1
|
Varadaraj K, Gao J, Mathias RT, Kumari S. Effect of hydrogen peroxide on lens transparency, intracellular pH, gap junction coupling, hydrostatic pressure and membrane water permeability. Exp Eye Res 2024; 245:109957. [PMID: 38843983 PMCID: PMC11302404 DOI: 10.1016/j.exer.2024.109957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
Clouding of the eye lens or cataract is an age-related anomaly that affects middle-aged humans. Exploration of the etiology points to a great extent to oxidative stress due to different forms of reactive oxygen species/metabolites such as Hydrogen peroxide (H2O2) that are generated due to intracellular metabolism and environmental factors like radiation. If accumulated and left unchecked, the imbalance between the production and degradation of H2O2 in the lens could lead to cataracts. Our objective was to explore ex vivo the effects of H2O2 on lens physiology. We investigated transparency, intracellular pH (pHi), intercellular gap junction coupling (GJC), hydrostatic pressure (HP) and membrane water permeability after subjecting two-month-old C57 wild-type (WT) mouse lenses for 3 h or 8 h in lens saline containing 50 μM H2O2; the results were compared with control lenses incubated in the saline without H2O2. There was a significant decrease in lens transparency in H2O2-treated lenses. In control lenses, pHi decreases from ∼7.34 in the surface fiber cells to 6.64 in the center. Experimental lenses exposed to H2O2 for 8 h showed a significant decrease in surface pH (from 7.34 to 6.86) and central pH (from 6.64 to 6.56), compared to the controls. There was a significant increase in GJC resistance in the differentiating (12-fold) and mature (1.4-fold) fiber cells compared to the control. Experimental lenses also showed a significant increase in HP which was ∼2-fold higher at the junction between the differentiating and mature fiber cells and ∼1.5-fold higher at the center compared to these locations in control lenses; HP at the surface was 0 mm Hg in either type lens. Fiber cell membrane water permeability significantly increased in H2O2-exposed lenses compared to controls. Our data demonstrate that elevated levels of lens intracellular H2O2 caused a decrease in intracellular pH and led to acidosis which most likely uncoupled GJs, and increased AQP0-dependent membrane water permeability causing a consequent rise in HP. We infer that an abnormal increase in intracellular H2O2 could induce acidosis, cause oxidative stress, alter lens microcirculation, and lead to the development of accelerated lens opacity and age-related cataracts.
Collapse
Affiliation(s)
- Kulandaiappan Varadaraj
- Physiology and Biophysics, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.
| | - Junyuan Gao
- Physiology and Biophysics, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Richard T Mathias
- Physiology and Biophysics, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Sindhu Kumari
- Physiology and Biophysics, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
2
|
Kreida S, Roche JV, Missel JW, Al-Jubair T, Hagströmer CJ, Wittenbecher V, Linse S, Gourdon P, Törnroth-Horsefield S. The role of phosphorylation in calmodulin-mediated gating of human AQP0. Biochem J 2024; 481:17-32. [PMID: 38032258 PMCID: PMC10903448 DOI: 10.1042/bcj20230158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 12/01/2023]
Abstract
Aquaporin-0 (AQP0) is the main water channel in the mammalian lens and is involved in accommodation and maintaining lens transparency. AQP0 binds the Ca2+-sensing protein calmodulin (CaM) and this interaction is believed to gate its water permeability by closing the water-conducting pore. Here, we express recombinant and functional human AQP0 in Pichia pastoris and investigate how phosphorylation affects the interaction with CaM in vitro as well as the CaM-dependent water permeability of AQP0 in proteoliposomes. Using microscale thermophoresis and surface plasmon resonance technology we show that the introduction of the single phospho-mimicking mutations S229D and S235D in AQP0 reduces CaM binding. In contrast, CaM interacts with S231D with similar affinity as wild type, but in a different manner. Permeability studies of wild-type AQP0 showed that the water conductance was significantly reduced by CaM in a Ca2+-dependent manner, whereas AQP0 S229D, S231D and S235D were all locked in an open state, insensitive to CaM. We propose a model in which phosphorylation of AQP0 control CaM-mediated gating in two different ways (1) phosphorylation of S229 or S235 abolishes binding (the pore remains open) and (2) phosphorylation of S231 results in CaM binding without causing pore closure, the functional role of which remains to be elucidated. Our results suggest that site-dependent phosphorylation of AQP0 dynamically controls its CaM-mediated gating. Since the level of phosphorylation increases towards the lens inner cortex, AQP0 may become insensitive to CaM-dependent gating along this axis.
Collapse
Affiliation(s)
- Stefan Kreida
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | | | - Julie Winkel Missel
- Department of Biomedical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Tamim Al-Jubair
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | | | | | - Sara Linse
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Pontus Gourdon
- Department of Biomedical Sciences, Copenhagen University, Copenhagen, Denmark
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | |
Collapse
|
3
|
He M, Zhou G, Lin Q, Zhou N. The role of mip in the development of lens in zebrafish. Gene Expr Patterns 2023; 49:119330. [PMID: 37369320 DOI: 10.1016/j.gep.2023.119330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/10/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023]
Abstract
Major intrinsic protein (MIP) functions as a water channel and a cell-junction molecule in the vertebrate eye lens. The pathogenic mechanism behind the loss of MIP function in the lens, which leads to degraded optical quality and cataract formation, is still unclear. In this study, a zebrafish model with the mipb mutant was produced. The expression of mipb mRNA and protein was dramatically reduced in the mutant. Immunological analysis reveals that loss function of mip leads to the diffuse distribution of ZL-1 in the mutant lens. Furthermore, in situ hybridization reveals that mip knockout results in a decrease in the transcripts of beaded filament structural protein 2 (Bfsp2) in the lens. Histology study shows that lens fibers in the mutants are less uniform in shape and the fiber arrangement is disrupted. The presented data provides evidence for the essential role of mipb in the development of lens fibers. The absence of mipb during lens formation is likely to result in aberrant lens fiber formation and impaired lens function.
Collapse
Affiliation(s)
- Mingyan He
- Department of Ophthalmology, the Second Affiliated Hospital of Harbin Medical University, 150081, Harbin, China
| | - Guangkai Zhou
- The Third Affiliated Hospital of Harbin Medical University, 150081, Harbin, China
| | - Qinghong Lin
- Department of Ophthalmology, the Second Affiliated Hospital of Harbin Medical University, 150081, Harbin, China
| | - Nan Zhou
- Department of Ophthalmology, the Second Affiliated Hospital of Harbin Medical University, 150081, Harbin, China.
| |
Collapse
|
4
|
Ek-Vitorin JF, Jiang JX. The Role of Gap Junctions Dysfunction in the Development of Cataracts: From Loss of Cell-to-Cell Transfer to Blurred Vision-Review. Bioelectricity 2023; 5:164-172. [PMID: 37746311 PMCID: PMC10516237 DOI: 10.1089/bioe.2023.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023] Open
Abstract
Mutations of lens connexins are linked to congenital cataracts. However, the role of connexin mutations in the development of age-related lens opacification remains largely unknown. Here, we present a focused review of the literature on lens organization and factors associated with cataract development. Several lines of evidence indicate that disturbances of the lens circulation by dysfunctional connexin channels, and/or accumulation of protein damage due to oxidative stress, are key factors in cataract development. Phosphorylation by protein kinase A improves the permeability of connexins channels to small molecules and mitigates the lens clouding induced by oxidative stress. We conclude (1) that connexin channels are central to the lens circulation and (2) that their permeability to antioxidant molecules contributes to the maintenance of lens transparency.
Collapse
Affiliation(s)
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, USA
| |
Collapse
|
5
|
Liu Z, Huang S, Zheng Y, Zhou T, Hu L, Xiong L, Li DWC, Liu Y. The lens epithelium as a major determinant in the development, maintenance, and regeneration of the crystalline lens. Prog Retin Eye Res 2023; 92:101112. [PMID: 36055924 DOI: 10.1016/j.preteyeres.2022.101112] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023]
Abstract
The crystalline lens is a transparent and refractive biconvex structure formed by lens epithelial cells (LECs) and lens fibers. Lens opacity, also known as cataracts, is the leading cause of blindness in the world. LECs are the principal cells of lens throughout human life, exhibiting different physiological properties and functions. During the embryonic stage, LECs proliferate and differentiate into lens fibers, which form the crystalline lens. Genetics and environment are vital factors that influence normal lens development. During maturation, LECs help maintain lens homeostasis through material transport, synthesis and metabolism as well as mitosis and proliferation. If disturbed, this will result in loss of lens transparency. After cataract surgery, the repair potential of LECs is activated and the structure and transparency of the regenerative tissue depends on postoperative microenvironment. This review summarizes recent research advances on the role of LECs in lens development, homeostasis, and regeneration, with a particular focus on the role of cholesterol synthesis (eg., lanosterol synthase) in lens development and homeostasis maintenance, and how the regenerative potential of LECs can be harnessed to develop surgical strategies and improve the outcomes of cataract surgery (Fig. 1). These new insights suggest that LECs are a major determinant of the physiological and pathological state of the lens. Further studies on their molecular biology will offer possibility to explore new approaches for cataract prevention and treatment.
Collapse
Affiliation(s)
- Zhenzhen Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Shan Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yingfeng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Tian Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Leyi Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Lang Xiong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - David Wan-Cheng Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China; Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100085, China.
| |
Collapse
|
6
|
Tran TL, Hamann S, Heegaard S. Aquaporins in Eye. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:203-209. [PMID: 36717496 DOI: 10.1007/978-981-19-7415-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The major part of the eye consists of water. Continuous movement of water and ions between the ocular compartments and to the systemic circulation is pivotal for many physiological functions in the eye. The movement of water facilitates removal of the many metabolic products of corneal-, ciliary body-, lens-, and retinal metabolism, while maintaining transparency in the optical compartments. Transport across the corneal epithelium and endothelium maintains the corneal transparency. Also, aqueous humor is continuously secreted by the epithelia of the ciliary body and maintains the intraocular pressure. In the retina, water is transported into the vitreous body and across the retinal pigment epithelium to regulate the extracellular environment and the hydration of the retina. Aquaporins are a major contributor in the water transport throughout the eye.
Collapse
Affiliation(s)
- Thuy Linh Tran
- Department of Ophthalmology, Rigshospitalet - Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Steffen Hamann
- Department of Ophthalmology, Rigshospitalet - Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Steffen Heegaard
- Department of Ophthalmology, Rigshospitalet - Glostrup, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Regulation of lens water content: Effects on the physiological optics of the lens. Prog Retin Eye Res 2022:101152. [DOI: 10.1016/j.preteyeres.2022.101152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/09/2022]
|
8
|
Beyer EC, Mathias RT, Berthoud VM. Loss of fiber cell communication may contribute to the development of cataracts of many different etiologies. Front Physiol 2022; 13:989524. [PMID: 36171977 PMCID: PMC9511111 DOI: 10.3389/fphys.2022.989524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The lens is an avascular organ that is supported by an internal circulation of water and solutes. This circulation is driven by ion pumps, channels and transporters in epithelial cells and by ion channels in fiber cells and is maintained by fiber-fiber and fiber-epithelial cell communication. Gap junctional intercellular channels formed of connexin46 and connexin50 are critical components of this circulation as demonstrated by studies of connexin null mice and connexin mutant mice. Moreover, connexin mutants are one of the most common causes of autosomal dominant congenital cataracts. However, alterations of the lens circulation and coupling between lens fiber cells are much more prevalent, beyond the connexin mutant lenses. Intercellular coupling and levels of connexins are decreased with aging. Gap junction-mediated intercellular communication decreases in mice expressing mutant forms of several different lens proteins and in some mouse models of lens protein damage. These observations suggest that disruption of ionic homeostasis due to reduction of the lens circulation is a common component of the development of many different types of cataracts. The decrease in the lens circulation often reflects low levels of lens fiber cell connexins and/or functional gap junction channels.
Collapse
Affiliation(s)
- Eric C. Beyer
- Department of Pediatrics, University of Chicago, Chicago, IL, United States
- *Correspondence: Eric C. Beyer,
| | - Richard T. Mathias
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, United States
| | | |
Collapse
|
9
|
Ishida H, Vogel HJ, Conner AC, Kitchen P, Bill RM, MacDonald JA. Simultaneous binding of the N- and C-terminal cytoplasmic domains of aquaporin 4 to calmodulin. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183837. [PMID: 34890582 DOI: 10.1016/j.bbamem.2021.183837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/30/2021] [Accepted: 11/30/2021] [Indexed: 10/19/2022]
Abstract
Aquaporin 4 (AQP4) is a water transporting, transmembrane channel protein that has important regulatory roles in maintaining cellular water homeostasis. Several other AQP proteins exhibit calmodulin (CaM)-binding properties, and CaM has recently been implicated in the cell surface localization of AQP4. The objective of the present study was to assess the CaM-binding properties of AQP4 in detail. Inspection of AQP4 revealed two putative CaM-binding domains (CBDs) in the cytoplasmic N- and C-terminal regions, respectively. The Ca2+-dependent CaM-binding properties of AQP4 CBD peptides were assessed using fluorescence spectroscopy, isothermal titration calorimetry, and two-dimensional 1H, 15N-HSQC NMR with 15N-labeled CaM. The N-terminal CBD of AQP4 predominantly interacted with the N-lobe of CaM with a 1:1 binding ratio and a Kd of 3.4 μM. The C-terminal AQP4 peptide interacted with both the C- and N-lobes of CaM (2:1 binding ratio; Kd1: 3.6 μM, Kd2: 113.6 μM, respectively). A recombinant AQP4 protein domain (recAQP4CT, containing the entire cytosolic C-terminal sequence) bound CaM in a 1:1 binding mode with a Kd of 6.1 μM. A ternary bridging complex could be generated with the N- and C-lobes of CaM interacting simultaneously with the N- and C-terminal CBD peptides. These data support a unique adapter protein binding mode for CaM with AQP4.
Collapse
Affiliation(s)
- Hiroaki Ishida
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Hans J Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Alex C Conner
- College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Philip Kitchen
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Roslyn M Bill
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Justin A MacDonald
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada.
| |
Collapse
|
10
|
Giannone AA, Li L, Sellitto C, White TW. Physiological Mechanisms Regulating Lens Transport. Front Physiol 2022; 12:818649. [PMID: 35002784 PMCID: PMC8735835 DOI: 10.3389/fphys.2021.818649] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/10/2021] [Indexed: 12/02/2022] Open
Abstract
The transparency and refractive properties of the lens are maintained by the cellular physiology provided by an internal microcirculation system that utilizes spatial differences in ion channels, transporters and gap junctions to establish standing electrochemical and hydrostatic pressure gradients that drive the transport of ions, water and nutrients through this avascular tissue. Aging has negative effects on lens transport, degrading ion and water homeostasis, and producing changes in lens water content. This alters the properties of the lens, causing changes in optical quality and accommodative amplitude that initially result in presbyopia in middle age and ultimately manifest as cataract in the elderly. Recent advances have highlighted that the lens hydrostatic pressure gradient responds to tension transmitted to the lens through the Zonules of Zinn through a mechanism utilizing mechanosensitive channels, multiple sodium transporters respond to changes in hydrostatic pressure to restore equilibrium, and that connexin hemichannels and diverse intracellular signaling cascades play a critical role in these responses. The mechanistic insight gained from these studies has advanced our understanding of lens transport and how it responds and adapts to different inputs both from within the lens, and from surrounding ocular structures.
Collapse
Affiliation(s)
- Adrienne A Giannone
- Master of Science Program, Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States
| | - Leping Li
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Caterina Sellitto
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Thomas W White
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
11
|
Varadaraj K, FitzGerald PG, Kumari SS. Deletion of beaded filament proteins or the C-terminal end of Aquaporin 0 causes analogous abnormal distortion aberrations in mouse lens. Exp Eye Res 2021; 209:108645. [PMID: 34087204 DOI: 10.1016/j.exer.2021.108645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 11/28/2022]
Abstract
Lens-specific beaded filament (BF) proteins CP49 and filensin interact with the C-terminus of the water channel protein Aquaporin 0 (AQP0). Previously we have reported that a C-terminally end-deleted AQP0-expressing transgenic mouse model AQP0ΔC/ΔC developed abnormal optical aberrations in the lens. This investigation was undertaken to find out whether the total loss of the BF structural proteins alter the optical properties of the lens and cause optical aberrations similar to those in AQP0ΔC/ΔC lenses; also, to map the changes in the optical quality as a function of age in the single or double BF protein knockouts as well as to assess whether there is any significant change in the water channel function of AQP0 in these knockouts. A double knockout mouse (2xKO) model for CP49 and filensin was developed by crossing CP49-KO and filensin-KO mice. Wild type, CP49-KO, filensin-KO, and 2xKO lenses at different ages, and AQP0ΔC/ΔC lenses at postnatal day-17 were imaged through the optical axis and compared for optical quality and focusing property. All three knockout models showed loss of transparency, and development of abnormal optical distortion aberration similar to that in AQP0ΔC/ΔC. Copper grid focusing by the lenses at 6, 9 and 12 months of age showed an increase in aberrations as age advanced. With progression in age, the grid images produced by the lenses of all KO models showed a transition from a positive barrel distortion aberration to a pincushion distortion aberration with the formation of three distinct aberration zones similar to those produced by AQP0ΔC/ΔC lenses. Water permeability of fiber cell membrane vesicles prepared from CP49-KO, filensin-KO and 2xKO models, measured using the osmotic shrinking method, remained similar to that of the wild type without any statistically significant alteration (P > 0.05). Western blotting and quantification revealed the expression of comparable quantities of AQP0 in all three BF protein KOs. Our study reveals that loss of single or both beaded filament proteins significantly affect lens refractive index gradient, transparency and focusing ability in an age-dependent manner and the interaction of BF proteins with AQP0 is critical for the proper functioning of the lens. The presence of BF proteins is necessary to prevent abnormal optical aberrations and maintain homeostasis in the aging lens.
Collapse
Affiliation(s)
| | - Paul G FitzGerald
- Cell Biology and Human Anatomy, School of Medicine, University of California-Davis, Davis, CA, USA
| | - S Sindhu Kumari
- Physiology and Biophysics, Renaissance School of Medicine, Stony Brook University, NY, USA.
| |
Collapse
|
12
|
Zhang Y, Herling TW, Kreida S, Peter QAE, Kartanas T, Törnroth-Horsefield S, Linse S, Knowles TPJ. A microfluidic strategy for the detection of membrane protein interactions. LAB ON A CHIP 2020; 20:3230-3238. [PMID: 32744557 DOI: 10.1039/d0lc00205d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Membrane proteins perform a vast range of vital biological functions and are the gatekeepers for exchange of information and matter between the intracellular and extracellular environment. However, membrane protein interactions can be challenging to characterise in a quantitative manner due to the low solubility and large size of the membrane protein complex with associated lipid or detergent molecules. Here, we show that measurements of the changes in charge and diffusivity on the micron scale allow for non-disruptive studies of membrane protein interactions in solution. The approach presented here uses measurements of key physical properties of membrane proteins and their ligands to characterise the binding equilibrium parameters. We demonstrate this approach for human aquaporins (AQPs), key membrane proteins in the regulation of water homeostasis in cells. We perform quantitative measurements to characterise the interactions between two full-length AQP isoforms and the regulatory protein, calmodulin (CaM), and show that CaM selectively binds AQP0. Through direct measurements of the diffusivity and mobility in an external electric field, the diffusion coefficients and electrophoretic mobilities are determined for the individual components and the resulting AQP0-CaM complex. Furthermore, we obtain directly the binding equilibrium parameters and effective charge of each component. These results open up a route towards the use of microfluidics as a general platform in protein science and open up new possibilities for the characterisation of membrane protein interactions in solution.
Collapse
Affiliation(s)
- Yuewen Zhang
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Therese W Herling
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Stefan Kreida
- Department of Biochemistry and Structural Biology, Lund University, Lund, 221 00, Sweden.
| | - Quentin A E Peter
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Tadas Kartanas
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | | | - Sara Linse
- Department of Biochemistry and Structural Biology, Lund University, Lund, 221 00, Sweden.
| | - Tuomas P J Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK. and Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
| |
Collapse
|
13
|
Lamagna B, Ciaramella P, Lamagna F, Di Loria A, Brunetti A, Pelagalli A. Aquaporin 1 (AQP1) Expression in Healthy Dog Tears. Animals (Basel) 2020; 10:820. [PMID: 32397372 PMCID: PMC7278581 DOI: 10.3390/ani10050820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/28/2022] Open
Abstract
Aquaporins (AQPs) are a family of thirteen membrane proteins that play an essential role in the transport of fluids across the cell plasma membrane. Recently, the expression of AQPs in different ocular tissues and their involvement in the pathophysiology of eye diseases, have garnered attention. Considering that literature on AQP expression in the lacrimal glands and their secretion is scarce, we aimed to characterise AQP1 expression in the tears of healthy dogs using two tear collection methods (Schirmer tear strips (STS) and ophthalmic sponges (OS)). Fifteen healthy dogs, free of ophthalmic diseases, were included in the study. Tear collection was performed by using STS in one eye and OS in the other. After the extraction of proteins from the tears, the expression of AQP1 was analysed by Western blotting. AQP1 was expressed as a band of 28 kDa. In addition, differences were observed in the expression of AQP1 and in the correlation between tear volume and protein concentration, in tears collected by the two different methods. Our results suggest that AQP1 has a specific role in tear secretion; further research is required to assess its particular role in the function of the ocular surface in eye physiology and pathology.
Collapse
Affiliation(s)
- Barbara Lamagna
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (B.L.); (P.C.); (F.L.); (A.D.L.)
| | - Paolo Ciaramella
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (B.L.); (P.C.); (F.L.); (A.D.L.)
| | - Francesco Lamagna
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (B.L.); (P.C.); (F.L.); (A.D.L.)
| | - Antonio Di Loria
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (B.L.); (P.C.); (F.L.); (A.D.L.)
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy;
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy;
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Naples, Italy
| |
Collapse
|
14
|
Varadaraj K, Kumari SS. Lens aquaporins function as peroxiporins to facilitate membrane transport of hydrogen peroxide. Biochem Biophys Res Commun 2020; 524:1025-1029. [PMID: 32063362 DOI: 10.1016/j.bbrc.2020.02.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 02/05/2020] [Indexed: 01/02/2023]
Abstract
High levels of reactive oxygen species such as hydrogen peroxide (H2O2) cause oxidative stress in the lens and lead to cataractogenesis. The present investigation was undertaken to find out whether the mammalian lens aquaporins (AQPs) 0, 1, and 5 perform H2O2 transport across the plasma membrane to reduce oxidative stress. Our in vitro cell culture and ex vivo lens experiments demonstrated that in addition to the established water transport role, mouse AQP0, AQP1 and AQP5 facilitate transmembrane H2O2 transport and function as peroxiporins. Human lens epithelial cells expressing AQP1, AQP5 and AQP8, when treated with 50 μM HgCl2 water channel inhibitor showed a significant reduction in H2O2 transport. Data obtained from the experiments involving H2O2-degrading enzyme glutathione peroxidase 1 (GPX1) knockout lenses showed H2O2 accumulation, suggesting H2O2 transport level by AQPs in the lens is regulated by GPX1. Under hyperglycemic conditions, there was an increased loss of transparency, and enhanced production and retention of H2O2 in AQP5-/- lenses compared to similarly-treated WT lenses. Overall, the results show that lens AQPs function as peroxiporins and cooperate with GPX1 to maintain lens H2O2 homeostasis to prevent oxidative stress, highlighting AQPs and GPX1 as promising therapeutic drug targets to delay/treat/prevent age-related lens cataracts.
Collapse
Affiliation(s)
| | - S Sindhu Kumari
- Physiology and Biophysics, Renaissance School of Medicine, Stony Brook University, NY, USA
| |
Collapse
|
15
|
Kumari S, Taginik G, Varadaraj S, Varadaraj K. Positively charged amino acid residues in the extracellular loops A and C of lens aquaporin 0 interact with the negative charges in the plasma membrane to facilitate cell-to-cell adhesion. Exp Eye Res 2019; 185:107682. [PMID: 31150637 DOI: 10.1016/j.exer.2019.05.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 04/17/2019] [Accepted: 05/27/2019] [Indexed: 01/12/2023]
Abstract
This investigation was undertaken to find out whether the positive charges in the Extracellular Loops A (ELA) and C (ELC) of Aquaporin 0 (AQP0) are involved in lens fiber cell-to-cell adhesion (CTCA), and the possible mechanism of CTCA. AQP0 ELA or ELC was substituted with the corresponding AQP1 loop via Polymerase Chain Reaction. Positively charged arginine (R) and histidine (H) of mouse AQP0 ELA and ELC were substituted individually with glutamine (Q) to create R33Q, H40Q, R113Q and H122Q by mutagenesis. cRNA expression, immunostaining, Förster Resonance Energy Transfer (FRET) studies and protein analyses showed localization of all mutants except AQP0-AQP1ELC chimera (AQP0 ELC substituted with AQP1 ELC) at the plasma membrane. Osmotic Swelling Assay revealed comparable water permeability (Pf) among AQP0-AQP1ELA, R33Q, R113Q, and WT. CTCA assay demonstrated a significant reduction in adhesion in all mutants compared to the WT (14-73%) suggesting the importance of the conserved positively charged residues of ELA and ELC for adhesion. Studies involving AQP0-transfected L-cells, and lipid vesicles indicated that CTCA was due to the electrostatic interaction between the positively charged amino acids of AQP0 extracellular loops and the negative charges of the plasma membrane. Schematic models are provided to illustrate the mechanism.
Collapse
Affiliation(s)
- Sindhu Kumari
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, 11794-8661, USA
| | - Gozde Taginik
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, 11794-8661, USA
| | - Sangeeth Varadaraj
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, 11794-8661, USA
| | - Kulandaiappan Varadaraj
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, 11794-8661, USA; SUNY Eye Institute, New York, NY, USA.
| |
Collapse
|
16
|
Kumari SS, Varadaraj K. A predominant form of C-terminally end-cleaved AQP0 functions as an open water channel and an adhesion protein in AQP0 ΔC/ΔC mouse lens. Biochem Biophys Res Commun 2019; 511:626-630. [PMID: 30826060 DOI: 10.1016/j.bbrc.2019.02.098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/19/2019] [Indexed: 01/14/2023]
Abstract
The purpose of this investigation was to find out whether C-terminally end-cleaved aquaporin 0 (AQP0), that is present predominantly in the lens mature fiber cells of the WT, functions as a water channel and a cell-to-cell adhesion (CTCA) protein in a knockin (KI) mouse model (AQP0ΔC/ΔC) that does not express intact AQP0. A genetically engineered KI mouse model, AQP0ΔC/ΔC, expressing only end-cleaved AQP0 was developed. This model expresses 1-246 amino acids of AQP0, instead of the full length 1-263 amino acids. Lens transparency of postnatal day 10 (P10) was analyzed qualitatively by dark field imaging. WT, AQP0+/- and AQP0+/ΔC lenses were transparent; AQP0-/- and AQP0ΔC/ΔC mouse lenses displayed loss of transparency. Lens fiber cell membrane vesicles (FCMVs) were prepared from wild type (WT), AQP0 heterozygous (AQP0+/-), AQP0 knockout (AQP0-/-), AQP0+/ΔC and AQP0ΔC/ΔC; water permeability (Pf) was measured using the osmotic shrinking method. CTCA assay was performed using adhesion-deficient L-cells and FCMVs prepared from the abovementioned genotypes. FCMVs of AQP0+/- and AQP0-/- showed a statistically significant reduction (P < 0.001) in Pf and CTCA compared to those of WT. AQP0+/ΔC and AQP0ΔC/ΔC FCMVs exhibited no statistically significant alteration (P > 0.05) in Pf compared to those of WT. However, CTCA of AQP0+/ΔC AQP0ΔC/ΔC FCMVs was significantly higher (P < 0.001) than that of WT FCMVs. Our experiments clearly show that C-terminally end-cleaved AQP0 can function both as a water channel and a CTCA molecule in the lens fiber cell membranes. Also, end-truncation plays an important role in increasing the CTCA between fiber cells.
Collapse
Affiliation(s)
| | - Kulandaiappan Varadaraj
- Physiology and Biophysics, Stony Brook University, NY, USA; SUNY Eye Institute, Syracuse, NY, USA.
| |
Collapse
|
17
|
Zhu Y, Xu S, Eisenberg RS, Huang H. A Bidomain Model for Lens Microcirculation. Biophys J 2019; 116:1171-1184. [PMID: 30850115 DOI: 10.1016/j.bpj.2019.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/03/2018] [Accepted: 02/13/2019] [Indexed: 10/27/2022] Open
Abstract
There exists a large body of research on the lens of the mammalian eye over the past several decades. The objective of this work is to provide a link between the most recent computational models and some of the pioneering work in the 1970s and 80s. We introduce a general nonelectroneutral model to study the microcirculation in the lens of the eye. It describes the steady-state relationships among ion fluxes, between water flow and electric field inside cells, and in the narrow extracellular spaces between cells in the lens. Using asymptotic analysis, we derive a simplified model based on physiological data and compare our results with those in the literature. We show that our simplified model can be reduced further to the first-generation models, whereas our full model is consistent with the most recent computational models. In addition, our simplified model captures in its equations the main features of the full computational models. Our results serve as a useful link intermediate between the computational models and the first-generation analytical models. Simplified models of this sort may be particularly helpful as the roles of similar osmotic pumps of microcirculation are examined in other tissues with narrow extracellular spaces, such as cardiac and skeletal muscle, liver, kidney, epithelia in general, and the narrow extracellular spaces of the central nervous system, the "brain." Simplified models may reveal the general functional plan of these systems before full computational models become feasible and specific.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada
| | - Shixin Xu
- Centre for Quantitative Analysis and Modelling, Fields Institute for Research in Mathematical Sciences, Toronto, Ontario, Canada.
| | - Robert S Eisenberg
- Department of Applied Mathematics, Illinois Institute of Technology, Chicago, Illinois; Department of Physiology and Biophysics, Rush University, Chicago, Illinois
| | - Huaxiong Huang
- Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada; Centre for Quantitative Analysis and Modelling, Fields Institute for Research in Mathematical Sciences, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Xiu Y, Fan Y, Wu K, Chen S, Pan M, Xu X, Zhu Y. A novel causative mutation for congenital cataract and its underlying pathogenesis. Ophthalmic Genet 2018; 40:66-68. [PMID: 30585525 DOI: 10.1080/13816810.2018.1558262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yanghui Xiu
- a Eye Institute & Xiamen eye Center , Affiliated Xiamen University , Xiamen , Fujian , China
| | - Yuanrong Fan
- b Department of Ophthalmology , The First Affiliated Hospital of Fujian Medical University , Fuzhou , Fujian , China
| | - Kangni Wu
- c Department of Hematology , The First Hospital Affiliated Xiamen University , Xiamen , China
| | - Shuimiao Chen
- a Eye Institute & Xiamen eye Center , Affiliated Xiamen University , Xiamen , Fujian , China
| | - Meihua Pan
- a Eye Institute & Xiamen eye Center , Affiliated Xiamen University , Xiamen , Fujian , China
| | - Xun Xu
- d Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai General hospital , Shanghai Jiao Tong University , Shanghai , China
| | - Yihua Zhu
- b Department of Ophthalmology , The First Affiliated Hospital of Fujian Medical University , Fuzhou , Fujian , China
| |
Collapse
|
19
|
Koç Ş, Baysal S, Koç Z, Yener AÜ. Detection of Glycemia and Osmolarity Changes Using Eye Examinations. Metab Syndr Relat Disord 2018; 16:543-550. [PMID: 30183500 DOI: 10.1089/met.2018.0076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background: Glycated hemoglobin (HbA1c) is an index of the average blood glucose level over the preceding 2-3 months. In experimental studies, the lens responded to changes in osmolarity by forming vacuoles. By observing the vacuoles of the lens during eye examination, can we detect changes in osmolarity and glycemia over the last 6 months through HbA1c levels? Methods: In total, 400 patients (mean age, 67.7 ± 9.8 years), including those with diabetes mellitus, hypertension, and heart failure, were included in the study. The control group contained 70 patients matched in terms of age and sex and who had no prior disease (mean age, 67.8 ± 9.4 years). Monthly Na, glucose, and blood urea nitrogen values were used to calculate changes in osmolarity over 6 months. HbA1c values were also recorded. Biomicroscopy was used to evaluate lens vacuolation; all vacuoles were digitally photographed and converted to ImageJ format. Results: The sensitivity and specificity of using large vacuoles to detect HbA1c ≥10% were 88.0% (95% confidence interval [CI]: 68.8-97.4) and 82.6% (95% CI: 74.1-89.2), respectively. The sensitivity and specificity of detecting a 10 mOsm/kg change in osmolarity were 61% (95% CI: 48.9-72.4) and 94.5% (95% CI: 91.5-96.7), respectively. Conclusions: Lens vacuoles, which can be observed with a simple and quick examination, can be used to detect HbA1c levels and osmolarity changes over the last 6 months. Because of their relationship to the severity of retinopathy, vacuoles can also be used as a weak control indicator.
Collapse
Affiliation(s)
- Şahbender Koç
- Department of Cardiology and Keçiören Education and Training Hospital, University of Health Sciences, Ankara, Turkey
| | - Selçuk Baysal
- Department of Cardiology, Urfa Education and Training Hospital, University of Health Sciences, Urfa, Turkey
| | - Zuhal Koç
- Department of Internal Medicine, Onkoloji Education and Training Hospital, University of Health Sciences, Ankara, Turkey
| | - Arif Ülkü Yener
- Department of Ophthalmology, Keçiören Education and Training Hospital, University of Health Sciences, Ankara, Turkey
| |
Collapse
|
20
|
Kourghi M, Pei JV, De Ieso ML, Nourmohammadi S, Chow PH, Yool AJ. Fundamental structural and functional properties of Aquaporin ion channels found across the kingdoms of life. Clin Exp Pharmacol Physiol 2018; 45:401-409. [PMID: 29193257 DOI: 10.1111/1440-1681.12900] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/06/2017] [Accepted: 11/16/2017] [Indexed: 01/09/2023]
Abstract
Aquaporin (AQP) channels in the major intrinsic protein (MIP) family are known to facilitate transmembrane water fluxes in prokaryotes and eukaryotes. Some classes of AQPs also conduct ions, glycerol, urea, CO2 , nitric oxide, and other small solutes. Ion channel activity has been demonstrated for mammalian AQPs 0, 1, 6, Drosophila Big Brain (BIB), soybean nodulin 26, and rockcress AtPIP2;1. More classes are likely to be discovered. Newly identified blockers are providing essential tools for establishing physiological roles of some of the AQP dual water and ion channels. For example, the arylsulfonamide AqB011 which selectively blocks the central ion pore of mammalian AQP1 has been shown to impair migration of HT29 colon cancer cells. Traditional herbal medicines are sources of selective AQP1 inhibitors that also slow cancer cell migration. The finding that plant AtPIP2;1 expressed in root epidermal cells mediates an ion conductance regulated by calcium and protons provided insight into molecular mechanisms of environmental stress responses. Expression of lens MIP (AQP0) is essential for maintaining the structure, integrity and transparency of the lens, and Drosophila BIB contributes to neurogenic signalling pathways to control the developmental fate of fly neuroblast cells; however, the ion channel roles remain to be defined for MIP and BIB. A broader portfolio of pharmacological agents is needed to investigate diverse AQP ion channel functions in situ. Understanding the dual water and ion channel roles of AQPs could inform the development of novel agents for rational interventions in diverse challenges from agriculture to human health.
Collapse
Affiliation(s)
- Mohamad Kourghi
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Jinxin V Pei
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Michael L De Ieso
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | | | - Pak Hin Chow
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Andrea J Yool
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
21
|
Kumari S, Gao J, Mathias RT, Sun X, Eswaramoorthy A, Browne N, Zhang N, Varadaraj K. Aquaporin 0 Modulates Lens Gap Junctions in the Presence of Lens-Specific Beaded Filament Proteins. Invest Ophthalmol Vis Sci 2017; 58:6006-6019. [PMID: 29196765 PMCID: PMC5710632 DOI: 10.1167/iovs.17-22153] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The objective of this study was to understand the molecular and physiologic mechanisms behind the lens cataract differences in Aquaporin 0-knockout-Heterozygous (AQP0-Htz) mice developed in C57 and FVB (lacks beaded filaments [BFs]) strains. Methods Lens transparency was studied using dark field light microscopy. Water permeability (Pf) was measured in fiber cell membrane vesicles. Western blotting/immunostaining was performed to verify expression of BF proteins and connexins. Microelectrode-based intact lens intracellular impedance was measured to determine gap junction (GJ) coupling resistance. Lens intracellular hydrostatic pressure (HP) was determined using a microelectrode/manometer system. Results Lens opacity and spherical aberration were more distinct in AQP0-Htz lenses from FVB than C57 strains. In either background, compared to wild type (WT), AQP0-Htz lenses showed decreased Pf (approximately 50%), which was restored by transgenic expression of AQP1 (TgAQP1/AQP0-Htz), but the opacities and differences between FVB and C57 persisted. Western blotting revealed no change in connexin expression levels. However, in C57 AQP0-Htz and TgAQP1/AQP0-Htz lenses, GJ coupling resistance decreased approximately 2.8-fold and the HP gradient decreased approximately 1.9-fold. Increased Pf in TgAQP1/AQP0-Htz did not alter GJ coupling resistance or HP. Conclusions In C57 AQP0-Htz lenses, GJ coupling resistance decreased. HP reduction was smaller than the coupling resistance reduction, a reflection of an increase in fluid circulation, which is one reason for the less severe cataract in C57 than FVB. Overall, our results suggest that AQP0 modulates GJs in the presence of BF proteins to maintain lens transparency and homeostasis.
Collapse
Affiliation(s)
- Sindhu Kumari
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, United States
| | - Junyuan Gao
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, United States
| | - Richard T Mathias
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, United States.,SUNY Eye Institute, Syracuse, New York, United States
| | - Xiurong Sun
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, United States
| | - Amizhdini Eswaramoorthy
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, United States
| | - Nicholas Browne
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, United States
| | - Nigel Zhang
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, United States
| | - Kulandaiappan Varadaraj
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, United States.,SUNY Eye Institute, Syracuse, New York, United States
| |
Collapse
|
22
|
Petrova RS, Webb KF, Vaghefi E, Walker K, Schey KL, Donaldson PJ. Dynamic functional contribution of the water channel AQP5 to the water permeability of peripheral lens fiber cells. Am J Physiol Cell Physiol 2017; 314:C191-C201. [PMID: 29118028 DOI: 10.1152/ajpcell.00214.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Although the functionality of the lens water channels aquaporin 1 (AQP1; epithelium) and AQP0 (fiber cells) is well established, less is known about the role of AQP5 in the lens. Since in other tissues AQP5 functions as a regulated water channel with a water permeability (PH2O) some 20 times higher than AQP0, AQP5 could function to modulate PH2O in lens fiber cells. To test this possibility, a fluorescence dye dilution assay was used to calculate the relative PH2O of epithelial cells and fiber membrane vesicles isolated from either the mouse or rat lens, in the absence and presence of HgCl2, an inhibitor of AQP1 and AQP5. Immunolabeling of lens sections and fiber membrane vesicles from mouse and rat lenses revealed differences in the subcellular distributions of AQP5 in the outer cortex between species, with AQP5 being predominantly membranous in the mouse but predominantly cytoplasmic in the rat. In contrast, AQP0 labeling was always membranous in both species. This species-specific heterogeneity in AQP5 membrane localization was mirrored in measurements of PH2O, with only fiber membrane vesicles isolated from the mouse lens, exhibiting a significant Hg2+-sensitive contribution to PH2O. When rat lenses were first organ cultured, immunolabeling revealed an insertion of AQP5 into cortical fiber cells, and a significant increase in Hg2+-sensitive PH2O was detected in membrane vesicles. Our results show that AQP5 forms functional water channels in the rodent lens, and they suggest that dynamic membrane insertion of AQP5 may regulate water fluxes in the lens by modulating PH2O in the outer cortex.
Collapse
Affiliation(s)
- Rosica S Petrova
- Department of Physiology, School of Medical Sciences, University of Auckland , Auckland , New Zealand
| | - Kevin F Webb
- Department of Physiology, School of Medical Sciences, University of Auckland , Auckland , New Zealand.,Optics and Photonics Research Group, Department of Electrical and Electronic Engineering, University of Nottingham , Nottingham , United Kingdom
| | - Ehsan Vaghefi
- School of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland , Auckland , New Zealand
| | - Kerry Walker
- Department of Physiology, School of Medical Sciences, University of Auckland , Auckland , New Zealand
| | - Kevin L Schey
- Department of Biochemistry, Vanderbilt University , Nashville, Tennessee
| | - Paul J Donaldson
- Department of Physiology, School of Medical Sciences, University of Auckland , Auckland , New Zealand.,School of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland , Auckland , New Zealand
| |
Collapse
|
23
|
Saboe PO, Rapisarda C, Kaptan S, Hsiao YS, Summers SR, De Zorzi R, Dukovski D, Yu J, de Groot BL, Kumar M, Walz T. Role of Pore-Lining Residues in Defining the Rate of Water Conduction by Aquaporin-0. Biophys J 2017; 112:953-965. [PMID: 28297654 DOI: 10.1016/j.bpj.2017.01.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/22/2016] [Accepted: 01/26/2017] [Indexed: 11/19/2022] Open
Abstract
Compared to other aquaporins (AQPs), lens-specific AQP0 is a poor water channel, and its permeability was reported to be pH-dependent. To date, most water conduction studies on AQP0 were performed on protein expressed in Xenopus oocytes, and the results may therefore also reflect effects introduced by the oocytes themselves. Experiments with purified AQP0 reconstituted into liposomes are challenging because the water permeability of AQP0 is only slightly higher than that of pure lipid bilayers. By reconstituting high amounts of AQP0 and using high concentrations of cholesterol to reduce the permeability of the lipid bilayer, we improved the signal-to-noise ratio of water permeability measurements on AQP0 proteoliposomes. Our measurements show that mutation of two pore-lining tyrosine residues, Tyr-23 and Tyr-149 in sheep AQP0, to the corresponding residues in the high-permeability water channel AQP1 have additive effects and together increase the water permeability of AQP0 40-fold to a level comparable to that of AQP1. Molecular dynamics simulations qualitatively support these experimental findings and suggest that mutation of Tyr-23 changes the pore profile at the gate formed by residue Arg-187.
Collapse
Affiliation(s)
- Patrick O Saboe
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania
| | - Chiara Rapisarda
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Shreyas Kaptan
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Yu-Shan Hsiao
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Samantha R Summers
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania
| | - Rita De Zorzi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Danijela Dukovski
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Jiaheng Yu
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Manish Kumar
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania.
| | - Thomas Walz
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
24
|
Abstract
The major part of the eye consists of water . Continuous movement of water and ions between the ocular compartments and to the systemic circulation is pivotal for many physiological functions in the eye. The movement of water facilitates removal of the many metabolic products of corneal-, ciliary body-, lens- and retinal metabolism, while maintaining transparency in the optical compartments. Transport across the corneal epithelium and endothelium maintains the corneal transparency. Also, aqueous humour is continuously secreted by the epithelia of the ciliary body and maintains the intraocular pressure. In the retina, water is transported into the vitreous body and across the retinal pigment epithelium to regulate the extracellular environment and the hydration of the retina. Aquaporins (AQPs ) take part in the water transport throughout the eye.
Collapse
|
25
|
Bennett TM, Zhou Y, Shiels A. Lens transcriptome profile during cataract development in Mip-null mice. Biochem Biophys Res Commun 2016; 478:988-93. [PMID: 27524245 DOI: 10.1016/j.bbrc.2016.08.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 08/10/2016] [Indexed: 01/08/2023]
Abstract
Major intrinsic protein or aquaporin-0 (MIP/AQP0) functions as a water channel and a cell-junction molecule in the vertebrate eye lens. Loss of MIP function in the lens leads to degraded optical quality and cataract formation by pathogenic mechanisms that are unclear. Here we have used microarray-hybridization analysis to detect lens transcriptome changes during cataract formation in mice that are functionally null for MIP (Mip-/-). In newborn Mip-/- lenses (P1) 11 genes were up-regulated and 18 were down-regulated (>2-fold, p=<0.05) and a similar number of genes was differentially regulated at P7. The most up-regulated genes (>6-fold) in the Mip-/- lens at P1 included those coding for a mitochondrial translocase (Timmdc1), a matrix metallopeptidase (Mmp2), a Rho GTPase-interacting protein (Ubxn11) and a transcription factor (Twist2). Apart from Mip, the most down-regulated genes (>4-fold) in the Mip-/- lens at P1 included those coding for a proteasome sub-unit (Psmd8), a ribonuclease (Pop4), and a heat-shock protein (Hspb1). Lens fiber cell degeneration in the Mip-/- lens was associated with increased numbers of TUNEL-positive cell nuclei and dramatically elevated levels of calpain-mediated proteolysis of αII-spectrin. However red-ox status, measured by glutathione and free-radical levels, was similar to that of wild-type. These data suggest that while relatively few genes (∼1.5% of the transcriptome) were differentially regulated >2-fold in the Mip-/- lens, calpain hyper-activation acts as a terminal pathogenic event during lens fiber cell death and cataract formation.
Collapse
Affiliation(s)
- Thomas M Bennett
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Yuefang Zhou
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Alan Shiels
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
26
|
Gutierrez DB, Garland DL, Schwacke JH, Hachey DL, Schey KL. Spatial distributions of phosphorylated membrane proteins aquaporin 0 and MP20 across young and aged human lenses. Exp Eye Res 2016; 149:59-65. [PMID: 27339748 DOI: 10.1016/j.exer.2016.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 11/26/2022]
Abstract
In the human ocular lens it is now realized that post-translational modifications can alter protein function and/or localization in fiber cells that no longer synthesize proteins. The specific sites of post-translational modification to the abundant ocular lens membrane proteins AQP0 and MP20 have been previously identified and their functional effects are emerging. To further understand how changes in protein function and/or localization induced by these modifications alter lens homeostasis, it is necessary to determine the spatial distributions of these modifications across the lens. In this study, a quantitative LC-MS approach was used to determine the spatial distributions of phosphorylated AQP0 and MP20 peptides from manually dissected, concentric layers of fiber cells from young and aged human lenses. The absolute amounts of phosphorylation were determined for AQP0 Ser235 and Ser229 and for MP20 Ser170 in fiber cells from the lens periphery to the lens center. Phosphorylation of AQP0 Ser229 represented a minor portion of the total phosphorylated AQP0. Changes in spatial distributions of phosphorylated APQ0 Ser235 and MP20 Ser170 correlated with regions of physiological interest in aged lenses, specifically, where barriers to water transport and extracellular diffusion form.
Collapse
Affiliation(s)
- Danielle B Gutierrez
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, BSB 358 MSC 509, 173 Ashley Ave., Charleston, SC 29425, USA
| | - Donita L Garland
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - John H Schwacke
- Department of Biostatistics and Epidemiology, Medical University of South Carolina, Cannon Place 303C, 135 Cannon St., Charleston, SC 29425, USA
| | - David L Hachey
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Suite 9160 MRBIII, 465 21st Ave. So., Nashville, TN 37240-7916, USA
| | - Kevin L Schey
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Suite 9160 MRBIII, 465 21st Ave. So., Nashville, TN 37240-7916, USA.
| |
Collapse
|
27
|
Chauvigné F, Fjelldal PG, Cerdà J, Finn RN. Auto-Adhesion Potential of Extraocular Aqp0 during Teleost Development. PLoS One 2016; 11:e0154592. [PMID: 27153052 PMCID: PMC4859563 DOI: 10.1371/journal.pone.0154592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/17/2016] [Indexed: 11/25/2022] Open
Abstract
AQP0 water channels are the most abundant proteins expressed in the mammalian lens fiber membranes where they are essential for lens development and transparency. Unlike other aquaporin paralogs, mammalian AQP0 has a low intrinsic water permeability, but can form cell-to-cell junctions between the lens fibers. It is not known whether the adhesive properties of AQP0 is a derived feature found only in mammals, or exists as a conserved ancestral trait in non-mammalian vertebrates. Here we show that a tetraploid teleost, the Atlantic salmon, expresses four Aqp0 paralogs in the developing lens, but also expresses significant levels of aqp0 mRNAs and proteins in the epithelia of the pronephros, presumptive enterocytes, gill filament and epidermis. Quantitative PCR reveals that aqp0 mRNA titres increase by three orders of magnitude between the onset of somitogenesis and pigmentation of the eye. Using in situ hybridization and specific antisera, we show that at least two of the channels (Aqp0a1, -0b1 and/or -0b2) are localized in the extraocular basolateral and apical membranes, while Aqp0a2 is lens-specific. Heterologous expression of the Aqp0 paralogs in adhesion-deficient mouse fibolast L-cells reveals that, as for human AQP0, each intact salmon channel retains cell-to-cell adhesive properties. The strongest Aqp0 interactions are auto-adhesion, suggesting that homo-octamers likely form the intercellular junctions of the developing lens and epithelial tissues. The present data are thus the first to show the adhesion potential of Aqp0 channels in a non-mammalian vertebrate, and further uncover a novel extraocular role of the channels during vertebrate development.
Collapse
Affiliation(s)
- François Chauvigné
- Department of Biology, Bergen High Technology Centre, University of Bergen, 5020 Bergen, Norway
- Institute of Marine Research, Nordnes, 5817 Bergen, Norway
- * E-mail: (RNF); (FC)
| | | | - Joan Cerdà
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), 08003 Barcelona, Spain
| | - Roderick Nigel Finn
- Department of Biology, Bergen High Technology Centre, University of Bergen, 5020 Bergen, Norway
- Institute of Marine Research, Nordnes, 5817 Bergen, Norway
- * E-mail: (RNF); (FC)
| |
Collapse
|
28
|
Zhou Y, Bennett TM, Shiels A. Lens ER-stress response during cataract development in Mip-mutant mice. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1433-42. [PMID: 27155571 DOI: 10.1016/j.bbadis.2016.05.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/25/2016] [Accepted: 05/03/2016] [Indexed: 12/22/2022]
Abstract
Major intrinsic protein (MIP) is a functional water-channel (AQP0) that also plays a key role in establishing lens fiber cell architecture. Genetic variants of MIP have been associated with inherited and age-related forms of cataract; however, the underlying pathogenic mechanisms are unclear. Here we have used lens transcriptome profiling by microarray-hybridization and qPCR to identify pathogenic changes during cataract development in Mip-mutant (Lop/+) mice. In postnatal Lop/+ lenses (P7) 99 genes were up-regulated and 75 were down-regulated (>2-fold, p=<0.05) when compared with wild-type. A pathway analysis of up-regulated genes in the Lop/+ lens (P7) was consistent with endoplasmic reticulum (ER)-stress and activation of the unfolded protein response (UPR). The most up-regulated UPR genes (>4-fold) in the Lop/+ lens included Chac1>Ddit3>Atf3>Trib3>Xbp1 and the most down-regulated genes (>5-fold) included two anti-oxidant genes, Hspb1 and Hmox1. Lop/+ lenses were further characterized by abundant TUNEL-positive nuclei within central degenerating fiber cells, glutathione depletion, free-radical overproduction, and calpain hyper-activation. These data suggest that Lop/+ lenses undergo proteotoxic ER-stress induced cell-death resulting from prolonged activation of the Eif2ak3/Perk-Atf4-Ddit3-Chac1 branch of the UPR coupled with severe oxidative-stress.
Collapse
Affiliation(s)
- Yuefang Zhou
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thomas M Bennett
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alan Shiels
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
29
|
Bogner B, Schroedl F, Trost A, Kaser-Eichberger A, Runge C, Strohmaier C, Motloch KA, Bruckner D, Hauser-Kronberger C, Bauer HC, Reitsamer HA. Aquaporin expression and localization in the rabbit eye. Exp Eye Res 2016; 147:20-30. [PMID: 27107794 DOI: 10.1016/j.exer.2016.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/15/2016] [Accepted: 04/18/2016] [Indexed: 12/21/2022]
Abstract
Aquaporins (AQPs) are important for ocular homeostasis and function. While AQP expression has been investigated in ocular tissues of human, mouse, rat and dog, comprehensive data in rabbits are missing. As rabbits are frequently used model organisms in ophthalmic research, the aim of this study was to analyze mRNA expression and to localize AQPs in the rabbit eye. The results were compared with the data published for other species. In cross sections of New Zealand White rabbit eyes AQP0 to AQP5 were labeled by immunohistology and analyzed by confocal microscopy. Immunohistological findings were compared to mRNA expression levels, which were analyzed by quantitative reverse transcription real time polymerase chain reaction (qRT-PCR). The primers used were homologous against conserved regions of AQPs. In the rabbit eye, AQP0 protein expression was restricted to the lens, while AQP1 was present in the cornea, the chamber angle, the iris, the ciliary body, the retina and, to a lower extent, in optic nerve vessels. AQP3 and AQP5 showed immunopositivity in the cornea. AQP3 was also present in the conjunctiva, which could not be confirmed for AQP5. However, at a low level AQP5 was also traceable in the lens. AQP4 protein was detected in the ciliary non-pigmented epithelium (NPE), the retina, optic nerve astrocytes and extraocular muscle fibers. For most tissues the qRT-PCR data confirmed the immunohistology results and vice versa. Although species differences exist, the AQP protein expression pattern in the rabbit eye shows that, especially in the anterior section, the AQP distribution is very similar to human, mouse, rat and dog. Depending on the ocular regions investigated in rabbit, different protein and mRNA expression results were obtained. This might be caused by complex gene regulatory mechanisms, post-translational protein modifications or technical limitations. However, in conclusion the data suggest that the rabbit is a useful in-vivo model to study AQP function and the effects of direct and indirect intervention strategies to investigate e. g. mechanisms for intraocular pressure modulation or cornea transparency regulation.
Collapse
Affiliation(s)
- Barbara Bogner
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, Salzburg, Austria
| | - Falk Schroedl
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, Salzburg, Austria; Department of Anatomy, Paracelsus Medical University, Salzburg, Austria
| | - Andrea Trost
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, Salzburg, Austria
| | - Alexandra Kaser-Eichberger
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, Salzburg, Austria
| | - Christian Runge
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, Salzburg, Austria
| | - Clemens Strohmaier
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, Salzburg, Austria
| | - Karolina A Motloch
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, Salzburg, Austria
| | - Daniela Bruckner
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, Salzburg, Austria
| | | | - Hans Christian Bauer
- Department of Tendon-and Bone Regeneration, Paracelsus Medical University, Salzburg, Austria
| | - Herbert A Reitsamer
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, Salzburg, Austria.
| |
Collapse
|
30
|
Wenke JL, Rose KL, Spraggins JM, Schey KL. MALDI Imaging Mass Spectrometry Spatially Maps Age-Related Deamidation and Truncation of Human Lens Aquaporin-0. Invest Ophthalmol Vis Sci 2016; 56:7398-405. [PMID: 26574799 DOI: 10.1167/iovs.15-18117] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To spatially map human lens Aquaporin-0 (AQP0) protein modifications, including lipidation, truncation, and deamidation, from birth through middle age using matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS). METHODS Human lens sections were water-washed to facilitate detection of membrane protein AQP0. We acquired MALDI images from eight human lenses ranging in age from 2 months to 63 years. In situ tryptic digestion was used to generate peptides of AQP0 and peptide images were acquired on a 15T Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. Peptide extracts were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and database searched to identify peptides observed in MALDI imaging experiments. RESULTS Unmodified, truncated, and fatty acid-acylated forms of AQP0 were detected in protein imaging experiments. Full-length AQP0 was fatty acid acylated in the core and cortex of young (2- and 4-month) lenses. Acylated and unmodified AQP0 were C-terminally truncated in older lens cores. Deamidated tryptic peptides (+0.9847 Da) were mass resolved from unmodified peptides by FTICR MS. Peptide images revealed differential localization of un-, singly-, and doubly-deamidated AQP0 C-terminal peptide (239-263). Deamidation was present at 4 months and increases with age. Liquid chromatography-MS/MS results indicated N246 undergoes deamidation more rapidly than N259. CONCLUSIONS Results indicated AQP0 fatty acid acylation and deamidation occur during early development. Progressive age-related AQP0 processing, including deamidation and truncation, was mapped in human lenses as a function of age. The localization of these modified AQP0 forms suggests where AQP0 functions may change throughout lens development and aging.
Collapse
|
31
|
Zheng HH, Xu GX, Guo J, Fu LC, Yao Y. Aquaporin-1 down regulation associated with inhibiting cell viability and inducing apoptosis of human lens epithelial cells. Int J Ophthalmol 2016; 9:15-20. [PMID: 26949604 DOI: 10.18240/ijo.2016.01.03] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/18/2015] [Indexed: 01/19/2023] Open
Abstract
AIM To investigate the role of Aquaporin-1 (AQP-1) in lens epithelial cells (LECs) and its potential target genes. AQP-1 is specifically expressed in LECs of eyes and is significant for lens homeostasis and transparency maintenance. Herein, AQP-1 expression in LECs was investigated to evaluate its influence on cell survival in association with its potential role in cataract formation. METHODS LECs were transfected with lentivirus carrying AQP-1 small interfering RNA (siRNA). Real-time polymerase chain reaction (PCR) and Western blotting were conducted to detect AQP-1 expression in LECs from different groups. Meanwhile, cell counting kit-8 (CCK-8) assay and flow cytometry were performed to measure LEC proliferation and apoptosis, respectively. RESULTS AQP-1 expression was significantly reduced in LECs, both at mRNA and protein levels (P<0.05), after siRNA treatment. Decreased cell viability was detected by CCK-8 assay in LECs with siRNA interference, compared to control cells (P<0.05). The apoptosis rate significantly increased in cells after siRNA interference (P<0.05). CONCLUSION The decreased cell viability following AQP-1 down regulation is largely due to its induction of apoptosis of LECs. AQP-1 reduction might lead to changes of physiological functions in LECs, which might be associated with the occurrence and development of cataracts.
Collapse
Affiliation(s)
- Hong-Hua Zheng
- Fujian Institute of Ophthalmology, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | - Guo-Xing Xu
- Fujian Institute of Ophthalmology, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | - Jian Guo
- Fujian Institute of Ophthalmology, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | - Li-Cheng Fu
- Fujian Institute of Ophthalmology, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | - Yao Yao
- Fujian Institute of Ophthalmology, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
| |
Collapse
|
32
|
The aquaporin zero puzzle. Biophys J 2015; 107:10-5. [PMID: 24988336 DOI: 10.1016/j.bpj.2014.05.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/05/2014] [Accepted: 05/20/2014] [Indexed: 11/20/2022] Open
|
33
|
Hejtmancik JF, Riazuddin SA, McGreal R, Liu W, Cvekl A, Shiels A. Lens Biology and Biochemistry. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 134:169-201. [PMID: 26310155 DOI: 10.1016/bs.pmbts.2015.04.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The primary function of the lens resides in its transparency and ability to focus light on the retina. These require both that the lens cells contain high concentrations of densely packed lens crystallins to maintain a refractive index constant over distances approximating the wavelength of the light to be transmitted, and a specific arrangement of anterior epithelial cells and arcuate fiber cells lacking organelles in the nucleus to avoid blocking transmission of light. Because cells in the lens nucleus have shed their organelles, lens crystallins have to last for the lifetime of the organism, and are specifically adapted to this function. The lens crystallins comprise two major families: the βγ-crystallins are among the most stable proteins known and the α-crystallins, which have a chaperone-like function. Other proteins and metabolic activities of the lens are primarily organized to protect the crystallins from damage over time and to maintain homeostasis of the lens cells. Membrane protein channels maintain osmotic and ionic balance across the lens, while the lens cytoskeleton provides for the specific shape of the lens cells, especially the fiber cells of the nucleus. Perhaps most importantly, a large part of the metabolic activity in the lens is directed toward maintaining a reduced state, which shelters the lens crystallins and other cellular components from damage from UV light and oxidative stress. Finally, the energy requirements of the lens are met largely by glycolysis and the pentose phosphate pathway, perhaps in response to the avascular nature of the lens. Together, all these systems cooperate to maintain lens transparency over time.
Collapse
Affiliation(s)
- J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - S Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rebecca McGreal
- Department of Genetics and Ophthalmology, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Wei Liu
- Department of Genetics and Ophthalmology, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Ales Cvekl
- Department of Genetics and Ophthalmology, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Alan Shiels
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
34
|
Kitchen P, Day RE, Taylor LHJ, Salman MM, Bill RM, Conner MT, Conner AC. Identification and Molecular Mechanisms of the Rapid Tonicity-induced Relocalization of the Aquaporin 4 Channel. J Biol Chem 2015; 290:16873-81. [PMID: 26013827 PMCID: PMC4505433 DOI: 10.1074/jbc.m115.646034] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Indexed: 11/06/2022] Open
Abstract
The aquaporin family of integral membrane proteins is composed of channels that mediate cellular water flow. Aquaporin 4 (AQP4) is highly expressed in the glial cells of the central nervous system and facilitates the osmotically driven pathological brain swelling associated with stroke and traumatic brain injury. Here we show that AQP4 cell surface expression can be rapidly and reversibly regulated in response to changes of tonicity in primary cortical rat astrocytes and in transfected HEK293 cells. The translocation mechanism involves PKA activation, influx of extracellular calcium, and activation of calmodulin. We identify five putative PKA phosphorylation sites and use site-directed mutagenesis to show that only phosphorylation at one of these sites, serine 276, is necessary for the translocation response. We discuss our findings in the context of the identification of new therapeutic approaches to treating brain edema.
Collapse
Affiliation(s)
- Philip Kitchen
- From the Molecular Organisation and Assembly in Cells Doctoral Training Centre, University of Warwick, Coventry CV4 7AL
| | - Rebecca E Day
- the Biomedical Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB
| | - Luke H J Taylor
- From the Molecular Organisation and Assembly in Cells Doctoral Training Centre, University of Warwick, Coventry CV4 7AL
| | - Mootaz M Salman
- the Biomedical Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB
| | - Roslyn M Bill
- the School of Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, and
| | - Matthew T Conner
- the Biomedical Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB,
| | - Alex C Conner
- the School of Clinical and Experimental Medicine, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
35
|
Chauvigné F, Zapater C, Stavang JA, Taranger GL, Cerdà J, Finn RN. The pH sensitivity of Aqp0 channels in tetraploid and diploid teleosts. FASEB J 2015; 29:2172-84. [PMID: 25667219 PMCID: PMC4423293 DOI: 10.1096/fj.14-267625] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/13/2015] [Indexed: 01/27/2023]
Abstract
Water homeostasis and the structural integrity of the vertebrate lens is partially mediated by AQP0 channels. Emerging evidence indicates that external pH may be involved in channel gating. Here we show that a tetraploid teleost, the Atlantic salmon, retains 4 aqp0 genes (aqp0a1, -0a2, -0b1, and -0b2), which are highly, but not exclusively, expressed in the lens. Functional characterization reveals that, although each paralog permeates water efficiently, the permeability is respectively shifted to the neutral, alkaline, or acidic pH in Aqp0a1, -0a2, and -0b1, whereas that of Aqp0b2 is not regulated by external pH. Mutagenesis studies demonstrate that Ser(38), His(39), and His(40) residues in the extracellular transmembrane domain of α-helix 2 facing the water pore are critical for the pH modulation of water transport. To validate these findings, we show that both zebrafish Aqp0a and -0b are functional water channels with respective pH sensitivities toward alkaline or acid pH ranges and that an N-terminal allelic variant (Ser(19)) of Aqp0b exists that abolishes water transport in Xenopus laevis oocytes. The data suggest that the alkaline pH sensitivity is a conserved trait in teleost Aqp0 a-type channels, whereas mammalian AQP0 and some teleost Aqp0 b-type channels display an acidic pH permeation preference.
Collapse
Affiliation(s)
- François Chauvigné
- *Department of Biology, Bergen High Technology Centre, University of Bergen, Bergen, Norway; Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain; and Institute of Marine Research, Nordnes, Bergen, Norway
| | - Cinta Zapater
- *Department of Biology, Bergen High Technology Centre, University of Bergen, Bergen, Norway; Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain; and Institute of Marine Research, Nordnes, Bergen, Norway
| | - Jon Anders Stavang
- *Department of Biology, Bergen High Technology Centre, University of Bergen, Bergen, Norway; Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain; and Institute of Marine Research, Nordnes, Bergen, Norway
| | - Geir Lasse Taranger
- *Department of Biology, Bergen High Technology Centre, University of Bergen, Bergen, Norway; Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain; and Institute of Marine Research, Nordnes, Bergen, Norway
| | - Joan Cerdà
- *Department of Biology, Bergen High Technology Centre, University of Bergen, Bergen, Norway; Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain; and Institute of Marine Research, Nordnes, Bergen, Norway
| | - Roderick Nigel Finn
- *Department of Biology, Bergen High Technology Centre, University of Bergen, Bergen, Norway; Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain; and Institute of Marine Research, Nordnes, Bergen, Norway
| |
Collapse
|
36
|
Rumyantseva YV, Ryabchikova EI, Fursova AZ, Kolosova NG. Ameliorative effects of SkQ1 eye drops on cataractogenesis in senescence-accelerated OXYS rats. Graefes Arch Clin Exp Ophthalmol 2014; 253:237-48. [PMID: 25267419 DOI: 10.1007/s00417-014-2806-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/06/2014] [Accepted: 09/15/2014] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Antioxidant supplements have been suggested as a strategy to decrease the risk of age-related cataract, but there is no evidence that antioxidants can reduce the signs of the disease. Recently, we showed that the mitochondrial antioxidant SkQ1 can partially reverse cataract signs in senescence-accelerated OXYS rats. The aim of the present study was the histomorphological examination of the influence of SkQ1 eye drops on the cataract development in OXYS rats. METHODS OXYS rats received SkQ1 eye drops (250 nM) from 9 to 12 months of age. Ophthalmoscopic examination was carried out before and after treatment. Light and electron microscopy were used for histomorphological examination. Expression of the Cryaa and Cryab genes was determined using real-time PCR. αB-crystallin expression was detected using Western blotting. RESULTS SkQ1 completely prevented the cataract development in OXYS rats, and in some of the animals diminished the signs of the disease. Light and electron microscopy showed that SkQ1 attenuated the (typical for cataract) alterations in the lens capsule and epithelial cells, ameliorated disturbances of the hexagonal packing geometry of lens fibers, and improved ultrastructure of the epithelial cells. The levels of mRNA of α-crystallins genes which encode small heat shock proteins αA- and αB-crystallin that play a central role in maintaining lens transparency were significantly lower in the OXYS rats' lenses than in Wistar rats (control). SkQ1 normalized the level of mRNA of Cryaa, and significantly increased the level of Cryab mRNA as well as αB-crystallin protein in the lens of OXYS rats to the level of the control Wistar rats. CONCLUSION SkQ1 eye drops hold promise as a treatment of cataract.
Collapse
Affiliation(s)
- Yuliya V Rumyantseva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090, Acad. Lavrentjev 10, Novosibirsk, Russia,
| | | | | | | |
Collapse
|
37
|
Gold MG, Gonen T, Scott JD. Local cAMP signaling in disease at a glance. J Cell Sci 2014; 126:4537-43. [PMID: 24124191 DOI: 10.1242/jcs.133751] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The second messenger cyclic AMP (cAMP) operates in discrete subcellular regions within which proteins that synthesize, break down or respond to the second messenger are precisely organized. A burgeoning knowledge of compartmentalized cAMP signaling is revealing how the local control of signaling enzyme activity impacts upon disease. The aim of this Cell Science at a Glance article and the accompanying poster is to highlight how misregulation of local cyclic AMP signaling can have pathophysiological consequences. We first introduce the core molecular machinery for cAMP signaling, which includes the cAMP-dependent protein kinase (PKA), and then consider the role of A-kinase anchoring proteins (AKAPs) in coordinating different cAMP-responsive proteins. The latter sections illustrate the emerging role of local cAMP signaling in four disease areas: cataracts, cancer, diabetes and cardiovascular diseases.
Collapse
Affiliation(s)
- Matthew G Gold
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | |
Collapse
|
38
|
Effect of P2X7 receptor knockout on AQP-5 expression of type I alveolar epithelial cells. PLoS One 2014; 9:e100282. [PMID: 24941004 PMCID: PMC4062497 DOI: 10.1371/journal.pone.0100282] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 05/26/2014] [Indexed: 01/13/2023] Open
Abstract
P2X7 receptors, ATP-gated cation channels, are specifically expressed in alveolar epithelial cells. The pathophysiological function of this lung cell type, except a recently reported putative involvement in surfactant secretion, is unknown. In addition, P2X7 receptor-deficient mice show reduced inflammation and lung fibrosis after exposure with bleomycin. To elucidate the role of the P2X7 receptor in alveolar epithelial type I cells we characterized the pulmonary phenotype of P2X7 receptor knockout mice by using immunohistochemistry, western blot analysis and real-time RT PCR. No pathomorphological signs of fibrosis were found. Results revealed, however, a remarkable loss of aquaporin-5 protein and mRNA in young knockout animals. Additional in vitro experiments with bleomycin treated precision cut lung slices showed a greater sensitivity of the P2X7 receptor knockout mice in terms of aquaporin-5 reduction as wild type animals. Finally, P2X7 receptor function was examined by using the alveolar epithelial cell lines E10 and MLE-12 for stimulation experiments with bleomycin. The in vitro activation of P2X7 receptor was connected with an increase of aquaporin-5, whereas the inhibition of the receptor with oxidized ATP resulted in down regulation of aquaporin-5. The early loss of aquaporin-5 which can be found in different pulmonary fibrosis models does not implicate a specific pathogenetic role during fibrogenesis.
Collapse
|
39
|
Intact and N- or C-terminal end truncated AQP0 function as open water channels and cell-to-cell adhesion proteins: end truncation could be a prelude for adjusting the refractive index of the lens to prevent spherical aberration. Biochim Biophys Acta Gen Subj 2014; 1840:2862-77. [PMID: 24821012 DOI: 10.1016/j.bbagen.2014.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 11/20/2022]
Abstract
BACKGROUND Investigate the impact of natural N- or C-terminal post-translational truncations of lens mature fiber cell Aquaporin 0 (AQP0) on water permeability (Pw) and cell-to-cell adhesion (CTCA) functions. METHODS The following deletions/truncations were created by site-directed mutagenesis (designations in parentheses): Amino acid residues (AA) 2-6 (AQP0-N-del-2-6), AA235-263 (AQP0-1-234), AA239-263 (AQP0-1-238), AA244-263 (AQP0-1-243), AA247-263 (AQP0-1-246), AA250-263 (AQP0-1-249) and AA260-263 (AQP0-1-259). Protein expression was studied using immunostaining, fluorescent tags and organelle-specific markers. Pw was tested by expressing the respective complementary ribonucleic acid (cRNA) in Xenopus oocytes and conducting osmotic swelling assay. CTCA was assessed by transfecting intact or mutant AQP0 into adhesion-deficient L-cells and performing cell aggregation and adhesion assays. RESULTS AQP0-1-234 and AQP0-1-238 did not traffic to the plasma membrane. Trafficking of AQP0-N-del-2-6 and AQP0-1-243 was reduced causing decreased membrane Pw and CTCA. AQP0-1-246, AQP0-1-249 and AQP0-1-259 mutants trafficked properly and functioned normally. Pw and CTCA functions of the mutants were directly proportional to the respective amount of AQP0 expressed at the plasma membrane and remained comparable to those of intact AQP0 (AQP0-1-263). CONCLUSIONS Post-translational truncation of N- or C-terminal end amino acids does not alter the basal water permeability of AQP0 or its adhesive functions. AQP0 may play a role in adjusting the refractive index to prevent spherical aberration in the constantly growing lens. GENERAL SIGNIFICANCE Similar studies can be extended to other lens proteins which undergo post-translational truncations to find out how they assist the lens to maintain transparency and homeostasis for proper focusing of objects on to the retina.
Collapse
|
40
|
Lo WK, Biswas SK, Brako L, Shiels A, Gu S, Jiang JX. Aquaporin-0 targets interlocking domains to control the integrity and transparency of the eye lens. Invest Ophthalmol Vis Sci 2014; 55:1202-12. [PMID: 24458158 DOI: 10.1167/iovs.13-13379] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Lens fiber cell membranes contain aquaporin-0 (AQP0), which constitutes approximately 50% of the total fiber cell membrane proteins and has a dual function as a water channel protein and an adhesion molecule. Fiber cell membranes also develop an elaborate interlocking system that is required for maintaining structural order, stability, and lens transparency. Herein, we used an AQP0-deficient mouse model to investigate an unconventional adhesion role of AQP0 in maintaining a normal structure of lens interlocking protrusions. METHODS The loss of AQP0 in AQP0(-/-) lens fibers was verified by Western blot and immunofluorescence analyses. Changes in membrane surface structures of wild-type and AQP0(-/-) lenses at age 3 to 12 weeks were examined with scanning electron microscopy. Preferential distribution of AQP0 in wild-type fiber cell membranes was analyzed with immunofluorescence and immunogold labeling using freeze-fracturing transmission electron microscopy. RESULTS Interlocking protrusions in young differentiating fiber cells developed normally but showed minor abnormalities at approximately 50 μm deep in the absence of AQP0 in all ages studied. Strikingly, protrusions in maturing fiber cells specifically underwent uncontrolled elongation, deformation, and fragmentation, while cells still retained their overall shape. Later in the process, these changes eventually resulted in fiber cell separation, breakdown, and cataract formation in the lens core. Immunolabeling at the light microscopy and transmission electron microscopy levels demonstrated that AQP0 was particularly enriched in interlocking protrusions in wild-type lenses. CONCLUSIONS This study suggests that AQP0 exerts its primary adhesion or suppression role specifically to maintain the normal structure of interlocking protrusions that is critical to the integrity and transparency of the lens.
Collapse
Affiliation(s)
- Woo-Kuen Lo
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia
| | | | | | | | | | | |
Collapse
|
41
|
Thermal stress induced aggregation of aquaporin 0 (AQP0) and protection by α-crystallin via its chaperone function. PLoS One 2013; 8:e80404. [PMID: 24312215 PMCID: PMC3842347 DOI: 10.1371/journal.pone.0080404] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 10/02/2013] [Indexed: 11/22/2022] Open
Abstract
Aquaporin 0 (AQP0) formerly known as membrane intrinsic protein (MIP), is expressed exclusively in the lens during terminal differentiation of fiber cells. AQP0 plays an important role not only in the regulation of water content but also in cell-to-cell adhesion of the lens fiber cells. We have investigated the thermal stress-induced structural alterations of detergent (octyl glucoside)-solubilized calf lens AQP0. The results show an increase in the amount of AQP0 that aggregated as the temperature increased from 40°C to 65°C. α-Crystallin, molecular chaperone abundantly present in the eye lens, completely prevented the AQP0 aggregation at a 1∶1 (weight/weight) ratio. Since α-crystallin consists of two gene products namely αA- and αB-crystallins, we have tested the recombinant proteins on their ability to prevent thermal-stress induced AQP0 aggregation. In contrast to the general observation made with other target proteins, αA-crystallin exhibited better chaperone-like activity towards AQP0 compared to αB-crystallin. Neither post-translational modifications (glycation) nor C-terminus truncation of AQP0 have any appreciable effect on its thermal aggregation properties. α-Crystallin offers similar protection against thermal aggregation as in the case of the unmodified AQP0, suggesting that αcrystallin may bind to either intracellular loops or other residues of AQP0 that become exposed during thermal stress. Far-UV circular dichroism studies indicated a loss of αhelical structures when AQP0 was subjected to temperatures above 45°C, and the presence of α-crystallin stabilized these secondary structures. We report here, for the first time, that α-crystallin protects AQP0 from thermal aggregation. Since stress-induced structural perturbations of AQP0 may affect the integrity of the lens, presence of the molecular chaperone, α-crystallin (particularly αA-crystallin) in close proximity to the lens membrane is physiologically relevant.
Collapse
|
42
|
Németh-Cahalan KL, Clemens DM, Hall JE. Regulation of AQP0 water permeability is enhanced by cooperativity. ACTA ACUST UNITED AC 2013; 141:287-95. [PMID: 23440275 PMCID: PMC3581697 DOI: 10.1085/jgp.201210884] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Aquaporin 0 (AQP0), essential for lens clarity, is a tetrameric protein composed of four identical monomers, each of which has its own water pore. The water permeability of AQP0 expressed in Xenopus laevis oocytes can be approximately doubled by changes in calcium concentration or pH. Although each monomer pore functions as a water channel, under certain conditions the pores act cooperatively. In other words, the tetramer is the functional unit. In this paper, we show that changes in external pH and calcium can induce an increase in water permeability that exhibits either a positive cooperativity switch-like increase in water permeability or an increase in water permeability in which each monomer acts independently and additively. Because the concentrations of calcium and hydrogen ions increase toward the center of the lens, a concentration signal could trigger a regulatory change in AQP0 water permeability. It thus seems plausible that the cooperative modes of water permeability regulation by AQP0 tetramers mediated by decreased pH and elevated calcium are the physiologically important ones in the living lens.
Collapse
Affiliation(s)
- Karin L Németh-Cahalan
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | | | | |
Collapse
|
43
|
Unraveling aquaporin interaction partners. Biochim Biophys Acta Gen Subj 2013; 1840:1614-23. [PMID: 24252279 DOI: 10.1016/j.bbagen.2013.11.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/07/2013] [Accepted: 11/12/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND Insight into protein-protein interactions (PPIs) is highly desirable in order to understand the physiology of cellular events. This understanding is one of the challenges in biochemistry and molecular biology today, especially for eukaryotic membrane proteins where hurdles of production, purification and structural determination must be passed. SCOPE OF REVIEW We have explored the common strategies used to find medically relevant interaction partners of aquaporins (AQPs). The most frequently used methods to detect direct contact, yeast two-hybrid interaction assay and co-precipitation, are described together with interactions specifically found for the selected targets AQP0, AQP2, AQP4 and AQP5. MAJOR CONCLUSIONS The vast majority of interactions involve the aquaporin C-terminus and the characteristics of the interaction partners are strikingly diverse. While the well-established methods for PPIs are robust, a novel approach like bimolecular fluorescence complementation (BiFC) is attractive for screening many conditions as well as transient interactions. The ultimate goal is structural evaluation of protein complexes in order to get mechanistic insight into how proteins communicate at a molecular level. GENERAL SIGNIFICANCE What we learn from the human aquaporin field in terms of method development and communication between proteins can be of major use for any integral membrane protein of eukaryotic origin. This article is part of a Special Issue entitled Aquaporins.
Collapse
|
44
|
Schey KL, Wang Z, L Wenke J, Qi Y. Aquaporins in the eye: expression, function, and roles in ocular disease. Biochim Biophys Acta Gen Subj 2013; 1840:1513-23. [PMID: 24184915 DOI: 10.1016/j.bbagen.2013.10.037] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/22/2013] [Accepted: 10/23/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND All thirteen known mammalian aquaporins have been detected in the eye. Moreover, aquaporins have been identified as playing essential roles in ocular functions ranging from maintenance of lens and corneal transparency to production of aqueous humor to maintenance of cellular homeostasis and regulation of signal transduction in the retina. SCOPE OF REVIEW This review summarizes the expression and known functions of ocular aquaporins and discusses their known and potential roles in ocular diseases. MAJOR CONCLUSIONS Aquaporins play essential roles in all ocular tissues. Remarkably, not all aquaporin function as a water permeable channel and the functions of many aquaporins in ocular tissues remain unknown. Given their vital roles in maintaining ocular function and their roles in disease, aquaporins represent potential targets for future therapeutic development. GENERAL SIGNIFICANCE Since aquaporins play key roles in ocular physiology, an understanding of these functions is important to improving ocular health and treating diseases of the eye. It is likely that future therapies for ocular diseases will rely on modulation of aquaporin expression and/or function. This article is part of a Special Issue entitled Aquaporins.
Collapse
Affiliation(s)
- Kevin L Schey
- Department of Biochemistry, Vanderbilt School of Medicine, Vanderbilt University, Nashville, TN 37232, USA.
| | - Zhen Wang
- Department of Biochemistry, Vanderbilt School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Jamie L Wenke
- Department of Biochemistry, Vanderbilt School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Ying Qi
- Department of Biochemistry, Vanderbilt School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
45
|
Kumari SS, Gandhi J, Mustehsan MH, Eren S, Varadaraj K. Functional characterization of an AQP0 missense mutation, R33C, that causes dominant congenital lens cataract, reveals impaired cell-to-cell adhesion. Exp Eye Res 2013; 116:371-85. [PMID: 24120416 DOI: 10.1016/j.exer.2013.09.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/13/2013] [Accepted: 09/30/2013] [Indexed: 01/25/2023]
Abstract
Aquaporin 0 (AQP0) performs dual functions in the lens fiber cells, as a water pore and as a cell-to-cell adhesion molecule. Mutations in AQP0 cause severe lens cataract in both humans and mice. An arginine to cysteine missense mutation at amino acid 33 (R33C) produced congenital autosomal dominant cataract in a Chinese family for five generations. We re-created this mutation in wild type human AQP0 (WT-AQP0) cDNA by site-directed mutagenesis, and cloned and expressed the mutant AQP0 (AQP0-R33C) in heterologous expression systems. Mutant AQP0-R33C showed proper trafficking and membrane localization like WT-AQP0. Functional studies conducted in Xenopus oocytes showed no significant difference (P > 0.05) in water permeability between AQP0-R33C and WT-AQP0. However, the cell-to-cell adhesion property of AQP0-R33C was significantly reduced (P < 0.001) compared to that of WT-AQP0, indicated by cell aggregation and cell-to-cell adhesion assays. Scrape-loading assay using Lucifer Yellow dye showed reduction in cell-to-cell adhesion affecting gap junction coupling (P < 0.001). The data provided suggest that this mutation might not have caused significant alterations in protein folding since there was no obstruction in protein trafficking or water permeation. Reduction in cell-to-cell adhesion and development of cataract suggest that the conserved positive charge of Extracellular Loop A may play an important role in bringing fiber cells closer. The proposed schematic models illustrate that cell-to-cell adhesion elicited by AQP0 is vital for lens transparency and homeostasis.
Collapse
Affiliation(s)
- Sindhu S Kumari
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794-8661, USA
| | | | | | | | | |
Collapse
|
46
|
Clemens DM, Németh-Cahalan KL, Trinh L, Zhang T, Schilling TF, Hall JE. In vivo analysis of aquaporin 0 function in zebrafish: permeability regulation is required for lens transparency. Invest Ophthalmol Vis Sci 2013; 54:5136-43. [PMID: 23800763 DOI: 10.1167/iovs.13-12337] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The zebrafish lens is well suited for studies of physiology and development due to its rapid formation in the embryo and genetic accessibility. Aquaporin 0 (AQP0), a lens-specific membrane protein, is required for lens clarity. Zebrafish have two copies of AQP0 (Aqp0a and b), whereas mammals have a single, multifunctional protein. Here we demonstrate a reliable knockdown/rescue system in zebrafish and use it to provide evidence for subfunctionalization of Aqp0a and b, as well as to show that calcium-mediated regulation of Aqp0a in zebrafish lenses is necessary for transparency. METHODS Coinjection of antisense oligonucleotides and DNA rescue constructs into zebrafish embryos, followed by evaluation of the developing fish for cataracts, was used to analyze the functions of Aqp0a and b. The water permeability and regulation characteristics of each rescue protein were tested in a Xenopus oocyte swelling assay. RESULTS Both copies of AQP0 are necessary for lens clarity in the zebrafish, and neither is sufficient. Water permeability is necessary but also insufficient. Phosphorylation and regulation of Aqp0a are required for its function. CONCLUSIONS In the zebrafish lens, the two closely related AQP0s have acquired distinct functions that are both necessary for lens development and clarity. Regulation of AQP0 water permeability, a well-studied phenomenon in vitro, may be physiologically relevant in the living lens.
Collapse
Affiliation(s)
- Daniel M Clemens
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697-4561, USA
| | | | | | | | | | | |
Collapse
|
47
|
Reichow SL, Clemens DM, Freites JA, Németh-Cahalan KL, Heyden M, Tobias DJ, Hall JE, Gonen T. Allosteric mechanism of water-channel gating by Ca2+-calmodulin. Nat Struct Mol Biol 2013; 20:1085-92. [PMID: 23893133 PMCID: PMC3766450 DOI: 10.1038/nsmb.2630] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/05/2013] [Indexed: 11/25/2022]
Abstract
Calmodulin (CaM) is a universal regulatory protein that communicates the presence of calcium to its molecular targets and correspondingly modulates their function. This key signaling protein is important for controlling the activity of hundreds of membrane channels and transporters. However, our understanding of the structural mechanisms driving CaM regulation of full-length membrane proteins has remained elusive. In this study, we determined the pseudo-atomic structure of full-length mammalian aquaporin-0 (AQP0, Bos Taurus) in complex with CaM using electron microscopy to understand how this signaling protein modulates water channel function. Molecular dynamics and functional mutation studies reveal how CaM binding inhibits AQP0 water permeability by allosterically closing the cytoplasmic gate of AQP0. Our mechanistic model provides new insight, only possible in the context of the fully assembled channel, into how CaM regulates multimeric channels by facilitating cooperativity between adjacent subunits.
Collapse
Affiliation(s)
- Steve L Reichow
- 1] Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia, USA. [2]
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Maddala R, Nagendran T, de Ridder GG, Schey KL, Rao PV. L-type calcium channels play a critical role in maintaining lens transparency by regulating phosphorylation of aquaporin-0 and myosin light chain and expression of connexins. PLoS One 2013; 8:e64676. [PMID: 23734214 PMCID: PMC3667166 DOI: 10.1371/journal.pone.0064676] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 04/17/2013] [Indexed: 01/18/2023] Open
Abstract
Homeostasis of intracellular calcium is crucial for lens cytoarchitecture and transparency, however, the identity of specific channel proteins regulating calcium influx within the lens is not completely understood. Here we examined the expression and distribution profiles of L-type calcium channels (LTCCs) and explored their role in morphological integrity and transparency of the mouse lens, using cDNA microarray, RT-PCR, immunoblot, pharmacological inhibitors and immunofluorescence analyses. The results revealed that Ca (V) 1.2 and 1.3 channels are expressed and distributed in both the epithelium and cortical fiber cells in mouse lens. Inhibition of LTCCs with felodipine or nifedipine induces progressive cortical cataract formation with time, in association with decreased lens weight in ex-vivo mouse lenses. Histological analyses of felodipine treated lenses revealed extensive disorganization and swelling of cortical fiber cells resembling the phenotype reported for altered aquaporin-0 activity without detectable cytotoxic effects. Analysis of both soluble and membrane rich fractions from felodipine treated lenses by SDS-PAGE in conjunction with mass spectrometry and immunoblot analyses revealed decreases in β-B1-crystallin, Hsp-90, spectrin and filensin. Significantly, loss of transparency in the felodipine treated lenses was preceded by an increase in aquaporin-0 serine-235 phosphorylation and levels of connexin-50, together with decreases in myosin light chain phosphorylation and the levels of 14-3-3ε, a phosphoprotein-binding regulatory protein. Felodipine treatment led to a significant increase in gene expression of connexin-50 and 46 in the mouse lens. Additionally, felodipine inhibition of LTCCs in primary cultures of mouse lens epithelial cells resulted in decreased intracellular calcium, and decreased actin stress fibers and myosin light chain phosphorylation, without detectable cytotoxic response. Taken together, these observations reveal a crucial role for LTCCs in regulation of expression, activity and stability of aquaporin-0, connexins, cytoskeletal proteins, and the mechanical properties of lens, all of which have a vital role in maintaining lens function and cytoarchitecture.
Collapse
Affiliation(s)
- Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Tharkika Nagendran
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Gustaaf G. de Ridder
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Kevin L. Schey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Ponugoti Vasantha Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
| |
Collapse
|
49
|
Tong J, Canty JT, Briggs MM, McIntosh TJ. The water permeability of lens aquaporin-0 depends on its lipid bilayer environment. Exp Eye Res 2013; 113:32-40. [PMID: 23680159 DOI: 10.1016/j.exer.2013.04.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 04/16/2013] [Accepted: 04/30/2013] [Indexed: 01/07/2023]
Abstract
Aquaporin-0 (AQP0), the primary water channel in lens fiber cells, is critical to lens development, organization, and function. In the avascular lens there is thought to be an internal microcirculation associated with fluid movement. Although AQP0 is known to be important in fluid fluxes across membranes, the water permeability of this channel has only been measured in Xenopus oocytes and in outer lens cortical membranes, but not in inner nuclear membranes, which have an increased cholesterol/phospholipid ratio. Here we measure the unit water permeability of AQP0 in different proteoliposomes with cholesterol/phospholipid ratios and external pHs similar to those found in the cortex and nucleus of the lens. Osmotic stress measurements were performed with proteoliposomes containing AQP0 and three different lipids mixtures: (1) phosphatidylcholine (PC) and phosphatidylglycerol (PG), (2) PC, PG, with 40 mol% cholesterol, and (3) sphingomyelin (SM), PG, with 40 mol% cholesterol. At pH 7.5 the unit permeabilities of AQP0 were 3.5 ± 0.5 × 10(-14) cm(3)/s (mean ± SEM), 1.1 ± 0.1 × 10(-14) cm(3)/s, and 0.50 ± 0.04 × 10(-14) cm(3)/s in PC:PG, PC:PG:cholesterol, and SM:PG:cholesterol, respectively. For lipid mixtures at pH 6.5, corresponding to conditions found in the lens nucleus, the AQP0 permeabilities were 1.5 ± 0.4 × 10(-14) cm(3)/s and 0.76 ± 0.03 × 10(-14) cm(3)/s in PC:PG:cholesterol and SM:PG:cholesterol, respectively. Thus, although AQP0 unit permeability can be modified by changes in pH, it is also sensitive to changes in bilayer lipid composition, and decreases with increasing cholesterol and SM content. These data imply that AQP0 water permeability is regulated by bilayer lipid composition, so that AQP0 permeability would be significantly less in the lens nucleus than in the lens cortex.
Collapse
Affiliation(s)
- Jihong Tong
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
50
|
Schey KL, Grey AC, Nicklay JJ. Mass spectrometry of membrane proteins: a focus on aquaporins. Biochemistry 2013; 52:3807-17. [PMID: 23394619 DOI: 10.1021/bi301604j] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Membrane proteins are abundant, critically important biomolecules that conduct essential functions in all cells and are the targets of a significant number of therapeutic drugs. However, the analysis of their expression, modification, protein-protein interactions, and structure by mass spectrometry has lagged behind similar studies of soluble proteins. Here we review the limitations to analysis of integral membrane and membrane-associated proteins and highlight advances in sample preparation and mass spectrometry methods that have led to the successful analysis of this protein class. Advances in the analysis of membrane protein posttranslational modification, protein-protein interaction, protein structure, and tissue distributions by imaging mass spectrometry are discussed. Furthermore, we focus our discussion on the application of mass spectrometry for the analysis of aquaporins as a prototypical integral membrane protein and how advances in analytical methods have revealed new biological insights into the structure and function of this family of proteins.
Collapse
Affiliation(s)
- Kevin L Schey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States.
| | | | | |
Collapse
|