1
|
Liu Z, Zhang R, Lai J. Catalpol inhibits Hedgehog signaling pathway to suppress proliferation and promote lipid accumulation in rat meibomian gland epithelial cells. Cytotechnology 2025; 77:105. [PMID: 40406032 PMCID: PMC12092864 DOI: 10.1007/s10616-025-00769-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 05/07/2025] [Indexed: 05/26/2025] Open
Abstract
Meibomian gland dysfunction (MGD) is an ocular surface disease lacking optimal treatment strategy. The Hedgehog pathway is involved in regulating MGEC proliferation and differentiation. Catalpol (CAT) is the main active ingredient in Rehmannia glutinosa with therapeutic potential. Exploring the effects and biological mechanisms of CAT on meibomian gland epithelial cells (MGECs). Primarily cultured rat MGECs were co-cultured with 3T3 cells for 7 days. MGECs were exposed to 2.5, 5, and 10 mmol/L CAT, 10 μg/mL Azithromycin (AZM), and 0.6 μmol/L Smoothened receptor agonist (SAG) for 48 h. Colony formation assays, Cell counting kit-8, Ki67 immunofluorescence, Nile red and Oil red O staining, and HSD LipidTOX Green kits were used to assess cell proliferation and lipid accumulation. Real-time quantitative PCR and Western blot analysis were used to measure gene expressions related to Hedgehog- and peroxisome proliferator-activated receptor (PPAR)-γ. This study successfully isolated primarily rat MGECs (expressed P63 and K14). AZM and 5, and 10 mmol/L CAT inhibited colony number, cell viability, and Ki67 mean fluorescence intensity (MFI), while they enhanced MFI of Nile red and LipidTOX Green, as well as increasing the ratio of Oil red O staining area. Additionally, transcription and translation levels of the Hedgehog pathway were significantly suppressed, meanwhile, PPAR-γ and SREBP-1 expression were increased. Interestingly, SAG reversed the effects of 10 mmol/L CAT on MGECs. CAT suppresses MGEC proliferation and promotes lipid accumulation by inhibiting the Hedgehog signaling pathway. This study offers a potential therapeutic strategy for MGD. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-025-00769-9.
Collapse
Affiliation(s)
- Zibin Liu
- Department of Ophthalmology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453, Stadium Road, Hangzhou, 310007 Zhejiang China
| | - Rui Zhang
- Department of Ophthalmology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453, Stadium Road, Hangzhou, 310007 Zhejiang China
| | - Jian Lai
- Department of Ophthalmology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453, Stadium Road, Hangzhou, 310007 Zhejiang China
| |
Collapse
|
2
|
Harris H, Kittur J. Unlocking the potential of CRISPR-Cas9 for cystic fibrosis: A systematic literature review. Gene 2025; 942:149257. [PMID: 39832688 DOI: 10.1016/j.gene.2025.149257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
CRISPR-Cas9 technology has revolutionized genetic engineering, offering precise and efficient genome editing capabilities. This review explores the application of CRISPR-Cas9 for cystic fibrosis (CF), particularly targeting mutations in the CFTR gene. CF is a multiorgan disease primarily affecting the lungs, gastrointestinal system (e.g., CF-related diabetes (CFRD), CF-associated liver disease (CFLD)), bones (CF-bone disease), and the reproductive system. CF, a genetic disorder characterized by defective ion transport leading to thick mucus accumulation, is often caused by mutations like ΔF508 in the CFTR gene. This review employs a systematic methodology, incorporating an extensive literature search across multiple academic databases, including PubMed, Web of Science, and ScienceDirect, to identify 40 high-quality studies focused on CRISPR-Cas9 applications for CFTR gene editing. The data collection process involved predefined inclusion criteria targeting experimental approaches, gene-editing outcomes, delivery methods, and verification techniques. Data analysis synthesized findings on editing efficiency, off-target effects, and delivery system optimization to present a comprehensive overview of the field. The review highlights the historical development of CRISPR-Cas9, its mechanism, and its transformative role in genetic engineering and medicine. A detailed examination of CRISPR-Cas9's application in CFTR gene correction emphasizes the potential for therapeutic interventions while addressing challenges such as off-target effects, delivery efficiency, and ethical considerations. Future directions include optimizing delivery systems, integrating advanced editing tools like prime and base editing, and expanding personalized medicine approaches to improve treatment outcomes. By systematically analyzing the current landscape, this review provides a foundation for advancing CRISPR-Cas9 technologies for cystic fibrosis treatment and related disorders.
Collapse
Affiliation(s)
- Hudson Harris
- Department of Biomedical Engineering, Gallogly College of Engineering, University of Oklahoma Norman OK USA.
| | - Javeed Kittur
- Department of Biomedical Engineering, Gallogly College of Engineering, University of Oklahoma Norman OK USA
| |
Collapse
|
3
|
Thornell IM, Lei L, McCray PB, Welsh MJ. Do pulmonary ionocytes absorb chloride or secrete chloride? Am J Physiol Cell Physiol 2025; 328:C400-C403. [PMID: 39716827 DOI: 10.1152/ajpcell.00672.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 12/25/2024]
Abstract
Pulmonary ionocytes express high levels of cystic fibrosis transmembrane conductance regulator (CFTR) channels. When studied using the short-circuit current technique, ionocytes produce CFTR-dependent short-circuit currents consistent with Cl- secretion. However, when studied without a voltage clamp, data indicate that ionocytes absorb Cl-. In this review, we resolve these seemingly conflicting findings by considering the different transepithelial voltages and the resultant movement of Cl- during short circuit and physiological open-circuit conditions. This analysis indicates that behavior under short-circuit conditions cannot be directly extrapolated to infer behavior under physiologic conditions. Finally, we discuss the potential role of basolateral Cl- channels in controlling absorption and secretion in ionocytes.
Collapse
Affiliation(s)
- Ian M Thornell
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Lei Lei
- Stead Family Department of Pediatrics, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Paul B McCray
- Stead Family Department of Pediatrics, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
- Department of Microbiology and Immunology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Michael J Welsh
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
- Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
4
|
Shah VS, Rajagopal J. The TIPping point: Inflammation and Ionocyte loss. Respirology 2025; 30:13-15. [PMID: 39562851 DOI: 10.1111/resp.14857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
See related article
Collapse
Affiliation(s)
- Viral S Shah
- Division of Pulmonary and Critical Care, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jayaraj Rajagopal
- Division of Pulmonary and Critical Care, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Luan X, Henao Romero N, Campanucci VA, Le Y, Mustofa J, Tam JS, Ianowski JP. Pulmonary Ionocytes Regulate Airway Surface Liquid pH in Primary Human Bronchial Epithelial Cells. Am J Respir Crit Care Med 2024; 210:788-800. [PMID: 38573173 PMCID: PMC11418883 DOI: 10.1164/rccm.202309-1565oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 04/04/2024] [Indexed: 04/05/2024] Open
Abstract
Rationale: Pulmonary ionocytes are a newly discovered airway epithelial cell type proposed to be a major contributor to cystic fibrosis (CF) lung disease based on observations they express the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel at a higher level than any other cell type in the airway epithelia. Moreover, genetically manipulated experimental models that lack ionocytes develop NaCl transport abnormalities and airway surface liquid (ASL) dehydration consistent with CF. However, no direct evidence indicates ionocytes engage in NaCl transport or contribute to ASL formation, questioning the relevance of ionocytes to CF lung disease. Objectives: To determine the ion transport properties of pulmonary ionocytes and club cells in genetically intact healthy and CF airway epithelia. Methods: We measured ion transport at the single-cell level using a self-referencing ion-selective microelectrode technique in primary human bronchial epithelial cell culture. Measurements and Main Results: cAMP-stimulated non-CF ionocytes do not secrete Na+ or Cl- into the ASL, but rather modulate its pH by secreting bicarbonate via CFTR-linked Cl-/bicarbonate exchange. Non-CF club cells secrete Na+ and Cl- to the lumen side after cAMP stimulation. CF ionocytes and club cells do not transport ions in response to cAMP stimulation, but incubation with CFTR modulators elexacaftor/tezacaftor/ivacaftor restores transport properties. Conclusions: We conclude that ionocytes do not contribute to ASL formation but regulate ASL pH. Club cells secrete the bulk of airway fluid. In CF, abnormal ionocyte and club cell function results in acidic and dehydrated ASL, causing reduced antimicrobial properties and mucociliary clearance.
Collapse
Affiliation(s)
- Xiaojie Luan
- Department of Anatomy, Physiology, and Pharmacology
- Respiratory Research Centre, and
| | - Nicolas Henao Romero
- Department of Anatomy, Physiology, and Pharmacology
- Respiratory Research Centre, and
| | | | - Yen Le
- Department of Anatomy, Physiology, and Pharmacology
- Respiratory Research Centre, and
| | - Jannatul Mustofa
- Department of Anatomy, Physiology, and Pharmacology
- Respiratory Research Centre, and
| | - Julian S Tam
- Respiratory Research Centre, and
- Division of Respirology, Critical Care, and Sleep Medicine, Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Juan P Ianowski
- Department of Anatomy, Physiology, and Pharmacology
- Respiratory Research Centre, and
| |
Collapse
|
6
|
Okuda K, Gentzsch M. Pulmonary Ionocytes: What Are They Transporting and Which Way? Am J Respir Crit Care Med 2024; 210:705-707. [PMID: 38701428 PMCID: PMC11418888 DOI: 10.1164/rccm.202404-0727ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024] Open
Affiliation(s)
- Kenichi Okuda
- Marsico Lung Institute/Cystic Fibrosis Research Center
- Department of Medicine The University of North Carolina at Chapel Hill Chapel Hill, North Carolina
| | - Martina Gentzsch
- Marsico Lung Institute/Cystic Fibrosis Research Center
- Department of Pediatrics The University of North Carolina at Chapel Hill Chapel Hill, North Carolina
| |
Collapse
|
7
|
Romano Ibarra GS, Lei L, Yu W, Thurman AL, Gansemer ND, Meyerholz DK, Pezzulo AA, McCray PB, Thornell IM, Stoltz DA. IL-13 induces loss of CFTR in ionocytes and reduces airway epithelial fluid absorption. J Clin Invest 2024; 134:e181995. [PMID: 39255033 PMCID: PMC11527443 DOI: 10.1172/jci181995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024] Open
Abstract
The airway surface liquid (ASL) plays a crucial role in lung defense mechanisms, and its composition and volume are regulated by the airway epithelium. The cystic fibrosis transmembrane conductance regulator (CFTR) is abundantly expressed in a rare airway epithelial cell type called an ionocyte. Recently, we demonstrated that ionocytes can increase liquid absorption through apical CFTR and basolateral barttin/chloride channels, while airway secretory cells mediate liquid secretion through apical CFTR channels and basolateral NKCC1 transporters. Th2-driven (IL-4/IL-13) airway diseases, such as asthma, cause goblet cell metaplasia, accompanied by increased mucus production and airway secretions. In this study, we investigate the effect of IL-13 on chloride and liquid transport performed by ionocytes. IL-13 treatment of human airway epithelia was associated with reduced epithelial liquid absorption rates and increased ASL volume. Additionally, IL-13 treatment reduced the abundance of CFTR-positive ionocytes and increased the abundance of CFTR-positive secretory cells. Increasing ionocyte abundance attenuated liquid secretion caused by IL-13. Finally, CFTR-positive ionocytes were less common in asthma and chronic obstructive pulmonary disease and were associated with airflow obstruction. Our findings suggest that loss of CFTR in ionocytes contributes to the liquid secretion observed in IL-13-mediated airway diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Paul B. McCray
- Department of Internal Medicine
- Department of Pediatrics
- Pappajohn Biomedical Institute, and
| | - Ian M. Thornell
- Department of Internal Medicine
- Pappajohn Biomedical Institute, and
| | - David A. Stoltz
- Department of Internal Medicine
- Pappajohn Biomedical Institute, and
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
8
|
Vilà-González M, Pinte L, Fradique R, Causa E, Kool H, Rodrat M, Morell CM, Al-Thani M, Porter L, Guo W, Maeshima R, Hart SL, McCaughan F, Granata A, Sheppard DN, Floto RA, Rawlins EL, Cicuta P, Vallier L. In vitro platform to model the function of ionocytes in the human airway epithelium. Respir Res 2024; 25:180. [PMID: 38664797 PMCID: PMC11045446 DOI: 10.1186/s12931-024-02800-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Pulmonary ionocytes have been identified in the airway epithelium as a small population of ion transporting cells expressing high levels of CFTR (cystic fibrosis transmembrane conductance regulator), the gene mutated in cystic fibrosis. By providing an infinite source of airway epithelial cells (AECs), the use of human induced pluripotent stem cells (hiPSCs) could overcome some challenges of studying ionocytes. However, the production of AEC epithelia containing ionocytes from hiPSCs has proven difficult. Here, we present a platform to produce hiPSC-derived AECs (hiPSC-AECs) including ionocytes and investigate their role in the airway epithelium. METHODS hiPSCs were differentiated into lung progenitors, which were expanded as 3D organoids and matured by air-liquid interface culture as polarised hiPSC-AEC epithelia. Using CRISPR/Cas9 technology, we generated a hiPSCs knockout (KO) for FOXI1, a transcription factor that is essential for ionocyte specification. Differences between FOXI1 KO hiPSC-AECs and their wild-type (WT) isogenic controls were investigated by assessing gene and protein expression, epithelial composition, cilia coverage and motility, pH and transepithelial barrier properties. RESULTS Mature hiPSC-AEC epithelia contained basal cells, secretory cells, ciliated cells with motile cilia, pulmonary neuroendocrine cells (PNECs) and ionocytes. There was no difference between FOXI1 WT and KO hiPSCs in terms of their capacity to differentiate into airway progenitors. However, FOXI1 KO led to mature hiPSC-AEC epithelia without ionocytes with reduced capacity to produce ciliated cells. CONCLUSION Our results suggest that ionocytes could have role beyond transepithelial ion transport by regulating epithelial properties and homeostasis in the airway epithelium.
Collapse
Affiliation(s)
- Marta Vilà-González
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK.
- Cell Therapy and Tissue Engineering Group, Research Institute of Health Sciences (IUNICS), University of Balearic Islands, Palma, 07122, Spain.
- Health Research Institute of the Balearic Islands (IdISBa), Palma, 07120, Spain.
| | - Laetitia Pinte
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Ricardo Fradique
- Department of Physics, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Erika Causa
- Department of Physics, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Heleen Kool
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Mayuree Rodrat
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
- Center of Research and Development for Biomedical Instrumentation, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Carola Maria Morell
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan, 20089, Italy
| | - Maha Al-Thani
- Department of Clinical Neurosciences, Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Papworth Road, Cambridge, CB2 0BB, UK
| | - Linsey Porter
- Department of Medicine, Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Papworth Road, Cambridge, CB2 0BB, UK
| | - Wenrui Guo
- Department of Medicine, Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Papworth Road, Cambridge, CB2 0BB, UK
| | - Ruhina Maeshima
- Genetics and Genome Medicine Department, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Stephen L Hart
- Genetics and Genome Medicine Department, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Frank McCaughan
- Department of Medicine, Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Papworth Road, Cambridge, CB2 0BB, UK
| | - Alessandra Granata
- Department of Clinical Neurosciences, Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Papworth Road, Cambridge, CB2 0BB, UK
| | - David N Sheppard
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - R Andres Floto
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, CB2 0QH, UK
- Cambridge Centre for Lung Infection, Royal Papworth Hospital NHS Foundation Trust, Cambridge, CB2 0AY, UK
| | - Emma L Rawlins
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Pietro Cicuta
- Department of Physics, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Ludovic Vallier
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK.
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité, Augustenburger Platz 1, 13353, Berlin, DE, Germany.
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195, Berlin, Germany.
| |
Collapse
|
9
|
Yaremenko AV, Pechnikova NA, Porpodis K, Damdoumis S, Aggeli A, Theodora P, Domvri K. Association of Fetal Lung Development Disorders with Adult Diseases: A Comprehensive Review. J Pers Med 2024; 14:368. [PMID: 38672994 PMCID: PMC11051200 DOI: 10.3390/jpm14040368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Fetal lung development is a crucial and complex process that lays the groundwork for postnatal respiratory health. However, disruptions in this delicate developmental journey can lead to fetal lung development disorders, impacting neonatal outcomes and potentially influencing health outcomes well into adulthood. Recent research has shed light on the intriguing association between fetal lung development disorders and the development of adult diseases. Understanding these links can provide valuable insights into the developmental origins of health and disease, paving the way for targeted preventive measures and clinical interventions. This review article aims to comprehensively explore the association of fetal lung development disorders with adult diseases. We delve into the stages of fetal lung development, examining key factors influencing fetal lung maturation. Subsequently, we investigate specific fetal lung development disorders, such as respiratory distress syndrome (RDS), bronchopulmonary dysplasia (BPD), congenital diaphragmatic hernia (CDH), and other abnormalities. Furthermore, we explore the potential mechanisms underlying these associations, considering the role of epigenetic modifications, transgenerational effects, and intrauterine environmental factors. Additionally, we examine the epidemiological evidence and clinical findings linking fetal lung development disorders to adult respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), and other respiratory ailments. This review provides valuable insights for healthcare professionals and researchers, guiding future investigations and shaping strategies for preventive interventions and long-term care.
Collapse
Affiliation(s)
- Alexey V. Yaremenko
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.P.); (S.D.)
| | - Nadezhda A. Pechnikova
- Laboratory of Chemical Engineering A’, School of Chemical Engineering, Faculty of Engineering, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (N.A.P.); (A.A.)
- Saint Petersburg Pasteur Institute, Saint Petersburg 197101, Russia
| | - Konstantinos Porpodis
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.P.); (S.D.)
| | - Savvas Damdoumis
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.P.); (S.D.)
| | - Amalia Aggeli
- Laboratory of Chemical Engineering A’, School of Chemical Engineering, Faculty of Engineering, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (N.A.P.); (A.A.)
| | - Papamitsou Theodora
- Laboratory of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Kalliopi Domvri
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.P.); (S.D.)
- Laboratory of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
- Pathology Department, George Papanikolaou Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| |
Collapse
|
10
|
Ramananda Y, Naren AP, Arora K. Functional Consequences of CFTR Interactions in Cystic Fibrosis. Int J Mol Sci 2024; 25:3384. [PMID: 38542363 PMCID: PMC10970640 DOI: 10.3390/ijms25063384] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 09/01/2024] Open
Abstract
Cystic fibrosis (CF) is a fatal autosomal recessive disorder caused by the loss of function mutations within a single gene for the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). CFTR is a chloride channel that regulates ion and fluid transport across various epithelia. The discovery of CFTR as the CF gene and its cloning in 1989, coupled with extensive research that went into the understanding of the underlying biological mechanisms of CF, have led to the development of revolutionary therapies in CF that we see today. The highly effective modulator therapies have increased the survival rates of CF patients and shifted the epidemiological landscape and disease prognosis. However, the differential effect of modulators among CF patients and the presence of non-responders and ineligible patients underscore the need to develop specialized and customized therapies for a significant number of patients. Recent advances in the understanding of the CFTR structure, its expression, and defined cellular compositions will aid in developing more precise therapies. As the lifespan of CF patients continues to increase, it is becoming critical to clinically address the extra-pulmonary manifestations of CF disease to improve the quality of life of the patients. In-depth analysis of the molecular signature of different CF organs at the transcriptional and post-transcriptional levels is rapidly advancing and will help address the etiological causes and variability of CF among patients and develop precision medicine in CF. In this review, we will provide an overview of CF disease, leading to the discovery and characterization of CFTR and the development of CFTR modulators. The later sections of the review will delve into the key findings derived from single-molecule and single-cell-level analyses of CFTR, followed by an exploration of disease-relevant protein complexes of CFTR that may ultimately define the etiological course of CF disease.
Collapse
Affiliation(s)
- Yashaswini Ramananda
- Department of Pediatrics, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anjaparavanda P. Naren
- Department of Pediatrics, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kavisha Arora
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
11
|
Shah VS, Rajagopal J. Cystic Fibrosis: "Ionocyte Modulators"? Am J Respir Cell Mol Biol 2023; 69:250-252. [PMID: 37315655 PMCID: PMC10503302 DOI: 10.1165/rcmb.2023-0169ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/14/2023] [Indexed: 06/16/2023] Open
Affiliation(s)
- Viral S Shah
- Department of Internal Medicine Division of Pulmonary and Critical Care
- Center for Regenerative Medicine Massachusetts General Hospital Boston, Massachusetts
- Klarman Cell Observatory Broad Institute Cambridge, Massachusetts
| | - Jayaraj Rajagopal
- Department of Internal Medicine Division of Pulmonary and Critical Care
- Center for Regenerative Medicine Massachusetts General Hospital Boston, Massachusetts
- Klarman Cell Observatory Broad Institute Cambridge, Massachusetts
- Harvard Stem Cell Institute Cambridge, Massachusetts
| |
Collapse
|