1
|
Wang L, Wang Z, Ni Y, Wang X, Zhang T, Hu M, Lian C, Wang X, Zhang J. Elucidating the mechanism of action of Isobavachalcone induced autophagy and apoptosis in non-small cell lung cancer by network pharmacology and experimental validation methods. Gene 2024; 918:148474. [PMID: 38670393 DOI: 10.1016/j.gene.2024.148474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Lung cancer is the leading cause of cancer deaths, and non-small cell lung cancer (NSCLC) accounts for the majority of lung cancer-related mortality. In recent years, there have been numerous treatments for non-small cell lung cancer, but the cure and survival rates are still extremely low. Isobavachalcone (IBC) belongs to the chalcone component of the traditional Chinese medicine Psoralea corylifolia L., and is a unique Protein kinase B (AKT) pathway inhibitor with significant anticancer effects. Previous studies have shown that IBC possess a variety of biological properties, including anti-cancer, anti-inflammatory, and antioxidant properties. This study focused on the use of network pharmacology analysis, molecular docking technology and experimental validation to elucidate the potential mechanisms of IBC for the treatment of NSCLC. METHODS Screening key genes and pathways of IBC action in NSCLC using network pharmacology. The IBC target genes were from The Encyclopedia of Traditional Chinese Medicine (ETCM) and BATMAN-TCM databases, the NSCLC target genes were from GeneCards, Online Mendelian Inheritance in Man (OMIM) and The Therapeutic Target database (TTD) databases, both of which were taken as intersecting genes for protein-protein interaction network analysis and enrichment analysis, and the binding energies of the compounds to the core targets were further verified by molecular docking. Cell lines in vitro experiments were then performed to further unravel the mechanism of IBC for NSCLC. RESULTS A total of 279 potential targets were retrieved by searching the intersection of IBC and NSCLC targets. Protein-protein interaction (PPI) network analysis indicated that 6 targets, including AKT1, RXRA, NCOA1, RXRB, RARA, PPARG were hub genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis suggested that IBC treatment of NSCLC mainly involves steroid binding, transcription factor activity, Pathways in cancer, cAMP signaling pathway, Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway. Among them, the AMPK signaling pathway, which contained the largest number of enriched genes, may play a greater role in the treatment of NSCLC. Then, the results of in vitro experiment indicated that IBC could inhibit proliferation of NSCLC cells and induce cell autophagy and apoptosis. The results also showed that IBC could increase the protein expression of AMPK and decrease the protein expression of AKT and mammalian target of rapamycin (mTOR), suggesting that IBC can treat NSCLC by inducing cellular autophagy and apoptosis as well as modulating AMPK and AKT signaling pathways. CONCLUSIONS In summary, this study provided a new insight into the protective mechanism of IBC against NSCLC through network pharmacology and experimental validation.
Collapse
Affiliation(s)
- Luyao Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu 233030, China; Department of Genetics, School of Life Sciences, Bengbu Medical College, Bengbu 233030, China
| | - Ziqiang Wang
- Research Center of Clinical Laboratory Science, Bengbu Medical College, Bengbu 233030, China
| | - Yuhan Ni
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu 233030, China
| | - Xue Wang
- Digestive Department, Xi'an Fifth Hospital, Xi'an 710000, China
| | - Tingting Zhang
- Department of Genetics, School of Life Sciences, Bengbu Medical College, Bengbu 233030, China
| | - Mengling Hu
- Department of Genetics, School of Life Sciences, Bengbu Medical College, Bengbu 233030, China
| | - Chaoqun Lian
- Research Center of Clinical Laboratory Science, Bengbu Medical College, Bengbu 233030, China.
| | - Xiaojing Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu 233030, China; Joint Research Center for Regional Diseases of IHM, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233030, China.
| | - Jing Zhang
- Department of Genetics, School of Life Sciences, Bengbu Medical College, Bengbu 233030, China.
| |
Collapse
|
2
|
Xu J, Feng L, Wang J, Liu M, Li P, Fan Y. Study on the Influence of Shear Stress and Pulse Electrical Stimulation to the Growth of Cardiomyocytes. J Biomed Nanotechnol 2022; 18:132-143. [PMID: 35180906 DOI: 10.1166/jbn.2022.3234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Engineered myocardial tissue is expected to be used in the treatment of myocardial defects and other diseases, and one of the keys is to construct a suitable environment for the culture of myocardial tissue in vitro. In this study, flow shear stress and pulse electrical stimulation were applied to cardiomyocytes with a self-designed device by simulating the mechanical and electrical physiological microenvironment of myocardial tissue. The strength and duration of pulse electrical stimulation as well as the intensity of shear stress were studied in detail to optimize the experimental parameters. Concretely, 100 mV pulse electrical stimulation (1 Hz and 10 ms pulse width) and 10 dyn/cm² shear stress were used for studying the influence of combined mechanical-electrical stimulation to the growth of cardiomyocytes. The mechanical factor of the combined stimulation promoted the expression of α-cardiac actin mRNA, the electrical factor caused an increase in Cx-43 mRNA expression, and shear stress and pulse electrical stimulation showed a synergistic action on the expression of GATA-4 mRNA. It indicated that combined mechanical-electrical stimulation had a better effect on the functionalized culture of cardiomyocytes, which provided an important theoretical basis for the further construction of in vitro engineered myocardial tissue.
Collapse
Affiliation(s)
- Junwei Xu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Limin Feng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Jingxi Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Meili Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Ping Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| |
Collapse
|
3
|
Cheng Y, Chen Z, Yang S, Liu T, Yin L, Pu Y, Liang G. Nanomaterials-induced toxicity on cardiac myocytes and tissues, and emerging toxicity assessment techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149584. [PMID: 34399324 DOI: 10.1016/j.scitotenv.2021.149584] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/07/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
The extensive production and use of nanomaterials have resulted in the continuous release of nano-sized particles into the environment, and the health risks caused by exposure to these nanomaterials in the occupational population and the general population cannot be ignored. Studies have found that particle exposure is closely related to cardiovascular disease. In addition, there have been many reports that nanomaterials can enter the heart tissue, accumulate and then cause damage. Therefore, in the present article, literature related to nanomaterials-induced cardiotoxicity in recent years was collected from the PubMed database, and then organized and summarized to form a review. This article mainly discusses heart damage caused by nanomaterials from the following three aspects: Firstly, we summarize the research 8 carbon nanotubes, etc. Secondly, we discuss in depth the possible underlying mechanism of the damage to the heart caused by nanoparticles. Oxidative stress damage, mitochondrial damage, inflammation and apoptosis have been found to be key factors. Finally, we summarize the current research models used to evaluate the cardiotoxicity of nanomaterials, highlight reliable emerging technologies and in vitro models that have been used for toxicity evaluation of environmental pollutants in recent years, and indicate their application prospects.
Collapse
Affiliation(s)
- Yanping Cheng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China.
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, PR China.
| | - Sheng Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China.
| | - Tong Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China.
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China.
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China.
| |
Collapse
|
4
|
Liu YP, Yuan XY, Li XY, Wang Y, Sun ZB, Deng WH, Lei YD, Huang L, Jiang TY, Zhang ZH. Hydrogen sulfide alleviates apoptosis and autophagy induced by beryllium sulfate in 16HBE cells. J Appl Toxicol 2021; 42:230-243. [PMID: 34091916 DOI: 10.1002/jat.4205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 05/19/2021] [Indexed: 12/21/2022]
Abstract
Beryllium and its compounds are systemic toxicants that are widely applied in many industries. Hydrogen sulfide has been found to protect cells. The present study aimed to determine the protective mechanisms involved in hydrogen sulfide treatment of 16HBE cells following beryllium sulfate-induced injury. 16HBE cells were treated with beryllium sulfate doses ranging between 0 and 300 μM BeSO4 . Additionally, 16HBE cells were subjected to pretreatment with either a 300 μM dose of sodium hydrosulfide (a hydrogen sulfide donor) or 10 mM DL-propargylglycine (a cystathionine-γ-lyase inhibitor) for 6 hr before then being treated with 150 μM beryllium sulfate for 48 hr. This study illustrates that beryllium sulfate induces a reduction in cell viability, increases lactate dehydrogenase (LDH) release, and increases cellular apoptosis and autophagy in 16HBE cells. Interestingly, pretreating 16HBE cells with sodium hydrosulfide significantly reduced the beryllium sulfate-induced apoptosis and autophagy. Moreover, it increased the mitochondrial membrane potential and alleviated the G2/M-phase cell cycle arrest. However, pretreatment with 10 mM DL-propargylglycine promoted the opposite effects. PI3K/Akt/mTOR and Nrf2/ARE signaling pathways are also activated following pretreatment with sodium hydrosulfide. These results indicate the protection provided by hydrogen sulfide in 16HBE cells against beryllium sulfate-induced injury is associated with the inhibition of apoptosis and autophagy through the activation of the PI3K/Akt/mTOR and Nrf2/ARE signaling pathways. Therefore, hydrogen sulfide has the potential to be a promising candidate in the treatment against beryllium disease.
Collapse
Affiliation(s)
- Yan-Ping Liu
- School of public health, University of South China, Hengyang, China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, China
| | - Xiao-Yan Yuan
- School of public health, University of South China, Hengyang, China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, China
| | - Xun-Ya Li
- School of public health, University of South China, Hengyang, China
| | - Ye Wang
- School of public health, University of South China, Hengyang, China
| | - Zhan-Bing Sun
- School of public health, University of South China, Hengyang, China
| | - Wei-Hua Deng
- School of public health, University of South China, Hengyang, China
| | - Yuan-di Lei
- School of public health, University of South China, Hengyang, China
| | - Lian Huang
- School of public health, University of South China, Hengyang, China
| | - Tian-Yi Jiang
- School of public health, University of South China, Hengyang, China
| | - Zhao-Hui Zhang
- School of public health, University of South China, Hengyang, China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, China
| |
Collapse
|