1
|
Villalba DR, Jannu AK, Javed E, Dandekar I, Wang R, Deshpande DA, An SS, Panettieri RA, Tang DD, Penn RB, Nayak AP. Ovarian Cancer G protein-coupled receptor-1 signaling bias dictates anti-contractile effect of benzodiazepines on airway smooth muscle. Respir Res 2025; 26:183. [PMID: 40361189 PMCID: PMC12076885 DOI: 10.1186/s12931-025-03268-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND We recently reported that the ovarian cancer G protein-coupled receptor-1 (OGR1) can be pharmacologically biased with specific benzodiazepines to couple with distinct heterotrimeric G proteins in human airway smooth muscle (ASM) cells. Lorazepam stimulated both Gs and Gq signaling via OGR1, whereas sulazepam only stimulated Gs signaling in ASM cells. The present study sought to determine the effects of sulazepam and lorazepam on contraction of human precision cut lung slices (hPCLS), and detail the biochemical mechanisms mediating these effects. METHODS Models of histamine (His) -stimulated contraction included imaging of ex vivo human precision cut lung slices (hPCLS) and Magnetic Twisting Cytometry (MTC) analysis of human ASM cell stiffness. To explore mechanisms of regulation, we examined effects on myosin light chain (pMLC) phosphorylation and PKA activity in primary human ASM cultures, as well as actin cytoskeleton integrity as defined by changes in the ratio of F to G actin assessed by immunofluorescence. RESULTS In a dose-dependent manner, sulazepam relaxed His-contracted hPCLS and reduced baseline cell stiffness. Lorazepam did not relax His-contracted hPCLS, and only at a maximal dose (100 μM) did lorazepam relax baseline cell stiffness. The Gs-biased ligand sulazepam stimulated PKA activity as evidenced by significant induction of VASP and HSP20 phosphorylation, which was associated with significant inhibition of His-induced pMLC phosphorylation. Conversely, the balanced ligand lorazepam did not significantly increase HSP20 phosphorylation or VASP phosphorylation and did not significantly inhibit His-induced MLC phosphorylation. Sulazepam was also able to inhibit histamine induced F-actin formation. CONCLUSIONS The Gs-biased OGR1 ligand sulazepam relaxed contracted ASM in both tissue- and cell- based models, via inhibition of MLC phosphorylation in a PKA-dependent manner and through inhibition of actin stress fiber formation. The relative inability of the balanced ligand lorazepam to influence ASM contractile state was likely due to competitive actions of concomitant Gq and Gs signaling.
Collapse
Affiliation(s)
- Dominic R Villalba
- Department of Medicine, Center for Translational Medicine & Division of Pulmonary and Critical Care Medicine; Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Arun K Jannu
- Department of Medicine, Center for Translational Medicine & Division of Pulmonary and Critical Care Medicine; Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Elham Javed
- Department of Medicine, Center for Translational Medicine & Division of Pulmonary and Critical Care Medicine; Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | | | - Ruping Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Deepak A Deshpande
- Department of Medicine, Center for Translational Medicine & Division of Pulmonary and Critical Care Medicine; Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | | | | | - Dale D Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Raymond B Penn
- Department of Medicine, Center for Translational Medicine & Division of Pulmonary and Critical Care Medicine; Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Ajay P Nayak
- Department of Medicine, Center for Translational Medicine & Division of Pulmonary and Critical Care Medicine; Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
2
|
Javed E, Nayak AP, Jannu AK, Cohen AH, Dewes I, Wang R, Tang DD, Deshpande DA, Penn RB. A-Kinase-Anchoring Protein Subtypes Differentially Regulate GPCR Signaling and Function in Human Airway Smooth Muscle. Am J Respir Cell Mol Biol 2025; 72:133-144. [PMID: 39141573 PMCID: PMC11976650 DOI: 10.1165/rcmb.2023-0358oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 08/14/2024] [Indexed: 08/16/2024] Open
Abstract
AKAPs (A-kinase-anchoring proteins) act as scaffold proteins that anchor the regulatory subunits of the cAMP-dependent PKA (protein kinase A) to coordinate and compartmentalize signaling elements and signals downstream of Gs-coupled GPCRs (G protein-coupled receptors). The β2AR (β-2-adrenoceptor), as well as the Gs-coupled EP2 and EP4 (E-prostanoid) receptor subtypes of the EP receptor subfamily, are effective regulators of multiple airway smooth muscle (ASM) cell functions whose dysregulation contributes to asthma pathobiology. Here, we identify specific roles of the AKAPs Ezrin and Gravin in differentially regulating PKA substrates downstream of the β2AR, EP2R (EP2 receptor) and EP4R. Knockdown of Ezrin, Gravin, or both in primary human ASM cells caused differential phosphorylation of the PKA substrates VASP (vasodilator-stimulated phosphoprotein) and HSP20 (heat shock protein 20). Ezrin knockdown, as well as combined Ezrin and Gravin knockdown, significantly reduced the induction of phospho-VASP and phospho-HSP20 by β2AR, EP2R, and EP4R agonists. Gravin knockdown inhibited the induction of phospho-HSP20 by β2AR, EP2R, and EP4R agonists. Knockdown of Ezrin, Gravin, or both also attenuated histamine-induced phosphorylation of MLC20. Moreover, knockdown of Ezrin, Gravin, or both suppressed the inhibitory effects of Gs-coupled receptor agonists on cell migration in ASM cells. These findings demonstrate the role of AKAPs in regulating Gs-coupled GPCR signaling and function in ASM and suggest the therapeutic utility of targeting specific AKAP family members in the management of asthma.
Collapse
MESH Headings
- Humans
- Signal Transduction
- A Kinase Anchor Proteins/metabolism
- A Kinase Anchor Proteins/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Cytoskeletal Proteins/metabolism
- Cytoskeletal Proteins/genetics
- Myocytes, Smooth Muscle/metabolism
- Muscle, Smooth/metabolism
- Phosphorylation
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Receptors, G-Protein-Coupled/metabolism
- Phosphoproteins/metabolism
- Microfilament Proteins/metabolism
- Vasodilator-Stimulated Phosphoprotein
- Cell Adhesion Molecules/metabolism
- HSP20 Heat-Shock Proteins/metabolism
- Receptors, Prostaglandin E, EP2 Subtype/metabolism
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Cells, Cultured
- Cell Movement
Collapse
Affiliation(s)
- Elham Javed
- Department of Medicine Pulmonary and Critical Care Medicine, Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, Pennsylvania; and
| | - Ajay P. Nayak
- Department of Medicine Pulmonary and Critical Care Medicine, Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, Pennsylvania; and
| | - Arun K. Jannu
- Department of Medicine Pulmonary and Critical Care Medicine, Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, Pennsylvania; and
| | - Aaron H. Cohen
- Department of Medicine Pulmonary and Critical Care Medicine, Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, Pennsylvania; and
| | - Isabella Dewes
- Department of Medicine Pulmonary and Critical Care Medicine, Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, Pennsylvania; and
| | - Ruping Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Dale D. Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Deepak A. Deshpande
- Department of Medicine Pulmonary and Critical Care Medicine, Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, Pennsylvania; and
| | - Raymond B. Penn
- Department of Medicine Pulmonary and Critical Care Medicine, Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, Pennsylvania; and
| |
Collapse
|
3
|
Chiba Y, Yamane Y, Sato T, Suto W, Hanazaki M, Sakai H. Extracellular acidification attenuates bronchial contraction via an autocrine activation of EP 2 receptor: Its diminishment in murine experimental asthma. Respir Physiol Neurobiol 2024; 324:104251. [PMID: 38492830 DOI: 10.1016/j.resp.2024.104251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/03/2024] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
PURPOSE Extracellular acidification is a major component of tissue inflammation, including airway inflammation in asthmatics. However, its physiological/pathophysiological significance in bronchial function is not fully understood. Currently, the functional role of extracellular acidification on bronchial contraction was explored. METHODS Left main bronchi were isolated from male BALB/c mice. Epithelium-removed tissues were exposed to acidic pH under submaximal contraction induced by 10-5 M acetylcholine in the presence or absence of a COX inhibitor indomethacin (10-6 M). Effects of AH6809 (10-6 M, an EP2 receptor antagonist), BW A868C (10-7 M, a DP receptor antagonist) and CAY10441 (3×10-6 M, an IP receptor antagonist) on the acidification-induced change in tension were determined. The release of prostaglandin E2 (PGE2) from epithelium-denuded tissues in response to acidic pH was assessed using an ELISA. RESULTS In the bronchi stimulated with acetylcholine, change in the extracellular pH from 7.4 to 6.8 caused a transient augmentation of contraction followed by a sustained relaxing response. The latter inhibitory response was abolished by indomethacin and AH6809 but not by BW A868C or CAY10441. Both indomethacin and AH6809 significantly increased potency and efficacy of acetylcholine at pH 6.8. Stimulation with low pH caused an increase in PGE2 release from epithelium-denuded bronchi. Interestingly, the acidic pH-induced bronchial relaxation was significantly reduced in a murine asthma model that had a bronchial hyperresponsiveness to acetylcholine. CONCLUSION Taken together, extracellular acidification could inhibit the bronchial contraction via autocrine activation of EP2 receptors. The diminished acidic pH-mediated inhibition of bronchial tone may contribute to excessive bronchoconstriction in inflamed airways such as asthma.
Collapse
Affiliation(s)
| | - Yamato Yamane
- Laboratory of Molecular Biology and Physiology, Japan
| | - Tsubasa Sato
- Laboratory of Molecular Biology and Physiology, Japan
| | - Wataru Suto
- Laboratory of Molecular Biology and Physiology, Japan
| | - Motohiko Hanazaki
- Department of Anesthesiology and Intensive Care Medicine, School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Hiroyasu Sakai
- Laboratory of Biomolecular Pharmacology, Hoshi University School of Pharmacy, Tokyo, Japan
| |
Collapse
|