1
|
Ikram M, Mahmud MAP, Kalyar AA, Alomayri T, Almahri A, Hussain D. 3D-bioprinting of MXenes: Developments, medical applications, challenges, and future roadmap. Colloids Surf B Biointerfaces 2025; 251:114568. [PMID: 40020571 DOI: 10.1016/j.colsurfb.2025.114568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/03/2025] [Accepted: 02/15/2025] [Indexed: 03/03/2025]
Abstract
MXenes is a member of 2D transition metals carbides and nitrides with promising application prospects in energy storage, sensing, nanomedicine, tissue engineering, catalysis, and electronics. In the current era, MXenes have been widely applied in biomedical applications due to their unique rheological and electrochemical attributes. They have a larger surface area with more active sites, higher conductivity, lower cytotoxicity, and greater biocompatibility, making them highly suitable candidates for in-vivo biomedical applications. Due to recent advancemnets in MXenes 3D bioprinting, they are widely applied in regenerative medicine to combat challenges in suitable transplantation of tissues and organs. However, 3D bioprinting of MXenes has several complexities based on cell type, cytotoxicity, cell viability, and differentiation. To address these intricacies, surface modifications of MXene materials are done, which makes them highly fascinating for the 3D printing of tissues and organs. In the current review, we summarized recent progress in 3D bioprinting of MXene materials to construct scaffolds with desired rheological and biological properties, focusing on their potential applications in cancer phototherapy, tissue engineering, bone regeneration, and biosensing. We also discussed parameters affecting their biomedical applications and possible solutions by applying surface modifications. In addition, we addressed current challenges and future roadmaps for 3D bioprinting of MXene materials, such as generating high throughput 3D printed tissue constructs, drug delivery, drug discovery, and toxicology.
Collapse
Affiliation(s)
- Muhammad Ikram
- Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD 57007, United States of America.
| | - M A Parvez Mahmud
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Amina Akbar Kalyar
- Department of Zoology, Wildlife and Fisheries, University of Agriculture Faisalabad, Pakistan
| | - Thamer Alomayri
- Department of Physics, Faculty of Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Albandary Almahri
- Department of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
2
|
Alagarsamy KN, Saleth LR, Sekaran S, Fusco L, Delogu LG, Pogorielov M, Yilmazer A, Dhingra S. MXenes as emerging materials to repair electroactive tissues and organs. Bioact Mater 2025; 48:583-608. [PMID: 40123746 PMCID: PMC11926619 DOI: 10.1016/j.bioactmat.2025.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 03/25/2025] Open
Abstract
Nanomaterials with electroactive properties have taken a big leap for tissue repair and regeneration due to their unique physiochemical properties and biocompatibility. MXenes, an emerging class of electroactive materials have generated considerable interest for their biomedical applications from bench to bedside. Recently, the application of these two-dimensional wonder materials have been extensively investigated in the areas of biosensors, bioimaging and repair of electroactive organs, owing to their outstanding electromechanical properties, photothermal capabilities, hydrophilicity, and flexibility. The currently available data reports that there is significant potential to employ MXene nanomaterials for repair, regeneration and functioning of electroactive tissues and organs such as brain, spinal cord, heart, bone, skeletal muscle and skin. The current review is the first report that compiles the most recent advances in the application of MXenes in bioelectronics and the development of biomimetic scaffolds for repair, regeneration and functioning of electroactive tissues and organs including heart, nervous system, skin, bone and skeletal muscle. The content in this article focuses on unique features of MXenes, synthesis process, with emphasis on MXene-based electroactive tissue engineering constructs, biosensors and wearable biointerfaces. Additionally, a section on the future of MXenes is presented with a focus on the clinical applications of MXenes.
Collapse
Affiliation(s)
- Keshav Narayan Alagarsamy
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba, R2H 2A6, Canada
| | - Leena Regi Saleth
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba, R2H 2A6, Canada
| | - Saravanan Sekaran
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute for Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Laura Fusco
- University of Science & Technology, Abu Dhabi, United Arab Emirates
- ImmuneNano-Lab, Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Lucia Gemma Delogu
- University of Science & Technology, Abu Dhabi, United Arab Emirates
- ImmuneNano-Lab, Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Maksym Pogorielov
- Sumy State University, 2 Rymskogo-Korsakova Street, Sumy, 40007, Ukraine
- University of Latvia, 3 Jelgavas Street, Riga, LV-1004, Latvia
| | - Açelya Yilmazer
- Department of Biomedical Engineering, Ankara University, Golbasi, Ankara, 06830, Turkey
- Stem Cell Institute, Ankara University, Balgat, Ankara, 06520, Turkey
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba, R2H 2A6, Canada
| |
Collapse
|
3
|
Dutta T, Alam P, Mishra SK. MXenes and MXene-based composites for biomedical applications. J Mater Chem B 2025; 13:4279-4312. [PMID: 40079066 DOI: 10.1039/d4tb02834a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
MXenes, a novel class of two-dimensional materials, have recently emerged as promising candidates for biomedical applications due to their specific structural features and exceptional physicochemical and biological properties. These materials, characterized by unique structural features and superior conductivity, have applications in tissue engineering, cancer detection and therapy, sensing, imaging, drug delivery, wound treatment, antimicrobial therapy, and medical implantation. Additionally, MXene-based composites, incorporating polymers, metals, carbon nanomaterials, and metal oxides, offer enhanced electroactive and mechanical properties, making them highly suitable for engineering electroactive organs such as the heart, skeletal muscle, and nerves. However, several challenges, including biocompatibility, functional stability, and scalable synthesis methods, remain critical for advancing their clinical use. This review comprehensively overviews MXenes and MXene-based composites, their synthesis, properties, and broad biomedical applications. Furthermore, it highlights the latest progress, ongoing challenges, and future perspectives, aiming to inspire innovative approaches to harnessing these versatile materials for next-generation medical solutions.
Collapse
Affiliation(s)
- Taposhree Dutta
- Department of Chemistry, Indian Institute of Engineering Science and Technology Shibpur, Howrah, W.B. - 711103, India
| | - Parvej Alam
- Space and Reslinent Research Unit, Centre Tecnològic de Telecomunicacions de Catalunya Castelldefels, Spain.
| | - Satyendra Kumar Mishra
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P. R. China.
| |
Collapse
|
4
|
Zhang S, Wang L, Feng Z, Wang Z, Wang Y, Wei B, Liu H, Zhao W, Li J. Engineered MXene Biomaterials for Regenerative Medicine. ACS NANO 2025; 19:9590-9635. [PMID: 40040439 DOI: 10.1021/acsnano.4c16136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
MXene-based materials have attracted significant interest due to their distinct physical and chemical properties, which are relevant to fields such as energy storage, environmental science, and biomedicine. MXene has shown potential in the area of tissue regenerative medicine. However, research on its applications in tissue regeneration is still in its early stages, with a notable absence of comprehensive reviews. This review begins with a detailed description of the intrinsic properties of MXene, followed by a discussion of the various nanostructures that MXene can form, spanning from 0 to 3 dimensions. The focus then shifts to the applications of MXene-based biomaterials in tissue engineering, particularly in immunomodulation, wound healing, bone regeneration, and nerve regeneration. MXene's physicochemical properties, including conductivity, photothermal characteristics, and antibacterial properties, facilitate interactions with different cell types, influencing biological processes. These interactions highlight its potential in modulating cellular functions essential for tissue regeneration. Although the research on MXene in tissue regeneration is still developing, its versatile structural and physicochemical attributes suggest its potential role in advancing regenerative medicine.
Collapse
Affiliation(s)
- Shengmin Zhang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Liang Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Zhichao Feng
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Zhiqi Wang
- Department of Head and Neck Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Yingxue Wang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Benjie Wei
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Weiwei Zhao
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Jianhua Li
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| |
Collapse
|
5
|
Yu Z, Wang H, Ying B, Mei X, Zeng D, Liu S, Qu W, Pan X, Pu S, Li R, Qin Y. Mild photothermal therapy assist in promoting bone repair: Related mechanism and materials. Mater Today Bio 2023; 23:100834. [PMID: 38024841 PMCID: PMC10643361 DOI: 10.1016/j.mtbio.2023.100834] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/21/2023] [Accepted: 10/14/2023] [Indexed: 12/01/2023] Open
Abstract
Achieving precision treatment in bone tissue engineering (BTE) remains a challenge. Photothermal therapy (PTT), as a form of precision therapy, has been extensively investigated for its safety and efficacy. It has demonstrated significant potential in the treatment of orthopedic diseases such as bone tumors, postoperative infections and osteoarthritis. However, the high temperatures associated with PTT can lead to certain limitations and drawbacks. In recent years, researchers have explored the use of biomaterials for mild photothermal therapy (MPT), which offers a promising approach for addressing these limitations. This review provides a comprehensive overview of the mechanisms underlying MPT and presents a compilation of photothermal agents and their utilization strategies for bone tissue repair. Additionally, the paper discusses the future prospects of MPT-assisted bone tissue regeneration, aiming to provide insights and recommendations for optimizing material design in this field.
Collapse
Affiliation(s)
- Zehao Yu
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Hao Wang
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Boda Ying
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Xiaohan Mei
- National & Local Joint Engineering Laboratory for Synthesis Technology of High-Performance Polymer, College of Chemistry, Jilin University, Changchun, 130012, People’s Republic of China
| | - Dapeng Zeng
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Shibo Liu
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Wenrui Qu
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Xiangjun Pan
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Si Pu
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Ruiyan Li
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Yanguo Qin
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| |
Collapse
|
6
|
Dalavi PA, Prabhu A, M S, Murugan SS, Jayachandran V. Casein-assisted exfoliation of tungsten disulfide nanosheets for biomedical applications. Colloids Surf B Biointerfaces 2023; 232:113595. [PMID: 37913705 DOI: 10.1016/j.colsurfb.2023.113595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/14/2023] [Accepted: 10/14/2023] [Indexed: 11/03/2023]
Abstract
Our regular life can be more challenging by bone abnormalities. Bone tissue engineering is used for repairing, regenerating, or replacing bone tissue that has been injured or infected. It is effective in overcoming the drawbacks of conventional bone grafting methods like autograft and allograft by enhancing the effectiveness of bone regeneration. Recent discoveries have shown that the exfoliation of transition metal dichalcogenides (TMDs) with protein is in great demand for bone tissue engineering applications. WS2 nanosheets were developed using casein and subsequently characterized with different analytical techniques. Strong absorption peaks were observed in the UV-visible spectra at 520 nm and 630 nm. Alginate and alginate-casein WS2 microspheres were developed. Stereomicroscopic images of the microspheres are spherical in shape and have an average diameter of around 0.8 ± 0.2 mm. The alginate-casein WS2 microspheres show higher content of water absorption and retention properties than only alginate-containing microspheres. The apatite formation in the simulated bodily fluid solution was facilitated more effectively by the alginate-casein-WS2 microspheres. Additionally, alginate-casein-WS2 microspheres have a compressive strength is 58.01 ± 4 MPa. Finally, in vitro cell interaction studies reveals that both the microspheres are biocompatible with the C3H10T1/2 cells, and alginate-casein-WS2-based microspheres promote cell growth more significantly. Alginate-casein-WS2 microspheres promote alkaline phosphatase activity, and mineralization process. Additionally, alginate-casein-WS2-based microspheres exponentially enhance the genes for ALP, BMP-2, OCN, and Collage type-1. The produced alginate-casein-WS2 microspheres could be a suitable synthetic graft for a bone transplant replacement.
Collapse
Affiliation(s)
- Pandurang Appana Dalavi
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Ashwini Prabhu
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Sajida M
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Sesha Subramanian Murugan
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Venkatesan Jayachandran
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.
| |
Collapse
|
7
|
Sagadevan S, Oh WC. Comprehensive utilization and biomedical application of MXenes - A systematic review of cytotoxicity and biocompatibility. J Drug Deliv Sci Technol 2023; 85:104569. [DOI: 10.1016/j.jddst.2023.104569] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
8
|
Wang Z, Du Y, Chang Q, Xie Q, Wang L, Xu C. Analysis the Lateral Tunnel Position of the Bone Graft and Regeneration of Femur by CT Tunnel Localization. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Objective: To analyze, in a retrospective study, the lateral tunnel position of the graft femur by CT after arthroscopic ACL reconstruction via the anteromedial (AM) approach and the tunnel angle shown on X-ray. Methods and Materials: 60 patients undergoing arthroscopic
ACL reconstruction via AM approach with 4 femoral hamstring tendon grafts were investigated from October 2019 to October 2021. Postoperative orthogonal x-rays and computed tomography (CT) scans were obtained, and the position of the femoral tunnel obtained after CT reconstruction was correlated
with the Bernard-Hertel grid. The angle of the resulting femoral tunnel on the orthogonal x-ray was analyzed against the CT tunnel position. Results: In the study, the anterior–posterior orientation was forward (P = 0.001) and the high-low orientation was similar (taken
as 20%, P = 0.066) or slightly higher (taken as 21%, P = 0.025) compared to the AM beam localization in the two-beam reconstruction. Overall, the femoral tunnel angle on non-weight-bearing orthogonal x-ray was negatively correlated with the anterior–posterior (AP) position
of the femoral tunnel centre as shown on CT (P = 0.004, r =−0.368) and positively, but weakly, correlated with the high-low (HL) position (P = 0.049, r = 0.254). Conclusion: Non-weight-bearing orthogonal X-rays only can make approximate predictions
about the distribution of anatomical reconstruction, I.D.E.A.L reconstruction.
Collapse
Affiliation(s)
- Zhihui Wang
- Department of Joint Surgery, Affiliated Hospital of ChengDe Medical University, Chengde, Hebei 067000, China
| | - Yuanliang Du
- Department of Joint Surgery, Affiliated Hospital of ChengDe Medical University, Chengde, Hebei 067000, China
| | - Qiankun Chang
- Department of Ultrasonography, Affiliated Hospital of ChengDe Medical University, Chengde, Hebei 067000, China
| | - Qiang Xie
- Department of Hand and Foot Surgery, Affiliated Hospital of ChengDe Medical University, Chengde, Hebei 067000, China
| | - Liqing Wang
- Intensive Care Unit, Affiliated Hospital of ChengDe Medical University, Chengde, Hebei 067000, China
| | - Cong Xu
- Department of Joint Surgery, Affiliated Hospital of ChengDe Medical University, Chengde, Hebei 067000, China
| |
Collapse
|
9
|
Yu C, Sui S, Yu X, Huang W, Wu Y, Zeng X, Chen Q, Wang J, Peng Q. Ti 3C 2T x MXene loaded with indocyanine green for synergistic photothermal and photodynamic therapy for drug-resistant bacterium. Colloids Surf B Biointerfaces 2022; 217:112663. [PMID: 35785716 DOI: 10.1016/j.colsurfb.2022.112663] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/08/2022] [Accepted: 06/24/2022] [Indexed: 02/08/2023]
Abstract
Infections caused by antibiotic-resistant bacteria are a critical threat to human health. Considering the difficulties and time-consuming nature of synthesizing new antibiotics, it is of great significance and importance to develop the antibiotic-independent antibacterial approaches against drug-resistant bacteria. Nanomaterials-based photothermal therapy (PTT) and photodynamic therapy (PDT) have attracted much attention due to their broad-spectrum bactericidal activity, low toxicity, and drug-free feature. In this work, we loaded indocyanine green (ICG) on the Ti3C2Tx MXene nanosheets (454 nm) so as to combine the photothermal effect of MXene with the photodynamic effect of ICG. Without near-infrared (NIR) irradiation, MXene (20 μg/mL), ICG (5 μg/mL) or ICG-loaded MXene (ICG-MXene) showed no significant antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). Under NIR, however, the viability loss of MRSA remarkably increased to 45% for MXene, 66% for ICG and 100% for ICG-MXene. We further found that the great anti-MRSA activity of ICG-MXene under NIR was attributed to the combination of photothermal effect of MXene (high temperature) and photodynamic effect of ICG (high level of reactive oxygen species). Our findings indicate that MXene can be used as both the photothermal agent and the carrier of photosensitizers to achieve the synergistic PTT/PDT therapy for bacterial infections.
Collapse
Affiliation(s)
- Chenhao Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shangyan Sui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiaotong Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenlong Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yafei Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
10
|
Koyappayil A, Chavan SG, Roh YG, Lee MH. Advances of MXenes; Perspectives on Biomedical Research. BIOSENSORS 2022; 12:454. [PMID: 35884257 PMCID: PMC9313156 DOI: 10.3390/bios12070454] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/25/2022]
Abstract
The last decade witnessed the emergence of a new family of 2D transition metal carbides and nitrides named MXenes, which quickly gained momentum due to their exceptional electrical, mechanical, optical, and tunable functionalities. These outstanding properties also rendered them attractive materials for biomedical and biosensing applications, including drug delivery systems, antimicrobial applications, tissue engineering, sensor probes, auxiliary agents for photothermal therapy and hyperthermia applications, etc. The hydrophilic nature of MXenes with rich surface functional groups is advantageous for biomedical applications over hydrophobic nanoparticles that may require complicated surface modifications. As an emerging 2D material with numerous phases and endless possible combinations with other 2D materials, 1D materials, nanoparticles, macromolecules, polymers, etc., MXenes opened a vast terra incognita for diverse biomedical applications. Recently, MXene research picked up the pace and resulted in a flood of literature reports with significant advancements in the biomedical field. In this context, this review will discuss the recent advancements, design principles, and working mechanisms of some interesting MXene-based biomedical applications. It also includes major progress, as well as key challenges of various types of MXenes and functional MXenes in conjugation with drug molecules, metallic nanoparticles, polymeric substrates, and other macromolecules. Finally, the future possibilities and challenges of this magnificent material are discussed in detail.
Collapse
Affiliation(s)
- Aneesh Koyappayil
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, Korea; (A.K.); (S.G.C.)
| | - Sachin Ganpat Chavan
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, Korea; (A.K.); (S.G.C.)
| | - Yun-Gil Roh
- Department of Convergence in Health and Biomedicine, Chungbuk University, 1 Chungdae-ro, Seowon-gu, Cheongju 28644, Korea;
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, Korea; (A.K.); (S.G.C.)
| |
Collapse
|
11
|
Yu L, Xu L, Lu L, Alhalili Z, Zhou X. Thermal Properties of MXenes and Relevant Applications. Chemphyschem 2022; 23:e202200203. [PMID: 35674280 DOI: 10.1002/cphc.202200203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/26/2022] [Indexed: 11/10/2022]
Abstract
The properties and applications of MXenes (a family of layered transition metal carbides, nitrides, and carbonitrides) have aroused enormous research interests for a decade since the successful synthesis of few-layer transition metal carbides in 2011. Though MXenes, as the building blocks, have already been applied in various fields (such as wearable electronics) owing to the distinctive optical, mechanical and electrical properties, their thermal stability and intrinsic thermal properties were less thoroughly investigated compared to other characteristics in early reports. The pioneering theoretical prediction of the thermoelectric nature of MXenes was performed in 2013 while the first experiment-based report concerning the degradation behavior of the 2D structure at elevated temperatures in a controlled atmosphere was published in 2015, followed by numerous discoveries regarding the thermal properties of MXenes. Herein, after a brief description of the synthesis, this Review summarized the latest insights into the thermal stability and thermophysical properties of MXenes, and further associated these unique properties with relevant applications by multiple examples. Finally, current hurdles and challenges in this field were provided along with some advices on potential research directions in the future.
Collapse
Affiliation(s)
- LePing Yu
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu 214153, People's Republic of China
| | - Lyu Xu
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu 214153, People's Republic of China
| | - Lu Lu
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu 214153, People's Republic of China
| | - Zahrah Alhalili
- College of Sciences and Arts, Shaqra University, Sajir, Riyadh, Saudi Arabia
| | - XiaoHong Zhou
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu 214153, People's Republic of China
| |
Collapse
|
12
|
Size-dependent photothermal antibacterial activity of Ti 3C 2T x MXene nanosheets against methicillin-resistant Staphylococcus aureus. J Colloid Interface Sci 2022; 617:533-541. [PMID: 35299127 DOI: 10.1016/j.jcis.2022.03.032] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 02/08/2023]
Abstract
Developing antibiotics-independent antibacterial materials is of great importance for combating drug-resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA). MXene (transition metal carbides and nitrides), a class of novel 2D nanomaterials, has shown great potentials in biomedical areas. However, the effect of MXene size on its properties and bioactivity is still unknown. Herein, we report for the first time that the antibacterial photothermal therapy efficacy of Ti3C2Tx MXene nanosheets is size-dependent. Three MXene suspensions with small size of 196 nm (MX-s), medium size of 347 nm (MX-m) and large size of 497 nm (MX-l) were prepared via ultrasonication. Upon NIR irradiation for 5 min, the temperature of MXene suspensions (10 μg/mL) increased to 64, 60 and 56 °C for MX-s, MX-m and MX-l, respectively. Accordingly, the viability loss of MRSA induced by MX-s, MX-m and MX-l under NIR was 93%, 69% and 56%, respectively. The in vivo study in the MRSA-infected mouse model showed that the photothermal therapy efficacy of MX-s was comparable to that of the positive control vancomycin. This is the first report on the size-dependent photothermal effect and photothermal antibacterial activity of MXene, which may guide the development of MXene-based therapeutics in the future. In addition, the drug-free antibacterial therapy has great implications for the treatment of antibiotics-resistant bacteria infections.
Collapse
|
13
|
Hua L, Qian H, Lei T, Liu W, He X, Zhang Y, Lei P, Hu Y. Anti-tuberculosis drug delivery for tuberculous bone defects. Expert Opin Drug Deliv 2021; 18:1815-1827. [PMID: 34758697 DOI: 10.1080/17425247.2021.2005576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Traditional therapy methods for treating tuberculous bone defects have several limitations. Furthermore, systemic toxicity and disease recurrence in tuberculosis (TB) have not been effectively addressed. AREAS COVERED This review is based on references from September 1998 to September 2021 and summarizes the classification and drug-loading methods of anti-TB drugs. The application of different types of biological scaffolds loaded with anti-TB drugs as a novel drug delivery strategy for tuberculous bone defects has been deeply analyzed. Furthermore, the limitations of the existing studies are summarized. EXPERT OPINION Loading anti-TB drugs into the scaffold through various drug-loading techniques can effectively improve the efficiency of anti-TB treatment and provide an effective means of treating tuberculous bone defects. This methodology also has good application prospects and provides directions for future research.
Collapse
Affiliation(s)
- Long Hua
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China.,Department of Orthopedics, The First Affiliated Hospital,Medical College of Zhejiang University, Hangzhou, P. R. China.,Department of orthopedics,The Sixth Affiliated Hospital, Xinjiang Medical University, Urumqi, P. R. China
| | - Hu Qian
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China
| | - Ting Lei
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China
| | - Wenbin Liu
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China
| | - Xi He
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China
| | - Yu Zhang
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China
| | - Pengfei Lei
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China.,Department of Orthopedics, The First Affiliated Hospital,Medical College of Zhejiang University, Hangzhou, P. R. China
| | - Yihe Hu
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China.,Department of Orthopedics, The First Affiliated Hospital,Medical College of Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|