aponte Alburquerque R, Kulkarni HS. Local complement activation and modulation in mucosal immunity. Mucosal Immunol 2024; 17:739-751. [PMID: 38838816 PMCID: PMC11929374 DOI: 10.1016/j.mucimm.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
The complement system is an evolutionarily conserved arm of innate immunity, which forms one of the first lines of host response to pathogens and assists in the clearance of debris. A deficiency in key activators/amplifiers of the cascade results in recurrent infection, whereas a deficiency in regulating the cascade predisposes to accelerated organ failure, as observed in colitis and transplant rejection. Given that there are over 60 proteins in this system, it has become an attractive target for immunotherapeutics, many of which are United States Food and Drug Administration-approved or in multiple phase 2/3 clinical trials. Moreover, there have been key advances in the last few years in the understanding of how the complement system operates locally in tissues, independent of its activities in circulation. In this review, we will put into perspective the abovementioned discoveries to optimally modulate the spatiotemporal nature of complement activation and regulation at mucosal surfaces.
Collapse
Affiliation(s)
- Devesha H Kulkarni
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO, USA
| | - Marick Starick
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Rafael Aponte Alburquerque
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Hrishikesh S Kulkarni
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
7
|
Kulkarni HS. Hexamerization: explaining the original sin of IgG-mediated complement activation in acute lung injury. J Clin Invest 2024; 134:e181137. [PMID: 38828725 PMCID: PMC11142731 DOI: 10.1172/jci181137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Although antibody-mediated lung damage is a major factor in transfusion-related acute lung injury (ALI), autoimmune lung disease (for example, coatomer subunit α [COPA] syndrome), and primary graft dysfunction following lung transplantation, the mechanism by which antigen-antibody complexes activate complement to induce lung damage remains unclear. In this issue of the JCI, Cleary and colleagues utilized several approaches to demonstrate that IgG forms hexamers with MHC class I alloantibodies. This hexamerization served as a key pathophysiological mechanism in alloimmune lung injury models and was mediated through the classical pathway of complement activation. Additionally, the authors provided avenues for exploring therapeutics for this currently hard-to-treat clinical entity that has several etiologies but a potentially focused mechanism.
Collapse
|
8
|
Frommer ML, Langridge BJ, Beedie A, Jasionowska S, Awad L, Denton CP, Abraham DJ, Abu-Hanna J, Butler PEM. Exploring Anti-Fibrotic Effects of Adipose-Derived Stem Cells: Transcriptome Analysis upon Fibrotic, Inflammatory, and Hypoxic Conditioning. Cells 2024; 13:693. [PMID: 38667308 PMCID: PMC11049044 DOI: 10.3390/cells13080693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Autologous fat transfers show promise in treating fibrotic skin diseases, reversing scarring and stiffness, and improving quality of life. Adipose-derived stem cells (ADSCs) within these grafts are believed to be crucial for this effect, particularly their secreted factors, though the specific mechanisms remain unclear. This study investigates transcriptomic changes in ADSCs after in vitro fibrotic, inflammatory, and hypoxic conditioning. High-throughput gene expression assays were conducted on ADSCs exposed to IL1-β, TGF-β1, and hypoxia and in media with fetal bovine serum (FBS). Flow cytometry characterized the ADSCs. RNA-Seq analysis revealed distinct gene expression patterns between the conditions. FBS upregulated pathways were related to the cell cycle, replication, wound healing, and ossification. IL1-β induced immunomodulatory pathways, including granulocyte chemotaxis and cytokine production. TGF-β1 treatment upregulated wound healing and muscle tissue development pathways. Hypoxia led to the downregulation of mitochondria and cellular activity.
Collapse
Affiliation(s)
- Marvin L. Frommer
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Benjamin J. Langridge
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Alexandra Beedie
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Sara Jasionowska
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Laura Awad
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Christopher P. Denton
- Centre for Rheumatology, Department of Inflammation and Rare Diseases, Division of Medicine, University College London, London NW3 2QG, UK
| | - David J. Abraham
- Centre for Rheumatology, Department of Inflammation and Rare Diseases, Division of Medicine, University College London, London NW3 2QG, UK
| | - Jeries Abu-Hanna
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Division of Medical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Peter E. M. Butler
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| |
Collapse
|
9
|
Du J, Qian T, Lu Y, Zhou W, Xu X, Zhang C, Zhang J, Zhang Z. SPARC-YAP/TAZ inhibition prevents the fibroblasts-myofibroblast transformation. Exp Cell Res 2023; 429:113649. [PMID: 37225012 DOI: 10.1016/j.yexcr.2023.113649] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/22/2023] [Accepted: 05/14/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Fibrotic scar is a severe side effect of trabeculectomy, resulting in unsatisfactory outcomes for glaucoma surgery. Accumulating evidence showed human Tenon's fibroblasts (HTFs) play an important role in fibrosis formation. We previously reported that the aqueous level of secreted protein acidic and rich in cysteine (SPARC) was higher in the patients with primary angle closure glaucoma, which was associated with the failure of trabeculectomy. In this study, the potential effect and mechanism of SPARC in promoting fibrosis were explored by using HTFs. METHODS HTFs were employed in this study and examined under a phase-contrast microscope. Cell viability was determined by CCK-8. The expressions of SPARC-YAP/TAZ signaling and the fibrosis-related markers were examined with reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), Western blot, and immunofluorescence, subcellular fractionation was conducted to further determined the variation of YAP and phosphorylated YAP. The differential gene expressions were analyzed with RNA sequencing (RNAseq), followed by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. RESULTS Exogenous SPARC induced HTFs-myofibroblast transformation, as evidenced by the increased expression of α-SMA, collagen I and fibronectin in both protein and mRNA levels. SPARC knockdown decreased the expressions of the above genes in TGF-β2-treated HTFs. KEGG analysis showed that the Hippo signaling pathway was mostly enriched. SPARC treatment increased the expressions of YAP, TAZ, CTGF and CYR61 as well as enhanced YAP translocation from cytoplasm to nucleus, and decreased the phosphorylation of YAP and LAST1/2, which was reversed by SPARC knockdown. Knockdown of YAP1 decreased the fibrosis-related markers, such as α-SMA, collagen I and Fibronectin, in SPARC-treated HTFs. CONCLUSIONS SPARC induced HTFs-myofibroblast transformation via activating YAP/TAZ signaling. Targeting SPARC-YAP/TAZ axis in HTFs might provide a novel strategy for inhibiting fibrosis formation after trabeculectomy.
Collapse
Affiliation(s)
- Jingxiao Du
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Tianwei Qian
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Yi Lu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Wenkai Zhou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Chaoyang Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China.
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China.
| | - Zhihua Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China.
| |
Collapse
|
10
|
Liu A, Luo P, Huang H. New insight of complement system in the process of vascular calcification. J Cell Mol Med 2023; 27:1168-1178. [PMID: 37002701 PMCID: PMC10148053 DOI: 10.1111/jcmm.17732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
The complement system defences against pathogenic microbes and modulates immune homeostasis by interacting with the innate and adaptive immune systems. Dysregulation, impairment or inadvertent activation of complement system contributes to the pathogenesis of some autoimmune diseases and cardiovascular diseases (CVD). Vascular calcification is the pivotal pathological basis of CVD, and contributes to the high morbidity and mortality of CVD. Increasing evidences indicate that the complement system plays a key role in chronic kidney diseases, atherosclerosis, diabetes mellitus and aging-related diseases, which are closely related with vascular calcification. However, the effect of complement system on vascular calcification is still unclear. In this review, we summarize current evidences about the activation of complement system in vascular calcification. We also describe the complex network of complement system and vascular smooth muscle cells osteogenic transdifferentiation, systemic inflammation, endoplasmic reticulum stress, extracellular matrix remodelling, oxidative stress, apoptosis in vascular calcification. Hence, providing a better understanding of the potential relationship between complement system and vascular calcification, so as to provide a direction for slowing the progression of this burgeoning health concern.
Collapse
Affiliation(s)
- Aiting Liu
- Department of Cardiology, The Eighth Affiliated Hospital, Joint Laboratory of Guangdong‐Hong Kong‐Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases Sun Yat‐sen University Shenzhen China
| | - Pei Luo
- State Key Laboratory for Quality Research in Chinese Medicines Macau University of Science and Technology Macau China
| | - Hui Huang
- Department of Cardiology, The Eighth Affiliated Hospital, Joint Laboratory of Guangdong‐Hong Kong‐Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases Sun Yat‐sen University Shenzhen China
| |
Collapse
|
11
|
Sahu SK, Ozantürk AN, Kulkarni DH, Ma L, Barve RA, Dannull L, Lu A, Starick M, McPhatter J, Garnica L, Sanfillipo-Burchman M, Kunen J, Wu X, Gelman AE, Brody SL, Atkinson JP, Kulkarni HS. Lung epithelial cell-derived C3 protects against pneumonia-induced lung injury. Sci Immunol 2023; 8:eabp9547. [PMID: 36735773 PMCID: PMC10023170 DOI: 10.1126/sciimmunol.abp9547] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023]
Abstract
The complement component C3 is a fundamental plasma protein for host defense, produced largely by the liver. However, recent work has demonstrated the critical importance of tissue-specific C3 expression in cell survival. Here, we analyzed the effects of local versus peripheral sources of C3 expression in a model of acute bacterial pneumonia induced by Pseudomonas aeruginosa. Whereas mice with global C3 deficiency had severe pneumonia-induced lung injury, those deficient only in liver-derived C3 remained protected, comparable to wild-type mice. Human lung transcriptome analysis showed that secretory epithelial cells, such as club cells, express high levels of C3 mRNA. Mice with tamoxifen-induced C3 gene ablation from club cells in the lung had worse pulmonary injury compared with similarly treated controls, despite maintaining normal circulating C3 levels. Last, in both the mouse pneumonia model and cultured primary human airway epithelial cells, we showed that stress-induced death associated with C3 deficiency parallels that seen in Factor B deficiency rather than C3a receptor deficiency. Moreover, C3-mediated reduction in epithelial cell death requires alternative pathway component Factor B. Thus, our findings suggest that a pathway reliant on locally derived C3 and Factor B protects the lung mucosal barrier.
Collapse
Affiliation(s)
- Sanjaya K. Sahu
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Ayşe N. Ozantürk
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Devesha H. Kulkarni
- Division of Gastroenterology, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Lina Ma
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Ruteja A Barve
- Department of Genetics, Washington University School of Medicine; St. Louis, USA
| | - Linus Dannull
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Angel Lu
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Marick Starick
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Ja’Nia McPhatter
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Lorena Garnica
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Maxwell Sanfillipo-Burchman
- Division of Allergy and Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine; St. Louis, USA
| | - Jeremy Kunen
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Xiaobo Wu
- Division of Rheumatology, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Andrew E. Gelman
- Department of Surgery, Washington University School of Medicine; St. Louis, USA
| | - Steven L. Brody
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - John P. Atkinson
- Division of Rheumatology, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Hrishikesh S. Kulkarni
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| |
Collapse
|