1
|
Sharvashidze N, Hübner C, Schütz AC. A bias in transsaccadic perception of spatial frequency changes. Vision Res 2024; 222:108453. [PMID: 38991467 DOI: 10.1016/j.visres.2024.108453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
Visual processing differs between the foveal and peripheral visual field. These differences can lead to different appearances of objects in the periphery and the fovea, posing a challenge to perception across saccades. Differences in the appearance of visual features between the peripheral and foveal visual field may bias change discrimination across saccades. Previously it has been reported that spatial frequency (SF) appears higher in the periphery compared to the fovea (Davis et al., 1987). In this study, we investigated the visual appearance of SF before and after a saccade and the discrimination of SF changes during saccades. In addition, we tested the contributions of pre- and postsaccadic information to change discrimination performance. In the first experiment, we found no differences in the appearance of SF before and after a saccade. However, participants showed a clear bias to report SF increases. Interestingly, a 200-ms postsaccadic blank improved the precision of the responses but did not affect the bias. In the second experiment, participants showed lower thresholds for SF increases than for decreases, suggesting that the bias in the first experiment was not just a response bias. Finally, we asked participants to discriminate the SF of stimuli presented before a saccade. Thresholds in the presaccadic discrimination task were lower than in the change discrimination task, suggesting that transsaccadic change discrimination is not merely limited by presaccadic discrimination in the periphery. The change direction bias might stem from more effective masking or overwriting of the presaccadic stimulus by the postsaccadic low SF stimulus.
Collapse
Affiliation(s)
- Nino Sharvashidze
- Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany.
| | - Carolin Hübner
- Allgemeine Psychologie & Human Factors, Technische Universität Chemnitz, Chemnitz, Germany
| | - Alexander C Schütz
- Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
2
|
Goktepe N, Schütz AC. Familiar objects benefit more from transsaccadic feature predictions. Atten Percept Psychophys 2023; 85:1949-1961. [PMID: 36720784 PMCID: PMC10545618 DOI: 10.3758/s13414-022-02651-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 02/02/2023]
Abstract
The transsaccadic feature prediction mechanism associates peripheral and foveal information belonging to the same object to make predictions about how an object seen in the periphery would appear in the fovea or vice versa. It is unclear if such transsaccadic predictions require experience with the object such that only familiar objects benefit from this mechanism by virtue of having peripheral-foveal associations. In two experiments, we tested whether familiar objects have an advantage over novel objects in peripheral-foveal matching and transsaccadic change detection tasks. In both experiments, observers were unknowingly familiarized with a small set of stimuli by completing a sham orientation change detection task. In the first experiment, observers subsequently performed a peripheral-foveal matching task, where they needed to pick the foveal test object that matched a briefly presented peripheral target. In the second experiment, observers subsequently performed a transsaccadic object change detection task where a peripheral target was exchanged or not exchanged with another target after the saccade, either immediately or after a 300-ms blank period. We found an advantage of familiar objects over novel objects in both experiments. While foveal-peripheral associations explained the familiarity effect in the matching task of the first experiment, the second experiment provided evidence for the advantage of peripheral-foveal associations in transsaccadic object change detection. Introducing a postsaccadic blank improved change detection performance in general but more for familiar than for novel objects. We conclude that familiar objects benefit from additional object-specific predictions.
Collapse
Affiliation(s)
- Nedim Goktepe
- AG Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany.
| | - Alexander C Schütz
- AG Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
3
|
Osterbrink C, Herwig A. What determines location specificity or generalization of transsaccadic learning? J Vis 2023; 23:8. [PMID: 36648417 PMCID: PMC9851281 DOI: 10.1167/jov.23.1.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Humans incorporate knowledge of transsaccadic associations into peripheral object perception. Several studies have shown that learning of new manipulated transsaccadic associations leads to a presaccadic perceptual bias. However, there was still disagreement whether this learning effect was location specific (Herwig, Weiß, & Schneider, 2018) or generalizes to new locations (Valsecchi & Gegenfurtner, 2016). The current study investigated under what conditions location generalization of transsaccadic learning occurs. In all experiments, there were acquisition phases in which the spatial frequency (Experiment 1) or the size (Experiment 2 and 3) of objects was changed transsaccadically. In the test phases, participants judged the respective feature of peripheral objects. These could appear either at the location where learning had taken place or at new locations. All experiments replicated the perceptual bias effect at the old learning locations. In two experiments, transsaccadic learning remained location specific even when learning occurred at multiple locations (Experiment 1) or with the feature of size (Experiment 2) for which a transfer had previously been shown. Only in Experiment 3 was a transfer of the learning effect to new locations observable. Here, learning only took place for one object and not for several objects that had to be discriminated. Therefore, one can conclude that, when specific associations are learned for multiple objects, transsaccadic learning stays location specific and when a transsaccadic association is learned for only one object it allows a generalization to other locations.
Collapse
Affiliation(s)
- Corinna Osterbrink
- Department of Psychology and Cluster of Excellence Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany.,
| | - Arvid Herwig
- Department of Psychology, Bielefeld University, Bielefeld, Germany.,
| |
Collapse
|
4
|
Bosco A, Sanz Diez P, Filippini M, Fattori P. The influence of action on perception spans different effectors. Front Syst Neurosci 2023; 17:1145643. [PMID: 37205054 PMCID: PMC10185787 DOI: 10.3389/fnsys.2023.1145643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/10/2023] [Indexed: 05/21/2023] Open
Abstract
Perception and action are fundamental processes that characterize our life and our possibility to modify the world around us. Several pieces of evidence have shown an intimate and reciprocal interaction between perception and action, leading us to believe that these processes rely on a common set of representations. The present review focuses on one particular aspect of this interaction: the influence of action on perception from a motor effector perspective during two phases, action planning and the phase following execution of the action. The movements performed by eyes, hands, and legs have a different impact on object and space perception; studies that use different approaches and paradigms have formed an interesting general picture that demonstrates the existence of an action effect on perception, before as well as after its execution. Although the mechanisms of this effect are still being debated, different studies have demonstrated that most of the time this effect pragmatically shapes and primes perception of relevant features of the object or environment which calls for action; at other times it improves our perception through motor experience and learning. Finally, a future perspective is provided, in which we suggest that these mechanisms can be exploited to increase trust in artificial intelligence systems that are able to interact with humans.
Collapse
Affiliation(s)
- Annalisa Bosco
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Alma Mater Research Institute for Human-Centered Artificial Intelligence (Alma Human AI), University of Bologna, Bologna, Italy
- *Correspondence: Annalisa Bosco
| | - Pablo Sanz Diez
- Carl Zeiss Vision International GmbH, Aalen, Germany
- Institute for Ophthalmic Research, Eberhard Karls University Tüebingen, Tüebingen, Germany
| | - Matteo Filippini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Alma Mater Research Institute for Human-Centered Artificial Intelligence (Alma Human AI), University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
Abstract
Visual processing varies dramatically across the visual field. These differences start in the retina and continue all the way to the visual cortex. Despite these differences in processing, the perceptual experience of humans is remarkably stable and continuous across the visual field. Research in the last decade has shown that processing in peripheral and foveal vision is not independent, but is more directly connected than previously thought. We address three core questions on how peripheral and foveal vision interact, and review recent findings on potentially related phenomena that could provide answers to these questions. First, how is the processing of peripheral and foveal signals related during fixation? Peripheral signals seem to be processed in foveal retinotopic areas to facilitate peripheral object recognition, and foveal information seems to be extrapolated toward the periphery to generate a homogeneous representation of the environment. Second, how are peripheral and foveal signals re-calibrated? Transsaccadic changes in object features lead to a reduction in the discrepancy between peripheral and foveal appearance. Third, how is peripheral and foveal information stitched together across saccades? Peripheral and foveal signals are integrated across saccadic eye movements to average percepts and to reduce uncertainty. Together, these findings illustrate that peripheral and foveal processing are closely connected, mastering the compromise between a large peripheral visual field and high resolution at the fovea.
Collapse
Affiliation(s)
- Emma E M Stewart
- Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany.,
| | - Matteo Valsecchi
- Dipartimento di Psicologia, Universitá di Bologna, Bologna, Italy.,
| | - Alexander C Schütz
- Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior, Philipps-Universität Marburg, Marburg, Germany., https://www.uni-marburg.de/en/fb04/team-schuetz/team/alexander-schutz
| |
Collapse
|
6
|
Bosco A, Rifai K, Wahl S, Fattori P, Lappe M. Trans-saccadic adaptation of perceived size independent of saccadic adaptation. J Vis 2021; 20:19. [PMID: 32692824 PMCID: PMC7424105 DOI: 10.1167/jov.20.7.19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Systematic shortening or lengthening of target objects during saccades modifies saccade amplitudes and perceived size of the objects. These two events are concomitant when size change during the saccade occurs asymmetrically, thereby shifting the center of mass of the object. In the present study, we asked whether or not the two are necessarily linked. We tested human participants in symmetrical systematic shortening and lengthening of a vertical bar during a horizontal saccade, aiming to not modify the saccade amplitude. Before and after a phase of trans-saccadic changes of the target bar, participants manually indicated the sizes of various vertically oriented bars by open-loop grip aperture. We evaluated the effect of trans-saccadic changes of bar length on manual perceptual reports and whether this change depended on saccade amplitude. As expected, we did not induce any change in horizontal or vertical components of saccade amplitude, but we found a significant difference in perceived size after the lengthening experiment compared to after the shortening experiment. Moreover, after the lengthening experiment, perceived size differed significantly from pre-lengthening baseline. These findings suggest that a change of size perception can be induced trans-saccadically, and its mechanism does not depend on saccadic amplitude change.
Collapse
|
7
|
Abstract
The visual system can predict visual features across saccades based on learned transsaccadic associations between peripheral and foveal input. This has been shown for simple visual features such as shape, size, and spatial frequency. The present study investigated whether transsaccadic predictions are also made for more complex visual stimuli. In an acquisition phase, new transsaccadic associations were established. In the first experiment, pictures of real-world objects changed category during the saccade (fruits were changed into balls or vice versa). In the second experiment, the gender of faces was manipulated during the saccade (faces changed from male to female or vice versa). In the following test phase, the stimuli were briefly presented in the periphery, and participants had to indicate which object or face, respectively, they had perceived. In both experiments, peripheral perception was biased toward the acquired associated foveal input. These results demonstrate that transsaccadic predictions are not limited to a small set of simple visual features but can also be made for more complex and realistic stimuli. Multiple new associations can be learned within a short time frame, and the resulting predictions appear to be object specific.
Collapse
Affiliation(s)
- Corinna Osterbrink
- Department of Psychology and Cluster of Excellence Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany
| | - Arvid Herwig
- Department of Psychology, University of Bremen, Bremen, Germany
| |
Collapse
|
8
|
Valsecchi M, Cassanello C, Herwig A, Rolfs M, Gegenfurtner KR. A comparison of the temporal and spatial properties of trans-saccadic perceptual recalibration and saccadic adaptation. J Vis 2020; 20:2. [PMID: 32271892 PMCID: PMC7409593 DOI: 10.1167/jov.20.4.2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Repeated exposure to a consistent trans-saccadic step in the position of the saccadic target reliably produces a change of saccadic gain, a well-established trans-saccadic motor learning phenomenon known as saccadic adaptation. Trans-saccadic changes can also produce perceptual effects. Specifically, a systematic increase or decrease in the size of the object that is being foveated changes the perceptually equivalent size between fovea and periphery. Previous studies have shown that this recalibration of perceived size can be established within a few dozen trials, persists overnight, and generalizes across hemifields. In the current study, we use a novel adjustment paradigm to characterize both temporally and spatially the learning process that subtends this form of recalibration, and directly compare its properties to those of saccadic adaptation. We observed that sinusoidal oscillations in the amplitude of the trans-saccadic change produce sinusoidal oscillations in the reported peripheral size, with a lag of under 10 trials. This is qualitatively similar to what has been observed in the case of saccadic adaptation. We also tested whether learning is generalized to the mirror location on the opposite hemifield for both size recalibration and saccade adaptation. Here the results were markedly different, showing almost complete generalization for recalibration and no generalization for saccadic adaptation. We conclude that perceptual and visuomotor consequences of trans-saccadic changes rely on learning mechanisms that are distinct but develop on similar time scales.
Collapse
|
9
|
Eymond C, Seidel Malkinson T, Naccache L. Learning to see the Ebbinghaus illusion in the periphery reveals a top-down stabilization of size perception across the visual field. Sci Rep 2020; 10:12622. [PMID: 32724119 PMCID: PMC7387537 DOI: 10.1038/s41598-020-69329-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/09/2020] [Indexed: 11/21/2022] Open
Abstract
Our conscious visual perception relies on predictive signals, notably in the periphery where sensory uncertainty is high. We investigated how such signals could support perceptual stability of objects' size across the visual field. When attended carefully, the same object appears slightly smaller in the periphery compared to the fovea. Could this perceptual difference be encoded as a strong prior to predict the peripheral perceived size relative to the fovea? Recent studies emphasized the role of foveal information in defining peripheral size percepts. However, they could not disentangle bottom-up from top-down mechanisms. Here, we revealed a pure top-down contribution to the perceptual size difference between periphery and fovea. First, we discovered a novel Ebbinghaus illusion effect, inducing a typical reduction of foveal perceived size, but a reversed increase effect in the periphery. The resulting illusory size percept was similar at both locations, deviating from the classic perceptual difference. Then through an updating process of successive peripheral-foveal viewing, the unusual peripheral perceived size decreased. The classic perceptual eccentricity difference was restored and the peripheral illusion effect changed into a fovea-like reduction. Therefore, we report the existence of a prior that actively shapes peripheral size perception and stabilizes it relative to the fovea.
Collapse
Affiliation(s)
- Cécile Eymond
- INSERM U 1127, CNRS UMR 7225, Sorbonne Université, 75013, Paris, France.
- Institut du Cerveau, ICM, PICNIC Laboratory, 47 boulevard de l'hôpital, 75013, Paris, France.
| | - Tal Seidel Malkinson
- INSERM U 1127, CNRS UMR 7225, Sorbonne Université, 75013, Paris, France
- Institut du Cerveau, ICM, PICNIC Laboratory, 47 boulevard de l'hôpital, 75013, Paris, France
| | - Lionel Naccache
- INSERM U 1127, CNRS UMR 7225, Sorbonne Université, 75013, Paris, France.
- Institut du Cerveau, ICM, PICNIC Laboratory, 47 boulevard de l'hôpital, 75013, Paris, France.
- Department of Neurology, AP-HP, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, Paris, France.
- Department of Neurophysiology, AP-HP, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, Paris, France.
- Institut de Neurosciences Translationnelles IHU-A-ICM, Paris, France.
| |
Collapse
|
10
|
Exogeneous Spatial Cueing beyond the Near Periphery: Cueing Effects in a Discrimination Paradigm at Large Eccentricities. Vision (Basel) 2020; 4:vision4010013. [PMID: 32079326 PMCID: PMC7157755 DOI: 10.3390/vision4010013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/06/2020] [Accepted: 01/27/2020] [Indexed: 11/30/2022] Open
Abstract
Although visual attention is one of the most thoroughly investigated topics in experimental psychology and vision science, most of this research tends to be restricted to the near periphery. Eccentricities used in attention studies usually do not exceed 20° to 30°, but most studies even make use of considerably smaller maximum eccentricities. Thus, empirical knowledge about attention beyond this range is sparse, probably due to a previous lack of suitable experimental devices to investigate attention in the far periphery. This is currently changing due to the development of temporal high-resolution projectors and head-mounted displays (HMDs) that allow displaying experimental stimuli at far eccentricities. In the present study, visual attention was investigated beyond the near periphery (15°, 30°, 56° Exp. 1) and (15°, 35°, 56° Exp. 2) in a peripheral Posner cueing paradigm using a discrimination task with placeholders. Interestingly, cueing effects were revealed for the whole range of eccentricities although the inhomogeneity of the visual field and its functional subdivisions might lead one to suspect otherwise.
Collapse
|