1
|
Wang B, Wu X, Cheng J, Ye J, Zhu H, Liu X. Regulatory role of S1P and its receptors in sepsis-induced liver injury. Front Immunol 2025; 16:1489015. [PMID: 39935473 PMCID: PMC11811114 DOI: 10.3389/fimmu.2025.1489015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
As an immune and metabolic organ, the liver affects the progression and prognosis of sepsis. Despite the severe adverse effects of sepsis liver injury on the body, treatment options remain limited. Sphingosine-1-phosphate (S1P) is a widely distributed lipid signaling molecule that binds to five sphingosine-1-phosphate receptors (S1PR) to regulate downstream signaling pathways involved in the pathophysiological processes of sepsis, including endothelial permeability, cytokine release, and vascular tone. This review summarizes current research on the role of S1P in normal liver biology and describes the mechanisms by which changes in S1P/S1PR affect the development of liver-related diseases. At the same time, the pathological processes underlying liver injury, as evidenced by clinical manifestations during sepsis, were comprehensively reviewed. This paper focused on the mechanistic pathways through which S1P and its receptors modulate immunity, bile acid metabolism, and liver-intestinal circulation in septic liver injury. Finally, the relationships between S1P and its receptors with liver inflammation and metabolism and the use of related drugs for the treatment of liver injury were examined. By elucidating the role of S1P and its receptor in the pathogenesis of sepsis liver injury, this review established a molecular targeting framework, providing novel insights into clinical and drug development.
Collapse
Affiliation(s)
- Bin Wang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiaoyu Wu
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jiangfeng Cheng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junming Ye
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Clinical College, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Hongquan Zhu
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiaofeng Liu
- Clinical College, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Emergency, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
2
|
Li C, Zhu L, Yang Y, Zhang T, Chen C, Zhang Y, Ji W, Duan X, Xue W, Li L, Zhao J. Overexpression of FBP1 enhances dendritic cell activation and maturation by inhibiting glycolysis and promoting the secretion of IL33 in lung adenocarcinoma. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167559. [PMID: 39486659 DOI: 10.1016/j.bbadis.2024.167559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 09/20/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Fructose 1,6-diphosphatase 1 (FBP1) is an enzyme involved in gluconeogenesis and glycolysis inhibition. Dendritic cells (DCs) are antigen-presenting cells, and antigens presented to T cells activate the immune response. FBP1 inhibits the development of several tumors, and high FBP1 expression inhibits the proliferation, migration, and invasion of lung cancer cells. However, the mechanism through which FBP1 mediates the tumor immune microenvironment is unclear. This study mainly analyzed the role of FBP1 in regulating the function of DCs through metabolic reprogramming and immune microenvironment using in vitro and in vivo experiments. The positive association of FBP1 with DCs was found by bioinformatic analysis. The in vitro experiments revealed that the extracellular acidification rate and lactate level were lower in the FBP1 overexpression cells than in the control cells and that the lower lactate level reduced the inhibition of DC function. In addition, high FBP1 expression promoted the secretion of IL33 by activating the cGAS/STING/NF-κB/IL33 pathway, which was identified and verified via high-throughput sequencing and in vitro experiments. FBP1 activated the cGAS/STING pathway by increasing the degree of DNA damage, as revealed by the level of γH2AX and comet assay. IL33 enhanced the expression of the DC costimulatory molecules CD86 and HLA-DR as well as that of the functional factor IL-1β. The results demonstrated that FBP1 promoted the activation and maturation of DCs by inhibiting glycolysis and promoting the secretion of IL33 as well as by further activating the function of CD8+T cells. Finally, the humanized immune system mouse models confirmed the above role of FBP1. Thus, FBP1 may serve as a new target to cure lung adenocarcinoma, and IL33 may improve the efficiency of immune therapy in lung adenocarcinoma.
Collapse
Affiliation(s)
- Chunwei Li
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Lili Zhu
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yaqi Yang
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Tengfei Zhang
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| | - Chengxin Chen
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yixing Zhang
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Wenxuan Ji
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Xiaoran Duan
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| | - Wenhua Xue
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Lifeng Li
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Medical School, Huanghe Science and Technology University, 666 Zi Jing Shan Road, Zhengzhou 450000, Henan, China.
| | - Jie Zhao
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| |
Collapse
|
3
|
Su J, Lin C, Lin X, Hu S, Deng X, Xie L, Ye H, Zhou F, Wu S. Combining ulinastatin with TIENAM improves the outcome of sepsis induced by cecal ligation and puncture in mice by reducing inflammation and regulating immune responses. Int Immunopharmacol 2024; 141:112927. [PMID: 39163689 DOI: 10.1016/j.intimp.2024.112927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024]
Abstract
Despite the high mortality associated with sepsis, effective and targeted treatments remain scarce. The use of conventional antibiotics such as TIENAM (imipenem and cilastatin sodium for injection, TIE) is challenging because of the increasing bacterial resistance, which diminishes their efficacy and leads to adverse effects. Our previous studies demonstrated that ulinastatin (UTI) exerts a therapeutic impact on sepsis by reducing systemic inflammation and modulating immune responses. In this study, we examined the possibility of administering UTI and TIE after inducing sepsis in a mouse model using cecal ligation and puncture (CLP). We assessed the rates of survival, levels of inflammatory cytokines, the extent of tissue damage, populations of immune cells, microbiota in ascites, and important signaling pathways. The combination of UTI and TIE significantly improved survival rates and reduced inflammation and bacterial load in septic mice, indicating potent antimicrobial properties. Notably, the survival rates of UTI+TIE-treated mice increased from 10 % to 75 % within 168 h compared to those of mice that were subjected to CLP. The dual treatment successfully regulated the levels of inflammatory indicators (interleukin [IL]-6, IL-1β, and tumor necrosis factor [TNF]-α) and immune cell numbers by reducing B cells, natural killer cells, and TNFR2+ Treg cells and increasing CD8+ T cells. Additionally, the combination of UTI and TIE alleviated tissue damage, reduced bacterial load in the peritoneal cavity, and suppressed the NF-κB signaling pathway. Our findings indicate that UTI and TIE combination therapy can significantly enhance sepsis outcomes by reducing inflammation and boosting the immune system. The results offer a promising therapeutic approach for future sepsis treatment.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China.
| | - Congfan Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Xinrui Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Shan Hu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Xiaohui Deng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Lian Xie
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Hui Ye
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Fen Zhou
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Shun Wu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| |
Collapse
|
4
|
Li T, Chiang JYL. Bile Acid Signaling in Metabolic and Inflammatory Diseases and Drug Development. Pharmacol Rev 2024; 76:1221-1253. [PMID: 38977324 PMCID: PMC11549937 DOI: 10.1124/pharmrev.124.000978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates biliary secretion of lipids, endogenous metabolites, and xenobiotics. In intestine, bile acids facilitate the digestion and absorption of dietary lipids and fat-soluble vitamins. Through activation of nuclear receptors and G protein-coupled receptors and interaction with gut microbiome, bile acids critically regulate host metabolism and innate and adaptive immunity and are involved in the pathogenesis of cholestasis, metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, type-2 diabetes, and inflammatory bowel diseases. Bile acids and their derivatives have been developed as potential therapeutic agents for treating chronic metabolic and inflammatory liver diseases and gastrointestinal disorders. SIGNIFICANCE STATEMENT: Bile acids facilitate biliary cholesterol solubilization and dietary lipid absorption, regulate host metabolism and immunity, and modulate gut microbiome. Targeting bile acid metabolism and signaling holds promise for treating metabolic and inflammatory diseases.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| | - John Y L Chiang
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| |
Collapse
|
5
|
Verhoef PA. S1PR2: A Fulcrum in the Balance of Type 1 and Type 2 Responses during Sepsis-induced Acute Lung Injury. Am J Respir Cell Mol Biol 2024; 70:157-158. [PMID: 38226863 PMCID: PMC10914765 DOI: 10.1165/rcmb.2023-0433ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024] Open
Affiliation(s)
- Philip A Verhoef
- John A. Burns School of Medicine University of Hawaii Honolulu, Hawaii and Hawaii Permanente Medical Group Honolulu, Hawaii
| |
Collapse
|