1
|
Jedel E, Schator D, Kumar NG, Sullivan AB, Rietsch A, Evans DJ, Fleiszig SMJ. The Pseudomonas aeruginosa T3SS can contribute to traversal of an in situ epithelial multilayer independently of the T3SS needle. mBio 2025; 16:e0026625. [PMID: 40084853 PMCID: PMC11980567 DOI: 10.1128/mbio.00266-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/11/2025] [Indexed: 03/16/2025] Open
Abstract
Multilayered epithelia lining our tissue surfaces normally resist traversal by opportunistic bacteria. Previously, we developed a strategy to experimentally perturb this resistance in situ in the corneas of mouse eyes and used it to show that traversal of a multilayered epithelium by Pseudomonas aeruginosa requires ExsA, the transcriptional activator of its type 3 secretion system (T3SS). Here, we developed a novel strategy for quantitatively localizing individual traversing bacteria within the in situ multilayered corneal epithelium and explored the contributions of T3SS components. The results showed that T3SS translocon and T3SS effector mutants had reduced epithelial traversal efficiency. Surprisingly, a ΔpscC mutant unable to assemble the T3SS needle traversed as efficiently as wild-type P. aeruginosa, while a ΔexsD mutant "constitutively on" for T3SS expression was traversal defective. The dispensability of the T3SS needle for effector-mediated traversal was confirmed using a mutant lacking the T3SS operon except for the effector genes (ΔpscU-L mutant). That mutant reacquired the ability to traverse if complemented with rhamnose-inducible exsA, but not if the effector genes were also deleted (ΔpscU-LΔexoSTY). Western immunoblot confirmed ExoS in culture supernatants of rhamnose-induced exsA-complemented ΔpscU-L mutants lacking all T3SS needle protein genes. Together, these results show that epithelial traversal by P. aeruginosa can involve T3SS effectors and translocon proteins independently of the T3SS needle previously thought essential for T3SS function. This advances our understanding of P. aeruginosa pathogenesis and has relevance to the development of therapeutics targeting the T3SS system.IMPORTANCEWhile the capacity to cross an epithelial barrier can be a critical step in bacterial pathogenesis, our understanding of the mechanisms involved is derived largely from cell culture experimentation. The latter is due to the practical limitations of in vivo/in situ models and the challenge of visualizing individual bacteria in the context of host tissue. Here, factors used by P. aeruginosa to traverse an epithelial multilayer in situ were studied by (i) leveraging the transparent properties and superficial location of the cornea, (ii) using our established method for enabling bacterial traversal susceptibility, and (iii) developing a novel strategy for accurate and quantitative localization of individual traversing bacteria in situ. Outcomes showed that T3SS translocon and T3SS effector proteins synergistically contribute to epithelial traversal efficiency independently of the T3SS needle. These findings challenge the assumption that the T3SS needle is essential for T3SS effectors or translocon proteins to contribute to bacterial pathogenesis.
Collapse
Affiliation(s)
- Eric Jedel
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, California, USA
- Graduate Program in Infectious Diseases and Immunity, University of California, Berkeley, California, USA
| | - Daniel Schator
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, California, USA
| | - Naren G. Kumar
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, California, USA
| | - Aaron B. Sullivan
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, California, USA
- Department of Biology, San Francisco State University, San Francisco, CA, USA
| | - Arne Rietsch
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - David J. Evans
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, California, USA
- College of Pharmacy, Touro University California, Vallejo, California, USA
| | - Suzanne M. J. Fleiszig
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, California, USA
- Graduate Program in Infectious Diseases and Immunity, University of California, Berkeley, California, USA
- Graduate Groups in Vision Science and Microbiology, University of California, Berkeley, California, USA
| |
Collapse
|
2
|
Jedel E, Schator D, Kumar NG, Sullivan AB, Rietsch A, Evans DJ, Fleiszig SMJ. The Pseudomonas aeruginosa T3SS can contribute to traversal of an in situ epithelial multilayer independently of the T3SS needle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635263. [PMID: 39975055 PMCID: PMC11838347 DOI: 10.1101/2025.01.28.635263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Multilayered epithelia lining our tissue surfaces normally resist traversal by opportunistic bacteria. Previously, we developed a strategy to experimentally perturbate this resistance in situ in the corneas of mouse eyes and used it to show that traversal of a multilayered epithelium by Pseudomonas aeruginosa requires ExsA, the transcriptional activator of its type 3 secretion system (T3SS). Here, we developed a novel strategy for quantitively localizing individual traversing bacteria within the in situ multilayered corneal epithelium and explored contributions of T3SS components. The results showed that T3SS translocon and T3SS effector mutants had reduced epithelial traversal efficiency. Surprisingly, a ΔpscC mutant unable to assemble the T3SS needle traversed as efficiently as wild-type P. aeruginosa, while a ΔexsD mutant 'constitutively on' for T3SS expression was traversal defective. Dispensability of the T3SS needle for effector-mediated traversal was confirmed using a mutant lacking the T3SS operon except the effector genes (ΔpscU-L mutant). That mutant reacquired the ability to traverse if complemented with rhamnose-inducible exsA, but not if the effector genes were also deleted (ΔpscU-LΔexoSTY). Western immunoblot confirmed ExoS in culture supernatants of rhamnose-induced exsA-complemented ΔpscU-L mutants lacking all T3SS needle protein genes. Together, these results show that epithelial traversal by P. aeruginosa can involve T3SS effectors and translocon proteins independently of the T3SS needle previously thought essential for T3SS function. This advances our understanding of P. aeruginosa pathogenesis and has relevance to development of therapeutics targeting the T3SS system.
Collapse
Affiliation(s)
- Eric Jedel
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA USA
- Graduate Program in Infectious Diseases and Immunity, University of California, Berkeley, CA USA
| | - Daniel Schator
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA USA
| | - Naren G. Kumar
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA USA
| | - Aaron B. Sullivan
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA USA
| | - Arne Rietsch
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH USA
| | - David J. Evans
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA USA
- College of Pharmacy, Touro University California, Vallejo, CA USA
| | - Suzanne M. J. Fleiszig
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA USA
- Graduate Program in Infectious Diseases and Immunity, University of California, Berkeley, CA USA
- Graduate Groups in Vision Science and Microbiology, University of California, Berkeley, CA USA
| |
Collapse
|
3
|
Cheng KKW, Fingerhut L, Duncan S, Prajna NV, Rossi AG, Mills B. In vitro and ex vivo models of microbial keratitis: Present and future. Prog Retin Eye Res 2024; 102:101287. [PMID: 39004166 DOI: 10.1016/j.preteyeres.2024.101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Microbial keratitis (MK) is an infection of the cornea, caused by bacteria, fungi, parasites, or viruses. MK leads to significant morbidity, being the fifth leading cause of blindness worldwide. There is an urgent requirement to better understand pathogenesis in order to develop novel diagnostic and therapeutic approaches to improve patient outcomes. Many in vitro, ex vivo and in vivo MK models have been developed and implemented to meet this aim. Here, we present current in vitro and ex vivo MK model systems, examining their varied design, outputs, reporting standards, and strengths and limitations. Major limitations include their relative simplicity and the perceived inability to study the immune response in these MK models, an aspect widely accepted to play a significant role in MK pathogenesis. Consequently, there remains a dependence on in vivo models to study this aspect of MK. However, looking to the future, we draw from the broader field of corneal disease modelling, which utilises, for example, three-dimensional co-culture models and dynamic environments observed in bioreactors and organ-on-a-chip scenarios. These remain unexplored in MK research, but incorporation of these approaches will offer further advances in the field of MK corneal modelling, in particular with the focus of incorporation of immune components which we anticipate will better recapitulate pathogenesis and yield novel findings, therefore contributing to the enhancement of MK outcomes.
Collapse
Affiliation(s)
- Kelvin Kah Wai Cheng
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, United Kingdom
| | - Leonie Fingerhut
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, United Kingdom
| | - Sheelagh Duncan
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, United Kingdom
| | - N Venkatesh Prajna
- Department of Cornea and Refractive Surgery Services, Aravind Eye Hospital and Postgraduate Institute of Ophthalmology, Madurai, Tamil Nadu, India
| | - Adriano G Rossi
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, United Kingdom
| | - Bethany Mills
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, United Kingdom.
| |
Collapse
|
4
|
Badger-Emeka L, Emeka P, Thirugnanasambantham K, Alatawi AS. The Role of Pseudomonas aeruginosa in the Pathogenesis of Corneal Ulcer, Its Associated Virulence Factors, and Suggested Novel Treatment Approaches. Pharmaceutics 2024; 16:1074. [PMID: 39204419 PMCID: PMC11360345 DOI: 10.3390/pharmaceutics16081074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Pseudomonas aeruginosa (P. aeruginosa), is a diverse Gram-negative pathogen commonly associated with a wide spectrum of infections. It is indicated to be the most prevalent causative agent in the development of bacterial keratitis linked with the use of contact lens. Corneal infections attributed to P. aeruginosa frequently have poor clinical outcomes necessitating lengthy and costly therapies. Therefore, this review looks at the aetiology of P. aeruginosa bacterial keratitis as well as the bacterial drivers of its virulence and the potential therapeutics on the horizon. METHOD A literature review with the articles used for the review searched for and retrieved from PubMed, Scopus, and Google Scholar (date last accessed 1 April 2024). The keywords used for the search criteria were "Pseudomonas and keratitis, biofilm and cornea as well as P. aeruginosa". RESULTS P. aeruginosa is implicated in the pathogenesis of bacterial keratitis associated with contact lens usage. To reduce the potential seriousness of these infections, a variety of contact lens-cleaning options are available. However, continuous exposure to a range of antibiotics doses, from sub-inhibitory to inhibitory, has been shown to lead to the development of resistance to both antibiotics and disinfectant. Generally, there is a global public health concern regarding the rise of difficult-to-treat infections, particularly in the case of P. aeruginosa virulence in ocular infections. This study of the basic pathogenesis of a prevalent P. aeruginosa strain is therefore implicated in keratitis. To this effect, anti-virulence methods and phage therapy are being researched and developed in response to increasing antibiotic resistance. CONCLUSION This review has shown P. aeruginosa to be a significant cause of bacterial keratitis, particularly among users of contact lens. It also revealed treatment options, their advantages, and their drawbacks, including prospective candidates.
Collapse
Affiliation(s)
- Lorina Badger-Emeka
- Department of Biomedical Science, College of Medicine King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Promise Emeka
- Department of Pharmaceutical Science, College of Clinical Pharmacy, King Faisal University, Al Ahsa 31982, Saudi Arabia; (P.E.); (A.S.A.)
| | | | - Abdulaziz S. Alatawi
- Department of Pharmaceutical Science, College of Clinical Pharmacy, King Faisal University, Al Ahsa 31982, Saudi Arabia; (P.E.); (A.S.A.)
| |
Collapse
|
5
|
Tribin FE, Lieux C, Maestre-Mesa J, Durkee H, Krishna K, Chou B, Neag E, Tóthová JD, Martinez JD, Flynn HW, Parel JM, Miller D, Amescua G. Clinical Features and Treatment Outcomes of Carbapenem-Resistant Pseudomonas aeruginosa Keratitis. JAMA Ophthalmol 2024; 142:407-415. [PMID: 38512246 PMCID: PMC10958388 DOI: 10.1001/jamaophthalmol.2024.0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 12/27/2023] [Indexed: 03/22/2024]
Abstract
Importance Evaluation of the microbiological diagnostic profile of multidrug-resistant Pseudomonas aeruginosa keratitis and potential management with rose bengal-photodynamic antimicrobial therapy (RB-PDAT) is important. Objective To document the disease progression of carbapenemase-resistant P aeruginosa keratitis after an artificial tear contamination outbreak. Design, Setting, and Participants This retrospective observation case series included 9 patients 40 years or older who presented at Bascom Palmer Eye Institute and had positive test results for multidrug-resistant P aeruginosa keratitis between January 1, 2022, and October 31, 2023. Main Outcomes and Measures Evaluation of type III secretion phenotype, carbapenemase-resistance genes blaGES and blaVIM susceptibility to antibiotics, and in vitro and in vivo outcomes of RB-PDAT against multidrug-resistant P aeruginosa keratitis. Results Among the 9 patients included in the analysis (5 women and 4 men; mean [SD] age, 73.4 [14.0] years), all samples tested positive for exoU and carbapenemase-resistant blaVIM and blaGES genes. Additionally, isolates were resistant to carbapenems as indicated by minimum inhibitory concentration testing. In vitro efficacy of RB-PDAT indicated its potential application for treating recalcitrant cases. These cases highlight the rapid progression and challenging management of multidrug-resistant P aeruginosa. Two patients were treated with RB-PDAT as an adjuvant to antibiotic therapy and had improved visual outcomes. Conclusions and Relevance This case series highlights the concerning progression in resistance and virulence of P aeruginosa and emphasizes the need to explore alternative therapies like RB-PDAT that have broad coverage and no known antibiotic resistance. The findings support further investigation into the potential effects of RB-PDAT for other multidrug-resistant microbes.
Collapse
Affiliation(s)
- Felipe Echeverri Tribin
- Ophthalmic Biophysics Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
| | - Caroline Lieux
- Anne Bates Leach Eye Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
| | - Jorge Maestre-Mesa
- Ocular Microbiology Laboratory, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
| | - Heather Durkee
- Ophthalmic Biophysics Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
| | - Katherine Krishna
- Ophthalmic Biophysics Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
| | - Brandon Chou
- Ophthalmic Biophysics Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
| | - Emily Neag
- Anne Bates Leach Eye Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
| | - Jana D’Amato Tóthová
- Ophthalmic Biophysics Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
| | - Jaime D. Martinez
- Ophthalmic Biophysics Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
| | - Harry W. Flynn
- Anne Bates Leach Eye Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
- Ocular Microbiology Laboratory, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
| | - Jean Marie Parel
- Ophthalmic Biophysics Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
- Anne Bates Leach Eye Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
- Ocular Microbiology Laboratory, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
| | - Darlene Miller
- Ophthalmic Biophysics Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
- Anne Bates Leach Eye Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
- Ocular Microbiology Laboratory, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
| | - Guillermo Amescua
- Ophthalmic Biophysics Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
- Anne Bates Leach Eye Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
- Ocular Microbiology Laboratory, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
6
|
Morin CD, Déziel E, Gauthier J, Levesque RC, Lau GW. An Organ System-Based Synopsis of Pseudomonas aeruginosa Virulence. Virulence 2021; 12:1469-1507. [PMID: 34180343 PMCID: PMC8237970 DOI: 10.1080/21505594.2021.1926408] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Driven in part by its metabolic versatility, high intrinsic antibiotic resistance, and a large repertoire of virulence factors, Pseudomonas aeruginosa is expertly adapted to thrive in a wide variety of environments, and in the process, making it a notorious opportunistic pathogen. Apart from the extensively studied chronic infection in the lungs of people with cystic fibrosis (CF), P. aeruginosa also causes multiple serious infections encompassing essentially all organs of the human body, among others, lung infection in patients with chronic obstructive pulmonary disease, primary ciliary dyskinesia and ventilator-associated pneumonia; bacteremia and sepsis; soft tissue infection in burns, open wounds and postsurgery patients; urinary tract infection; diabetic foot ulcers; chronic suppurative otitis media and otitis externa; and keratitis associated with extended contact lens use. Although well characterized in the context of CF, pathogenic processes mediated by various P. aeruginosa virulence factors in other organ systems remain poorly understood. In this review, we use an organ system-based approach to provide a synopsis of disease mechanisms exerted by P. aeruginosa virulence determinants that contribute to its success as a versatile pathogen.
Collapse
Affiliation(s)
- Charles D Morin
- Centre Armand-Frappier Santé Biotechnologie, Institut National De La Recherche Scientifique (INRS), Laval, Quebec, Canada
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National De La Recherche Scientifique (INRS), Laval, Quebec, Canada
| | - Jeff Gauthier
- Département De Microbiologie-infectiologie Et Immunologie, Institut De Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| | - Roger C Levesque
- Département De Microbiologie-infectiologie Et Immunologie, Institut De Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| | - Gee W Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, US
| |
Collapse
|
7
|
Elabbadi A, Pont S, Verdet C, Plésiat P, Cretin F, Voiriot G, Fartoukh M, Djibré M. An unusual community-acquired invasive and multi systemic infection due to ExoU-harboring Pseudomonas aeruginosa strain: Clinical disease and microbiological characteristics. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2020; 53:647-651. [DOI: 10.1016/j.jmii.2019.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/12/2019] [Accepted: 06/26/2019] [Indexed: 11/26/2022]
|
8
|
Magalhães B, Valot B, Abdelbary MMH, Prod'hom G, Greub G, Senn L, Blanc DS. Combining Standard Molecular Typing and Whole Genome Sequencing to Investigate Pseudomonas aeruginosa Epidemiology in Intensive Care Units. Front Public Health 2020; 8:3. [PMID: 32047733 PMCID: PMC6997133 DOI: 10.3389/fpubh.2020.00003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/07/2020] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is one of the main pathogens responsible for nosocomial infections, particularly in Intensive Care Units (ICUs). Due to the complexity of P. aeruginosa ecology, only powerful typing methods can efficiently allow its surveillance and the detection during expanding outbreaks. An increase in P. aeruginosa incidence was observed in the ICUs of the Lausanne University Hospital between 2010 and 2014. All clinical and environmental isolates retrieved during this period were typed with Double locus sequence typing (DLST), which detected the presence of three major genotypes: DLST 1–18, DLST 1–21, and DLST 6–7. DLST 1–18 (ST1076) isolates were previously associated with an epidemiologically well-described outbreak in the burn unit. Nevertheless, DLST 1–21 (ST253) and DLST 6–7 (ST17) showed sporadic occurrence with only few cases of possible transmission between patients. Whole genome sequencing (WGS) was used to further investigate the epidemiology of these three major P. aeruginosa genotypes in the ICUs. WGS was able to differentiate between outbreak and non-outbreak isolates and confirm suspected epidemiological links. Additionally, whole-genome single nucleotide polymorphisms (SNPs) results considered isolates as closely related for which no epidemiological links were suspected, expanding the epidemiological investigation to unsuspected links. The combination of a first-line molecular typing tool (DLST) with a more discriminatory method (WGS) proved to be an accurate and cost-efficient typing strategy for the investigation of P. aeruginosa epidemiology in the ICUs.
Collapse
Affiliation(s)
- Bárbara Magalhães
- Service of Hospital Preventive Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Benoit Valot
- Chrono-Environment, Franche-Comté University, Besançon, France
| | - Mohamed M H Abdelbary
- Service of Hospital Preventive Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Guy Prod'hom
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Laurence Senn
- Service of Hospital Preventive Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Dominique S Blanc
- Service of Hospital Preventive Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Fleiszig SMJ, Kroken AR, Nieto V, Grosser MR, Wan SJ, Metruccio MME, Evans DJ. Contact lens-related corneal infection: Intrinsic resistance and its compromise. Prog Retin Eye Res 2019; 76:100804. [PMID: 31756497 DOI: 10.1016/j.preteyeres.2019.100804] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 11/05/2019] [Accepted: 11/12/2019] [Indexed: 12/20/2022]
Abstract
Contact lenses represent a widely utilized form of vision correction with more than 140 million wearers worldwide. Although generally well-tolerated, contact lenses can cause corneal infection (microbial keratitis), with an approximate annualized incidence ranging from ~2 to ~20 cases per 10,000 wearers, and sometimes resulting in permanent vision loss. Research suggests that the pathogenesis of contact lens-associated microbial keratitis is complex and multifactorial, likely requiring multiple conspiring factors that compromise the intrinsic resistance of a healthy cornea to infection. Here, we outline our perspective of the mechanisms by which contact lens wear sometimes renders the cornea susceptible to infection, focusing primarily on our own research efforts during the past three decades. This has included studies of host factors underlying the constitutive barrier function of the healthy cornea, its response to bacterial challenge when intrinsic resistance is not compromised, pathogen virulence mechanisms, and the effects of contact lens wear that alter the outcome of host-microbe interactions. For almost all of this work, we have utilized the bacterium Pseudomonas aeruginosa because it is the leading cause of lens-related microbial keratitis. While not yet common among corneal isolates, clinical isolates of P. aeruginosa have emerged that are resistant to virtually all currently available antibiotics, leading the United States CDC (Centers for Disease Control) to add P. aeruginosa to its list of most serious threats. Compounding this concern, the development of advanced contact lenses for biosensing and augmented reality, together with the escalating incidence of myopia, could portent an epidemic of vision-threatening corneal infections in the future. Thankfully, technological advances in genomics, proteomics, metabolomics and imaging combined with emerging models of contact lens-associated P. aeruginosa infection hold promise for solving the problem - and possibly life-threatening infections impacting other tissues.
Collapse
Affiliation(s)
- Suzanne M J Fleiszig
- School of Optometry, University of California, Berkeley, CA, USA; Graduate Group in Vision Science, University of California, Berkeley, CA, USA; Graduate Groups in Microbiology and Infectious Diseases & Immunity, University of California, Berkeley, CA, USA.
| | - Abby R Kroken
- School of Optometry, University of California, Berkeley, CA, USA
| | - Vincent Nieto
- School of Optometry, University of California, Berkeley, CA, USA
| | | | - Stephanie J Wan
- Graduate Group in Vision Science, University of California, Berkeley, CA, USA
| | | | - David J Evans
- School of Optometry, University of California, Berkeley, CA, USA; College of Pharmacy, Touro University California, Vallejo, CA, USA
| |
Collapse
|
10
|
Ruffin M, Brochiero E. Repair Process Impairment by Pseudomonas aeruginosa in Epithelial Tissues: Major Features and Potential Therapeutic Avenues. Front Cell Infect Microbiol 2019; 9:182. [PMID: 31214514 PMCID: PMC6554286 DOI: 10.3389/fcimb.2019.00182] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/13/2019] [Indexed: 01/13/2023] Open
Abstract
Epithelial tissues protecting organs from the environment are the first-line of defense against pathogens. Therefore, efficient repair mechanisms after injury are crucial to maintain epithelial integrity. However, these healing processes can be insufficient to restore epithelial integrity, notably in infectious conditions. Pseudomonas aeruginosa infections in cutaneous, corneal, and respiratory tract epithelia are of particular concern because they are the leading causes of hospitalizations, disabilities, and deaths worldwide. Pseudomonas aeruginosa has been shown to alter repair processes, leading to chronic wounds and infections. Because of the current increase in the incidence of multi-drug resistant isolates of P. aeruginosa, complementary approaches to decrease the negative impact of these bacteria on epithelia are urgently needed. Here, we review the recent advances in the understanding of the impact of P. aeruginosa infections on the integrity and repair mechanisms of alveolar, airway, cutaneous and corneal epithelia. Potential therapeutic avenues aimed at counteracting this deleterious impact of infection are also discussed.
Collapse
Affiliation(s)
- Manon Ruffin
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de Médecine, Université de Montréal, Montréal, QC, Canada.,INSERM, Centre de Recherche Saint-Antoine, CRSA, Sorbonne Université, Paris, France
| | - Emmanuelle Brochiero
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
11
|
Awan AB, Schiebel J, Böhm A, Nitschke J, Sarwar Y, Schierack P, Ali A. Association of biofilm formation and cytotoxic potential with multidrug resistance in clinical isolates of Pseudomonas aeruginosa. EXCLI JOURNAL 2019; 18:79-90. [PMID: 30956641 PMCID: PMC6449682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/23/2019] [Indexed: 11/01/2022]
Abstract
Multidrug resistant (MDR) Pseudomonas aeruginosa having strong biofilm potential and virulence factors are a serious threat for hospitalized patients having compromised immunity. In this study, 34 P. aeruginosa isolates of human origin (17 MDR and 17 non-MDR clinical isolates) were checked for biofilm formation potential in enriched and minimal media. The biofilms were detected using crystal violet method and a modified software package of the automated VideoScan screening method. Cytotoxic potential of the isolates was also investigated on HepG2, LoVo and T24 cell lines using automated VideoScan technology. Pulse field gel electrophoresis revealed 10 PFGE types in MDR and 8 in non-MDR isolates. Although all isolates showed biofilm formation potential, strong biofilm formation was found more in enriched media than in minimal media. Eight MDR isolates showed strong biofilm potential in both enriched and minimal media by both detection methods. Strong direct correlation between crystal violet and VideoScan methods was observed in identifying strong biofilm forming isolates. High cytotoxic effect was observed by 4 isolates in all cell lines used while 6 other isolates showed high cytotoxic effect on T24 cell line only. Strong association of multidrug resistance was found with biofilm formation as strong biofilms were observed significantly higher in MDR isolates (p-value < 0.05) than non-MDR isolates. No significant association of cytotoxic potential with multidrug resistance or biofilm formation was found (p-value > 0.05). The MDR isolates showing significant cytotoxic effects and strong biofilm formation impose a serious threat for hospitalized patients with weak immune system.
Collapse
Affiliation(s)
- Asad Bashir Awan
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Juliane Schiebel
- Institute for Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Alexander Böhm
- Institute for Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Jörg Nitschke
- Institute for Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Yasra Sarwar
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Peter Schierack
- Institute for Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Aamir Ali
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
- Institute for Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| |
Collapse
|
12
|
Gellatly SL, Bains M, Breidenstein EBM, Strehmel J, Reffuveille F, Taylor PK, Yeung ATY, Overhage J, Hancock REW. Novel roles for two-component regulatory systems in cytotoxicity and virulence-related properties in Pseudomonas aeruginosa. AIMS Microbiol 2018; 4:173-191. [PMID: 31294209 PMCID: PMC6605022 DOI: 10.3934/microbiol.2018.1.173] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/26/2018] [Indexed: 11/18/2022] Open
Abstract
The rapid adaptation of the opportunistic bacterial pathogen Pseudomonas aeruginosa to various growth modes and environmental conditions is controlled in part through diverse two-component regulatory systems. Some of these systems are well studied, but the majority are poorly characterized, even though it is likely that several of these systems contribute to virulence. Here, we screened all available strain PA14 mutants in 50 sensor kinases, 50 response regulators and 5 hybrid sensor/regulators, for contributions to cytotoxicity against cultured human bronchial epithelial cells, as assessed by the release of cytosolic lactate dehydrogenase. This enabled the identification of 8 response regulators and 3 sensor kinases that caused substantial decreases in cytotoxicity, and 5 response regulators and 8 sensor kinases that significantly increased cytotoxicity by 15-58% or more. These regulators were additionally involved in motility, adherence, type 3 secretion, production of cytotoxins, and the development of biofilms. Here we investigated in more detail the roles of FleSR, PilSR and WspR. Not all cognate pairs contributed to cytotoxicity (e.g. PhoPQ, PilSR) in the same way and some differences could be detected between the same mutants in PAO1 and PA14 strain backgrounds (e.g. FleSR, PhoPQ). This study highlights the potential importance of these regulators and their downstream targets on pathogenesis and demonstrates that cytotoxicity can be regulated by several systems and that their contributions are partly dependent on strain background.
Collapse
Affiliation(s)
- Shaan L Gellatly
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Manjeet Bains
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Elena B M Breidenstein
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Janine Strehmel
- Microbiology of Natural and Technical Interfaces Department, Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Fany Reffuveille
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Patrick K Taylor
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Amy T Y Yeung
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Joerg Overhage
- Microbiology of Natural and Technical Interfaces Department, Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
13
|
Lakhundi S, Siddiqui R, Khan NA. Pathogenesis of microbial keratitis. Microb Pathog 2017; 104:97-109. [DOI: 10.1016/j.micpath.2016.12.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 01/03/2023]
|
14
|
Abstract
Bacterial sphingomyelinases and phospholipases are a heterogeneous group of esterases which are usually surface associated or secreted by a wide variety of Gram-positive and Gram-negative bacteria. These enzymes hydrolyze sphingomyelin and glycerophospholipids, respectively, generating products identical to the ones produced by eukaryotic enzymes which play crucial roles in distinct physiological processes, including membrane dynamics, cellular signaling, migration, growth, and death. Several bacterial sphingomyelinases and phospholipases are essential for virulence of extracellular, facultative, or obligate intracellular pathogens, as these enzymes contribute to phagosomal escape or phagosomal maturation avoidance, favoring tissue colonization, infection establishment and progression, or immune response evasion. This work presents a classification proposal for bacterial sphingomyelinases and phospholipases that considers not only their enzymatic activities but also their structural aspects. An overview of the main physiopathological activities is provided for each enzyme type, as are examples in which inactivation of a sphingomyelinase- or a phospholipase-encoding gene impairs the virulence of a pathogen. The identification of sphingomyelinases and phospholipases important for bacterial pathogenesis and the development of inhibitors for these enzymes could generate candidate vaccines and therapeutic agents, which will diminish the impacts of the associated human and animal diseases.
Collapse
|
15
|
Soumpasis I, Knapp L, Pitt T. A proof-of-concept model for the identification of the key events in the infection process with specific reference to Pseudomonas aeruginosa in corneal infections. Infect Ecol Epidemiol 2015; 5:28750. [PMID: 26546946 PMCID: PMC4636861 DOI: 10.3402/iee.v5.28750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/16/2015] [Accepted: 10/16/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND It is a common medical practice to characterise an infection based on the causative agent and to adopt therapeutic and prevention strategies targeting the agent itself. However, from an epidemiological perspective, exposure to a microbe can be harmless to a host as a result of low-level exposure or due to host immune response, with opportunistic infection only occurring as a result of changes in the host, pathogen, or surrounding environment. METHODS We have attempted to review systematically the key host, pathogen, and environmental factors that may significantly impact clinical outcomes of exposure to a pathogen, using Pseudomonas aeruginosa eye infection as a case study. RESULTS AND DISCUSSION Extended contact lens wearing and compromised hygiene may predispose users to microbial keratitis, which can be a severe and vision-threatening infection. P. aeruginosa has a wide array of virulence-associated genes and sensing systems to initiate and maintain cell populations at the corneal surface and beyond. We have adapted the well-known concept of the epidemiological triangle in combination with the classic risk assessment framework (hazard identification, characterisation, and exposure) to develop a conceptual pathway-based model that demonstrates the overlapping relationships between the host, the pathogen, and the environment; and to illustrate the key events in P. aeruginosa eye infection. CONCLUSION This strategy differs from traditional approaches that consider potential risk factors in isolation, and hopefully will aid the identification of data and models to inform preventive and therapeutic measures in addition to risk assessment. Furthermore, this may facilitate the identification of knowledge gaps to direct research in areas of greatest impact to avert or mitigate adverse outcomes of infection.
Collapse
Affiliation(s)
- Ilias Soumpasis
- Safety and Environmental Assurance Centre, Unilever, Sharnbrook, UK;
| | - Laura Knapp
- Safety and Environmental Assurance Centre, Unilever, Sharnbrook, UK
| | - Tyrone Pitt
- Clinical Bacteriology Consultant, London, UK
| |
Collapse
|
16
|
The importance of the Pseudomonas aeruginosa type III secretion system in epithelium traversal depends upon conditions of host susceptibility. Infect Immun 2015; 83:1629-40. [PMID: 25667266 DOI: 10.1128/iai.02329-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pseudomonas aeruginosa is invasive or cytotoxic to host cells, depending on the type III secretion system (T3SS) effectors encoded. While the T3SS is known to be involved in disease in vivo, how it participates remains to be clarified. Here, mouse models of superficial epithelial injury (tissue paper blotting with EGTA treatment) and immunocompromise (MyD88 deficiency) were used to study the contribution of the T3SS transcriptional activator ExsA to epithelial traversal. Corneas of excised eyeballs were inoculated with green fluorescent protein (GFP)-expressing PAO1 or isogenic exsA mutants for 6 h ex vivo before bacterial traversal and epithelial thickness were quantified by using imaging. In the blotting-EGTA model, exsA mutants were defective in capacity for traversal. Accordingly, an ∼16-fold variability in exsA expression among PAO1 isolates from three sources correlated with epithelial loss. In contrast, MyD88-/- epithelia remained susceptible to P. aeruginosa traversal despite exsA mutation. Epithelial lysates from MyD88-/- mice had reduced antimicrobial activity compared to those from wild-type mice with and without prior antigen challenge, particularly 30- to 100-kDa fractions, for which mass spectrometry revealed multiple differences, including (i) lower baseline levels of histones, tubulin, and lumican and (ii) reduced glutathione S-transferase, annexin, and dermatopontin, after antigen challenge. Thus, the importance of ExsA in epithelial traversal by invasive P. aeruginosa depends on the compromise enabling susceptibility, suggesting that strategies for preventing infection will need to extend beyond targeting the T3SS. The data also highlight the importance of mimicking conditions allowing susceptibility in animal models and the need to monitor variability among bacterial isolates from different sources, even for the same strain.
Collapse
|
17
|
Shanks RMQ, Davra VR, Romanowski EG, Brothers KM, Stella NA, Godboley D, Kadouri DE. An Eye to a Kill: Using Predatory Bacteria to Control Gram-Negative Pathogens Associated with Ocular Infections. PLoS One 2013; 8:e66723. [PMID: 23824756 PMCID: PMC3688930 DOI: 10.1371/journal.pone.0066723] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 05/10/2013] [Indexed: 11/18/2022] Open
Abstract
Ocular infections are a leading cause of vision loss. It has been previously suggested that predatory prokaryotes might be used as live antibiotics to control infections. In this study, Pseudomonas aeruginosa and Serratia marcescens ocular isolates were exposed to the predatory bacteria Micavibrio aeruginosavorus and Bdellovibrio bacteriovorus. All tested S. marcescens isolates were susceptible to predation by B. bacteriovorus strains 109J and HD100. Seven of the 10 P. aeruginosa isolates were susceptible to predation by B. bacteriovorus 109J with 80% being attacked by M. aeruginosavorus. All of the 19 tested isolates were found to be sensitive to at least one predator. To further investigate the effect of the predators on eukaryotic cells, human corneal-limbal epithelial (HCLE) cells were exposed to high concentrations of the predators. Cytotoxicity assays demonstrated that predatory bacteria do not damage ocular surface cells in vitro whereas the P. aeruginosa used as a positive control was highly toxic. Furthermore, no increase in the production of the proinflammatory cytokines IL-8 and TNF-alpha was measured in HCLE cells after exposure to the predators. Finally, injection of high concentration of predatory bacteria into the hemocoel of Galleria mellonella, an established model system used to study microbial pathogenesis, did not result in any measurable negative effect to the host. Our results suggest that predatory bacteria could be considered in the near future as a safe topical bio-control agent to treat ocular infections.
Collapse
Affiliation(s)
- Robert M. Q. Shanks
- Department of Ophthalmology, Campbell Laboratory of Ophthalmic Microbiology, University of Pittsburgh, Pittsburgh, United States of America
| | - Viral R. Davra
- Department of Oral Biology, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
| | - Eric G. Romanowski
- Department of Ophthalmology, Campbell Laboratory of Ophthalmic Microbiology, University of Pittsburgh, Pittsburgh, United States of America
| | - Kimberly M. Brothers
- Department of Ophthalmology, Campbell Laboratory of Ophthalmic Microbiology, University of Pittsburgh, Pittsburgh, United States of America
| | - Nicholas A. Stella
- Department of Ophthalmology, Campbell Laboratory of Ophthalmic Microbiology, University of Pittsburgh, Pittsburgh, United States of America
| | - Dipti Godboley
- Department of Oral Biology, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
| | - Daniel E. Kadouri
- Department of Oral Biology, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
| |
Collapse
|
18
|
Infectious keratitis: secreted bacterial proteins that mediate corneal damage. J Ophthalmol 2013; 2013:369094. [PMID: 23365719 PMCID: PMC3556867 DOI: 10.1155/2013/369094] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 12/12/2012] [Indexed: 12/17/2022] Open
Abstract
Ocular bacterial infections are universally treated with antibiotics, which can eliminate the organism but cannot reverse the damage caused by bacterial products already present. The three very common causes of bacterial keratitis—Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus pneumoniae—all produce proteins that directly or indirectly cause damage to the cornea that can result in reduced vision despite antibiotic treatment. Most, but not all, of these proteins are secreted toxins and enzymes that mediate host cell death, degradation of stromal collagen, cleavage of host cell surface molecules, or induction of a damaging inflammatory response. Studies of these bacterial pathogens have determined the proteins of interest that could be targets for future therapeutic options for decreasing corneal damage.
Collapse
|