1
|
Xiao S, Ding Y, Du C, Lv Y, Yang S, Zheng Q, Wang Z, Zheng Q, Huang M, Xiao Q, Ren Z, Bi G, Yang J. Analysis and Validation of Autophagy-Related Gene Biomarkers and Immune Cell Infiltration Characteristic in Bronchopulmonary Dysplasia by Integrating Bioinformatics and Machine Learning. J Inflamm Res 2025; 18:549-563. [PMID: 39839185 PMCID: PMC11748167 DOI: 10.2147/jir.s495132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/15/2024] [Indexed: 01/23/2025] Open
Abstract
Background Autophagy and immunity play important regulatory roles in lung developmental disorders. However, there is currently a lack of bioinformatics analysis on autophagy-related genes (ARGs) and immune infiltration in bronchopulmonary dysplasia (BPD). We aim to screen and validate the signature genes of BPD by bioinformatics and in vivo experiment. Methods GSE8586 was obtained from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were identified using the R program. Using cell-type identification with CIBERSORT to analyze the inflammatory and immune status of BPD. Subsequently, the hub genes were identified by Lasso and Cytoscape with three machine-learning algorithms (MCC, Degree and MCODE). In addition, hub genes were validated with ROC, single-cell sequence and IHC in hyperoxia rats. Finally, we searched the drug targets of these hub genes, and established a nomogram model for predicting the risk of BPD. Results There were 73 the differentially expressed and autophagy-related genes (DE-ARGs) by overlapping the DEGs in GSE8586 and ARGs. Five hub genes, BRIX1, JUN, PES1, NR4A1 and RRP9, were lowly expressed in the BPD group and had high diagnostic value in the diagnostic model. All hub genes are mainly located in B cell, epithelial cell, fibroblast, endothelial cell, smooth muscle cell and pneumocyte in lung single-cell sequencing. Moreover, immune infiltration analysis showed immune cells were higher in the BPD group and were closely associated with hub genes. We also predict the drug targets of the genes. Finally, the IHC result in rats showed that expression of PES1, BRX1, RRP9, JUN, NR4A1 was lower in the hyperoxia group compared to the normoxia group. Conclusion BRIX1, JUN, PES1, NR4A1, RRP9, may be promising therapeutic targets for BPD. Our findings provided researchers and clinicians with more evidence regarding immunotherapeutic strategies for BPD treatment.
Collapse
Affiliation(s)
- Shuzhe Xiao
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Yue Ding
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Chen Du
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Yiting Lv
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Shumei Yang
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, 511442, People’s Republic of China
| | - Qi Zheng
- The First Clinical Medical College of Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Zhiqiu Wang
- The First Clinical Medical College of Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Qiaoli Zheng
- The First Clinical Medical College of Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Meifang Huang
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Qingyan Xiao
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Zhuxiao Ren
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, 511442, People’s Republic of China
| | - Guangliang Bi
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Jie Yang
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, 511442, People’s Republic of China
| |
Collapse
|
2
|
Hua S, Chi J, Zhang N, Yang X, Zhang P, Jiang C, Feng Y, Hong X, Feng Z, Yan Y. WHAMM Inhibits Type II Alveolar Epithelial Cell EMT by Mediating Autophagic Degradation of TGF-β1 in Bronchopulmonary Dysplasia. J Cell Physiol 2025; 240:e31486. [PMID: 39564703 DOI: 10.1002/jcp.31486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/11/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024]
Abstract
Bronchopulmonary dysplasia (BPD) is one of the most prevalent complication in preterm infants, primarily characterized by arrested alveolar growth. The involvement of epithelial-mesenchymal transition (EMT) of AECII cells is proposed to have a crucial role in the pathogenesis of BPD; however, the underlying mechanism remains unclear. The present study reveals a significant reduction of WHAMM (WASP homolog associated with actin, membranes, and microtubules) in hyperoxia-induced BPD mice, highlighting its crucial role in suppressing the progression of BPD through the inhibition of EMT in AECIIs. We demonstrated that hyperoxia-induced downregulation of WHAMM leads to the accumulation of TGF-β1 primarily through its mediation of the autophagic degradation pathway. Mechanistically, WHAMM enhanced the autophagosomal localization of TGF-β1 and concurrently promoted the process of autophagy, thereby comprehensively facilitating the autophagic degradation of TGF-β1. These findings reveal the important role of WHAMM in the development of BPD, and the proposed WHAMM/autophagy/TGF-β1/EMT pathway may represent a potential therapeutic strategy for BPD treatment.
Collapse
Affiliation(s)
- Shaodong Hua
- General Internal Medicine, Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Jinghan Chi
- General Internal Medicine, Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Ning Zhang
- General Internal Medicine, Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Xiao Yang
- General Internal Medicine, Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Pan Zhang
- General Internal Medicine, Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Chenyang Jiang
- General Internal Medicine, Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Yao Feng
- General Internal Medicine, Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Xiaoyang Hong
- General Internal Medicine, Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Zhichun Feng
- General Internal Medicine, Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Yurou Yan
- Department of Pediatrics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Sapkota A, Park EJ, Kim YJ, Heo JB, Nguyen TQ, Heo BE, Kim JK, Lee SH, Kim SI, Choi YJ, Roh T, Jeon SM, Jang M, Heo HJ, Whang J, Paik S, Yuk JM, Kim JM, Song GY, Jang J, Jo EK. The autophagy-targeting compound V46 enhances antimicrobial responses to Mycobacteroides abscessus by activating transcription factor EB. Biomed Pharmacother 2024; 179:117313. [PMID: 39167844 DOI: 10.1016/j.biopha.2024.117313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024] Open
Abstract
Mycobacteroides abscessus (Mabc) is a rapidly growing nontuberculous mycobacterium that poses a considerable challenge as a multidrug-resistant pathogen causing chronic human infection. Effective therapeutics that enhance protective immune responses to Mabc are urgently needed. This study introduces trans-3,5,4'-trimethoxystilbene (V46), a novel resveratrol analogue with autophagy-activating properties and antimicrobial activity against Mabc infection, including multidrug-resistant strains. Among the resveratrol analogues tested, V46 significantly inhibited the growth of both rough and smooth Mabc strains, including multidrug-resistant strains, in macrophages and in the lungs of mice infected with Mabc. Additionally, V46 substantially reduced Mabc-induced levels of pro-inflammatory cytokines and chemokines in both macrophages and during in vivo infection. Mechanistic analysis showed that V46 suppressed the activation of the protein kinase B/Akt-mammalian target of rapamycin signaling pathway and enhanced adenosine monophosphate-activated protein kinase signaling in Mabc-infected cells. Notably, V46 activated autophagy and the nuclear translocation of transcription factor EB, which is crucial for antimicrobial host defenses against Mabc. Furthermore, V46 upregulated genes associated with autophagy and lysosomal biogenesis in Mabc-infected bone marrow-derived macrophages. The combination of V46 and rifabutin exerted a synergistic antimicrobial effect. These findings identify V46 as a candidate host-directed therapeutic for Mabc infection that activates autophagy and lysosomal function via transcription factor EB.
Collapse
Affiliation(s)
- Asmita Sapkota
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Eun-Jin Park
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea; Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea; Brain Korea 21 FOUR Project for Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Young Jae Kim
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea; Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea; Brain Korea 21 FOUR Project for Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Jong Beom Heo
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea; College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | - Thanh Quang Nguyen
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Bo Eun Heo
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Jin Kyung Kim
- Department of Microbiology, Keimyung University, School of Medicine, Daegu, South Korea
| | - Sang-Hee Lee
- Center for Research Equipment, Korea Basic Science Institute, Cheongju, Chungbuk, South Korea
| | - Soo In Kim
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea; Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea; Brain Korea 21 FOUR Project for Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Yoon-Jung Choi
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea; College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | - Taylor Roh
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea; Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea; Brain Korea 21 FOUR Project for Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Sang Min Jeon
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea; Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea; Brain Korea 21 FOUR Project for Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Marnpyung Jang
- College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Hae Joon Heo
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea; College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | - Jake Whang
- Korea Mycobacterium Resource Center & Basic Research Section, The Korean Institute of Tuberculosis, Cheongju, South Korea
| | - Seungwha Paik
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Jae-Min Yuk
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea; Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Jin-Man Kim
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea; Department of Pathology, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Gyu Yong Song
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea; College of Pharmacy, Chungnam National University, Daejeon, South Korea.
| | - Jichan Jang
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea.
| | - Eun-Kyeong Jo
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea; Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea; Brain Korea 21 FOUR Project for Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea.
| |
Collapse
|
4
|
Rana U, Joshi C, Whitney E, Afolayan A, Dowell J, Teng RJ, Konduri GG. Decreased Liver Kinase B1 Expression and Impaired Angiogenesis in a Murine Model of Bronchopulmonary Dysplasia. Am J Respir Cell Mol Biol 2024; 71:481-494. [PMID: 38869353 DOI: 10.1165/rcmb.2024-0037oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/13/2024] [Indexed: 06/14/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is characterized by impaired lung alveolar and vascular growth. We investigated the hypothesis that neonatal exposure to hyperoxia leads to persistent BPD phenotype caused by decreased expression of liver kinase B1 (LKB1), a key regulator of mitochondrial function. We exposed mouse pups from Postnatal Day (P)1 through P10 to 21% or 75% oxygen. Half of the pups in each group received metformin or saline intraperitoneally from P1 to P10. Pups were killed at P4 or P10 or recovered in 21% O2 until euthanasia at P21. Lung histology and morphometry, immunofluorescence, and immunoblots were performed to detect changes in lung structure and expression of LKB1; downstream targets AMPK, PGC-1α, and electron transport chain (ETC) complexes; and Notch ligands Jagged 1 and delta-like 4. LKB1 signaling and in vitro angiogenesis were assessed in human pulmonary artery endothelial cells (exposed to 21% or 95% O2 for 36 hours. Levels of LKB1, phosphorylated AMPK, PGC-1α, and ETC complexes were decreased in lungs at P10 and P21 in hyperoxia. Metformin increased LKB1, phosphorylated AMPK, PGC-1α, and ETC complexes at P10 and P21 in pups exposed to hyperoxia. Radial alveolar count was decreased, and mean linear intercept increased in pups exposed to hyperoxia at P10 and P21; these were improved by metformin. Lung capillary density was decreased in hyperoxia at P10 and P21 and was increased by metformin. In vitro angiogenesis was decreased in human pulmonary artery endothelial cells by 95% O2 and was improved by metformin. Decreased LKB1 signaling may contribute to decreased alveolar and vascular growth in a mouse model of BPD.
Collapse
Affiliation(s)
- Ujala Rana
- Neonatology Division, Department of Pediatrics, Medical College of Wisconsin and Children's Research Institute, Children's Wisconsin, Milwaukee, Wisconsin
| | - Chintamani Joshi
- Neonatology Division, Department of Pediatrics, Medical College of Wisconsin and Children's Research Institute, Children's Wisconsin, Milwaukee, Wisconsin
| | - Elijah Whitney
- Neonatology Division, Department of Pediatrics, Medical College of Wisconsin and Children's Research Institute, Children's Wisconsin, Milwaukee, Wisconsin
| | - Adeleye Afolayan
- Neonatology Division, Department of Pediatrics, Medical College of Wisconsin and Children's Research Institute, Children's Wisconsin, Milwaukee, Wisconsin
| | - Jasmine Dowell
- Neonatology Division, Department of Pediatrics, Medical College of Wisconsin and Children's Research Institute, Children's Wisconsin, Milwaukee, Wisconsin
| | - Ru-Jeng Teng
- Neonatology Division, Department of Pediatrics, Medical College of Wisconsin and Children's Research Institute, Children's Wisconsin, Milwaukee, Wisconsin
| | - Girija G Konduri
- Neonatology Division, Department of Pediatrics, Medical College of Wisconsin and Children's Research Institute, Children's Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
5
|
Ma X, Tao Z, Chen L, Duan S, Zhou G, Ma Y, Xiong Z, Zhu L, Ma X, Mao Y, Hu Y, Zeng N, Wang J, Bao Y, Luo F, Wu C, Jiang F. Genetic analysis of potential biomarkers and therapeutic targets associated with ferroptosis from bronchopulmonary dysplasia. Medicine (Baltimore) 2023; 102:e34371. [PMID: 37478211 PMCID: PMC10662800 DOI: 10.1097/md.0000000000034371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/26/2023] [Indexed: 07/23/2023] Open
Abstract
Ferroptosis is a recently identified form of cell death that is distinct from the conventional modes such as necrosis, apoptosis, and autophagy. Its role in bronchopulmonary dysplasia (BPD) remains inadequately understood. To address this gap, we obtained BPD-related RNA-seq data and ferroptosis-related genes (FRGs) from the GEO database and FerrDb, respectively. A total of 171 BPD-related differentially expressed ferroptosis-related genes (DE-FRGs) linked to the regulation of autophagy and immune response were identified. Least absolute shrinkage and selection operator and SVM-RFE algorithms identified 23 and 14 genes, respectively, as marker genes. The intersection of these 2 sets yielded 9 genes (ALOX12B, NR1D1, LGMN, IFNA21, MEG3, AKR1C1, CA9, ABCC5, and GALNT14) with acceptable diagnostic capacity. The results of the functional enrichment analysis indicated that these identified marker genes may be involved in the pathogenesis of BPD through the regulation of immune response, cell cycle, and BPD-related pathways. Additionally, we identified 29 drugs that target 5 of the marker genes, which could have potential therapeutic implications. The ceRNA network we constructed revealed a complex regulatory network based on the marker genes, further highlighting their potential roles in BPD. Our findings offer diagnostic potential and insight into the mechanism underlying BPD. Further research is needed to assess its clinical utility.
Collapse
Affiliation(s)
- Xiaoxue Ma
- Department of Neonatology, Yongping County People’s Hospital, Dali, China
| | - Ziyu Tao
- Department of Ultrasound, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Leiming Chen
- Department of Laboratory Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Shaozhi Duan
- Department of Neonatology, Yongping County People’s Hospital, Dali, China
| | - Guoping Zhou
- Department of Neonatology, Yongping County People’s Hospital, Dali, China
| | - Yunxia Ma
- Department of Neonatology, Yongping County People’s Hospital, Dali, China
| | - Zhenqin Xiong
- Department of Neonatology, Yongping County People’s Hospital, Dali, China
| | - Lan Zhu
- Department of Neonatology, Yongping County People’s Hospital, Dali, China
| | - Xuejiao Ma
- Department of Neonatology, Yongping County People’s Hospital, Dali, China
| | - Yan Mao
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yifang Hu
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ni Zeng
- Department of Dermatology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jimei Wang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yunlei Bao
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Fei Luo
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Chuyan Wu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Jiang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
6
|
Plataki M, Choi AMK. AMPK Activation: Respiratory Panacea? Am J Respir Cell Mol Biol 2023; 68:237-238. [PMID: 36383980 PMCID: PMC9989480 DOI: 10.1165/rcmb.2022-0428ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Maria Plataki
- Pulmonary and Critical Care Medicine Weill Cornell Medicine New York, New York
- New York-Presbyterian Hospital/Weill Cornell Medicine New York, New York
| | - Augustine M K Choi
- Pulmonary and Critical Care Medicine Weill Cornell Medicine New York, New York
- New York-Presbyterian Hospital/Weill Cornell Medicine New York, New York
| |
Collapse
|