1
|
Pincay J, da Costa BL, Quinn PMJ, Rodriguez M, Zhou A, Kong MD, Sparrow JR, Tsang SH. Phenotypic spectrum and theoretical prime editing analysis of WDR19-mediated retinal degeneration. Doc Ophthalmol 2025:10.1007/s10633-025-10016-3. [PMID: 40183892 DOI: 10.1007/s10633-025-10016-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 03/10/2025] [Indexed: 04/05/2025]
Abstract
PURPOSE The ciliopathies are a broad category of pleiotropic disease with numerous genes involved in pathogenesis. One of the genes implicated in the ciliopathies is WDR19, which can lead to several syndromic diseases that may manifest with a form of retinal degeneration. There is a lack of reporting on the WDR19-mediated retinal phenotype, and therefore warrants more clinical investigation. With retinal degeneration being the most prevalent symptom among the ciliopathies, phenotypic reporting is needed to enhance understanding of pathogenesis. METHODS Clinical, imaging, and diagnostic records of patients with two variants in the WDR19 gene and a form of retinal degeneration were retrospectively reviewed. Two different individuals analyzed the variants in the studied patients using SnapGene (Version 4.3.11), employing both the canonical NGG PAM and the NGA PAM prime editors. RESULTS Four patients from three families each carrying biallelic variants the WDR19 gene were reviewed. Two of the six unique variants identified among the patients were novel. Two identical twin patients presented with a recessive Stargardt (STGD)-like phenotype while the other two patients presented with a clinical picture more characteristic of retinitis pigmentosa (RP). Three of four patients had thickened external limiting membrane (ELM) on spectral-domain optical coherence tomography (SD-OCT). Full-field electroretinograms (ffERG) performed on two patients with the STGD-like phenotype showed a cone-rod pattern of degeneration. Quantitative short-wave fundus autofluorescence (qAF) performed on the two STGD-like patients was within the 95th percentile of normal eyes. CONCLUSIONS WDR19-mediated retinal degeneration is heterogenous in presentation, and in some cases can phenocopy STGD. The foveal sparing phenotype was apparent in three of four patients with relatively preserved visual acuity, which may serve as a retinal prognostic factor in patients with pathogenic variants in WDR19. All six variants evaluated are correctable by prime editing, establishing a foundation for future research in therapeutic development.
Collapse
Affiliation(s)
- Jorge Pincay
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
- State University of New York at Downstate Medical Center, Brooklyn, NY, USA
| | - Bruna Lopes da Costa
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
- Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Pathology & Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University. New York, New York, NY, USA
| | - Peter M J Quinn
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
| | - Marilyn Rodriguez
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ashley Zhou
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
| | - Maximilian D Kong
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
- State University of New York at Downstate Medical Center, Brooklyn, NY, USA
| | - Janet R Sparrow
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
| | - Stephen H Tsang
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA.
- Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Pathology & Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University. New York, New York, NY, USA.
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA.
- Vanderbilt Clinic, Columbia University Irving Medical Center, 622 W 168Th St 3Rd Floor, New York, NY, 10032, USA.
| |
Collapse
|
2
|
Markowitz DM, Affel E, Hajnóczky G, Sergott RC. Future applications of fluorescence lifetime imaging ophthalmoscopy in neuro-ophthalmology, neurology, and neurodegenerative conditions. Front Neurol 2025; 16:1493876. [PMID: 40125394 PMCID: PMC11927091 DOI: 10.3389/fneur.2025.1493876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/07/2025] [Indexed: 03/25/2025] Open
Abstract
Fluorescence lifetime imaging ophthalmoscopy (FLIO) has emerged as an innovative advancement in retinal imaging, with the potential to provide in vivo non-invasive insights into the mitochondrial metabolism of the retina. Traditional retinal imaging, such as optical coherence tomography (OCT) and fundus autofluorescence (FAF) intensity imaging, focus solely on structural changes to the retina. In contrast, FLIO provides data that may reflect retinal fluorophore activity, some of which may indicate mitochondrial metabolism. This review builds upon the existing literature to describe the principles of FLIO and established uses in retinal diseases while introducing the potential for FLIO in neurodegenerative conditions.
Collapse
Affiliation(s)
- Daniel M. Markowitz
- Drexel University College of Medicine, Philadelphia, PA, United States
- William H. Annesley, EyeBrain Center, Vicky and Jack Farber Neuroscience Institute, Thomas Jefferson University, Partnered with Wills Eye Hospital, Philadelphia, PA, United States
| | - Elizabeth Affel
- William H. Annesley, EyeBrain Center, Vicky and Jack Farber Neuroscience Institute, Thomas Jefferson University, Partnered with Wills Eye Hospital, Philadelphia, PA, United States
| | - György Hajnóczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Robert C. Sergott
- William H. Annesley, EyeBrain Center, Vicky and Jack Farber Neuroscience Institute, Thomas Jefferson University, Partnered with Wills Eye Hospital, Philadelphia, PA, United States
| |
Collapse
|
3
|
Goerdt L, Berlin A, Gao L, Swain TA, Kim SS, McGwin G, Clark ME, Kar D, Owsley C, Sloan KR, Curcio CA. Topographic Analysis of Two-Wavelength Autofluorescence Supports Higher Macular Xanthophyll Pigment in AMD Than Aging: ALSTAR2 Baseline. Invest Ophthalmol Vis Sci 2025; 66:61. [PMID: 40162950 PMCID: PMC11956744 DOI: 10.1167/iovs.66.3.61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/26/2025] [Indexed: 04/02/2025] Open
Abstract
Purpose To advance metabolic imaging of the high-risk macula lutea by quantifying the topography of macular pigment optical density (MPOD), measured with two-wavelength autofluorescence (2WAF), and quantitative (short-wavelength) autofluorescence (qAF) intensity, which share the same signal source and cross-retinal light path, in aging, early (e), and intermediate (i) age-related macular degeneration (AMD). Methods 2WAF and qAF images of 384 pseudophakic eyes of 230 persons (mean age, 74.2 ± 5.7 years; 145 female) from ALSTAR2 (AREDS 9-step classification: 170, normal; 118, eAMD; 96 iAMD) were shown as maps (intensity, z-score) and meridian plots. Correlations were determined in Early Treatment Diabetic Retinopathy Study (ETDRS) subfields. Results MPOD was higher in the central subfield (P < 0.01) in iAMD compared to eAMD and normal eyes, and qAF was lower in the central subfield and inner ring (both P < 0.01) in AMD compared to normal eyes. MPOD differed along horizontal versus vertical meridians, depending on disease stage. Pixel-level z-score maps and meridian plots showed distinct annuli of alternating levels of MPOD anchored on the foveal center, unrelated to qAF. Across the central subfield, high 2WAF was associated with low qAF in all disease stages (r = -0.47, r = -0.47, r = -0.42; all P < 0.001). In the inner ring, correlations were significant for normal and eAMD only (r = -0.31, P = 0.004 and r = -0.22, P ≤ 0.001, respectively). Conclusions New analytics support previously reported higher MPOD in AMD compared to normal eyes, especially central subfield and inner ring. MPOD and qAF differ by disease-stage-related topography and correlations, supporting independent use in metabolic imaging of the macula lutea.
Collapse
Affiliation(s)
- Lukas Goerdt
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Andreas Berlin
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Ophthalmology, University of Würzburg, Würzburg, Germany
| | - Liyan Gao
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Thomas A. Swain
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Sarah S. Kim
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Gerald McGwin
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Mark E. Clark
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Deepayan Kar
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Cynthia Owsley
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kenneth R. Sloan
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
4
|
Finger RP, Jungblut J, Just MD, Terheyden JH, Holz FG, Liegl R, Ach T, Wintergerst MWM. Quantitative autofluorescence is increased in clinically unaffected fellow eyes from patients with posterior uveitis. Sci Rep 2025; 15:6952. [PMID: 40011481 PMCID: PMC11865583 DOI: 10.1038/s41598-025-90071-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 02/10/2025] [Indexed: 02/28/2025] Open
Abstract
The purpose of this prospective case-control study is to investigate differences in quantitative autofluorescence (qAF) in clinically affected and unaffected eyes of patients with inactive posterior uveitis compared to healthy, age-matched controls. Patients with posterior uveitis and healthy controls were imaged using fundus autofluorescence (488 nm excitation; Spectralis HRA + OCT; Heidelberg Engineering) to measure qAF values using the proprietary HEYEX software. Mean background qAF (excluding vessels and retinal lesions) across all segments (as previously defined by Delori et al.) and in the segment with the highest mean qAF value were compared between affected and unaffected eyes from patients with posterior uveitis, and healthy age-matched control eyes using the Kruskal-Wallis-test. A total of 83 eyes from 83 patients were included: 33 affected eyes (33 patients with uni-/bilateral posterior uveitis), 21 clinically unaffected eyes (21 patients with unilateral posterior uveitis), and 29 healthy, age-matched control eyes (29 patients). Mean qAF values were significantly higher (p-value < 0.0001) in both clinically affected (177.0 ± 83.8 qAF arbitrary units [qAF a.u.]) and unaffected (173.8 ± 56.4 qAF a.u.) eyes compared to healthy, age-matched controls (135.7 ± 41.8 qAF a.u.). Likewise, mean qAF in the segment with the highest mean qAF value was significantly higher (p-value: <0.01) in affected (243.2 ± 103.1 qAF a.u.) and unaffected eyes (227.1 ± 63.4 qAF a.u.) in comparison to controls (168.9 ± 48.5 qAF a.u.). In conclusion, both clinically affected and unaffected eyes from patients with posterior uveitis demonstrated increased fundus autofluorescence. The results of our study could indicate subclinical inflammation in currently inactive and (yet) unaffected eyes of posterior uveitis patients. This could be caused by accumulation of fluorophores or an increased metabolic activity generated by low-grade inflammation. As these changes may precede future inflammation in yet unaffected eyes, additional longitudinal studies including analysis of eyes with active disease are warranted.
Collapse
Affiliation(s)
- Robert P Finger
- Department of Ophthalmology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
- Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Julie Jungblut
- Department of Ophthalmology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Marie D Just
- Department of Ophthalmology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Jan H Terheyden
- Department of Ophthalmology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Frank G Holz
- Department of Ophthalmology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Raffael Liegl
- Department of Ophthalmology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Thomas Ach
- Department of Ophthalmology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Maximilian W M Wintergerst
- Department of Ophthalmology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany.
- Augenzentrum Grischun, Chur, Switzerland.
| |
Collapse
|
5
|
Curcio CA, Messinger JD, Berlin A, Sloan KR, McLeod DS, Edwards MM, Bijon J, Freund KB. Fundus Autofluorescence Variation in Geographic Atrophy of Age-Related Macular Degeneration: A Clinicopathologic Correlation. Invest Ophthalmol Vis Sci 2025; 66:49. [PMID: 39836402 PMCID: PMC11756612 DOI: 10.1167/iovs.66.1.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
Purpose The purpose of this study was to develop ground-truth histology about contributors to variable fundus autofluorescence (FAF) signal and thus inform patient selection for treating geographic atrophy (GA) in age-related macular degeneration (AMD). Methods One woman with bilateral multifocal GA, foveal sparing, and thick choroids underwent 535 to 580 nm excitation FAF in 6 clinic visits (11 to 6 years before death). The left eye was preserved 5 hours after death. Eye-tracked ex vivo imaging aligned sub-micrometer epoxy resin sections (n = 140, 60 µm apart) with clinic data. Light microscopic morphology corresponding to FAF features assessed included drusen-driven atrophy, persistent hyperautofluorescence (hyperFAF) islands and peninsulas within atrophy, and hyperFAF and hypoautofluorescence (hypoFAF) inner junctional zone (IJZ) and outer junctional zone (OJZ) relative to descent of external limiting membrane (ELM). Atrophy growth rate was calculated. Results HypoFAF atrophic spots appeared in association with drusen, and then expanded and coalesced. Over drusen (n = 45, all calcified), RPE was continuous and thin, photoreceptors were short or absent, and initially intact ELM descended where RPE was absent. In persistent hyperFAF within atrophy and in the OJZ, the RPE was continuous and dysmorphic, photoreceptors were present and short, and BLamD was thick. In the IJZ, mottled FAF corresponded to dissociated RPE atop persistent BLamD. Overall linear growth rate (0.198 mm/ year) typified multifocal GA. Conclusions FAF in GA is locally multifactorial, with photoreceptor shortening potentially promoting hyperFAF by increasing incoming excitation light available to RPE fluorophores. RPE dysmorphia may lead to either longer or shorter pathlength for excitation light. At both atrophy initiation and expansion Müller glia are major participants.
Collapse
Affiliation(s)
- Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Jeffrey D. Messinger
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Andreas Berlin
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- University Hospital Würzburg, Würzburg, Germany
| | - Kenneth R. Sloan
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - D. Scott McLeod
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States
| | - Malia M. Edwards
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States
| | - Jacques Bijon
- Vitreous Retina Macula Consultants of New York, New York, United States
| | - K. Bailey Freund
- Vitreous Retina Macula Consultants of New York, New York, United States
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, New York, United States
| |
Collapse
|
6
|
Cluceru J, Anegondi N, Gao SS, Lee AY, Lad EM, Chakravarthy U, Yang Q, Steffen V, Friesenhahn M, Rabe C, Ferrara D. Topographic Clinical Insights From Deep Learning-Based Geographic Atrophy Progression Prediction. Transl Vis Sci Technol 2024; 13:6. [PMID: 39102242 PMCID: PMC11309039 DOI: 10.1167/tvst.13.8.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 06/05/2024] [Indexed: 08/06/2024] Open
Abstract
Purpose To explore the contributions of fundus autofluorescence (FAF) topographic imaging features to the performance of convolutional neural network-based deep learning (DL) algorithms in predicting geographic atrophy (GA) growth rate. Methods Retrospective study with data from study eyes from three clinical trials (NCT02247479, NCT02247531, NCT02479386) in GA. The algorithm was initially trained with full FAF images, and its performance was considered benchmark. Ablation experiments investigated the contribution of imaging features to the performance of the algorithms. Three FAF image regions were defined relative to GA: Lesion, Rim, and Background. For No Lesion, No Rim, and No Background datasets, a single region of interest was removed at a time. For Lesion, Rim, and Background Shuffled datasets, individual region pixels were randomly shuffled. For Lesion, Rim, and Background Mask datasets, masks of the regions were used. A Convex Hull dataset was generated to evaluate the importance of lesion size. Squared Pearson correlation (r2) was used to compare the predictive performance of ablated datasets relative to the benchmark. Results The Rim region influenced r2 more than the other two regions in all experiments, indicating the most relevant contribution of this region to the performance of the algorithms. In addition, similar performance was observed for all regions when pixels were shuffled or only a mask was used, indicating intensity information was not independently informative without textural context. Conclusions These ablation experiments enabled topographic clinical insights on FAF images from a DL-based GA progression prediction algorithm. Translational Relevance Results from this study may lead to new insights on GA progression prediction.
Collapse
Affiliation(s)
| | | | | | - Aaron Y. Lee
- Roger and Angie Karalis Johnson Retina Center, University of Washington, Seattle, WA, USA
- Department of Ophthalmology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Eleonora M. Lad
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| | - Usha Chakravarthy
- Royal Victoria Hospital (The Belfast Trust), Queens University of Belfast, Belfast, UK
| | - Qi Yang
- Genentech, Inc., South San Francisco, CA, USA
| | | | | | | | | |
Collapse
|
7
|
Müller PL, Treis T, Tufail A, Holz FG. Progression, reliability, predicting parameters and sample size calculations for quantitative fundus autofluorescence measures in ABCA4-related retinopathy. Br J Ophthalmol 2024; 108:760-769. [PMID: 37286357 DOI: 10.1136/bjo-2022-322829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 05/22/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND/AIMS To investigate the progression of quantitative autofluorescence (qAF) measures and the potential as clinical trial endpoint in ABCA4-related retinopathy. METHODS In this longitudinal monocentre study, 64 patients with ABCA4-related retinopathy (age (mean±SD), 34.84±16.36 years) underwent serial retinal imaging, including optical coherence tomography (OCT) and qAF (488 nm excitation) imaging using a modified confocal scanning laser ophthalmoscope with a mean (±SD) review period of 20.32±10.90 months. A group of 110 healthy subjects served as controls. Retest variability, changes of qAF measures over time and its association with genotype and phenotype were analysed. Furthermore, individual prognostic feature importance was assessed, and sample size calculations for future interventional trials were performed. RESULTS Compared with controls, qAF levels of patients were significantly elevated. The test-retest reliability revealed a 95% coefficient of repeatability of 20.37. During the observation time, young patients, patients with a mild phenotype (morphological and functional) and patients with mild mutations showed an absolute and relative increase in qAF values, while patients with advanced disease manifestation (morphological and functional), and homozygous mutations at adulthood revealed a decrease in qAF. Considering these parameters, required sample size and study duration could significantly be reduced. CONCLUSION Under standardised settings with elaborated conditions towards operators and analysis to counterbalance variability, qAF imaging might be reliable, suitable for quantifying disease progression and constitutes a potential clinical surrogate marker in ABCA4-related retinopathy. Trial design based on patients' baseline characteristics and genotype has the potential to provide benefits regarding required cohort size and absolute number of visits.
Collapse
Affiliation(s)
- Philipp L Müller
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Makula Center, Südblick Eye Centers, Augsburg, Germany
- Department of Ophthalmology, Rheinische Friedrich-Wilhelms-Universitat Bonn, Bonn, Germany
| | - Tim Treis
- German Cancer Research Center, Heidelberg, Germany
| | - Adnan Tufail
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Institute of Ophthalmology, University College London, London, UK
| | - Frank G Holz
- Department of Ophthalmology, Rheinische Friedrich-Wilhelms-Universitat Bonn, Bonn, Germany
| |
Collapse
|
8
|
Andreazzoli M, Longoni B, Angeloni D, Demontis GC. Retinoid Synthesis Regulation by Retinal Cells in Health and Disease. Cells 2024; 13:871. [PMID: 38786093 PMCID: PMC11120330 DOI: 10.3390/cells13100871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Vision starts in retinal photoreceptors when specialized proteins (opsins) sense photons via their covalently bonded vitamin A derivative 11cis retinaldehyde (11cis-RAL). The reaction of non-enzymatic aldehydes with amino groups lacks specificity, and the reaction products may trigger cell damage. However, the reduced synthesis of 11cis-RAL results in photoreceptor demise and suggests the need for careful control over 11cis-RAL handling by retinal cells. This perspective focuses on retinoid(s) synthesis, their control in the adult retina, and their role during retina development. It also explores the potential importance of 9cis vitamin A derivatives in regulating retinoid synthesis and their impact on photoreceptor development and survival. Additionally, recent advancements suggesting the pivotal nature of retinoid synthesis regulation for cone cell viability are discussed.
Collapse
Affiliation(s)
| | - Biancamaria Longoni
- Department of Translational Medicine and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy
| | - Debora Angeloni
- The Institute of Biorobotics, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | | |
Collapse
|
9
|
Weber C, Schaetzle LS, Stasik I, von der Emde L, Holz FG, Liegl R. QUANTITATIVE AUTOFLUORESCENCE IN CENTRAL SEROUS CHORIORETINOPATHY. Retina 2024; 44:844-851. [PMID: 38147686 DOI: 10.1097/iae.0000000000004029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/02/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND/PURPOSE Central serous chorioretinopathy (CSC) is associated with pachychoroid and dysfunctional retinal pigment epithelium. Autofluorescence (AF) is typically altered. The authors performed this study to quantify these alterations using quantitative AF (qAF) in patients with CSC and in their fellow eye in comparison with a healthy control group. METHODS Patients with CSC and healthy controls were recruited prospectively. All patients received a full clinical examination including best-corrected visual acuity, enhanced depth imaging-optical coherence tomography, and qAF. Quantitative autofluorescence images were taken with a confocal scanning laser ophthalmoscope (Heidelberg Engineering). Quantitative autofluorescence values were assessed in specified regions of the inner eight and the middle ring of the Delori grid. RESULTS In total, 141 eyes of 77 patients with CSC were included. Ninety eyes had a manifest CSC (group 1) while 51 fellow eyes (group 2) did not show signs of CSC. There were no significant differences of qAF values between these two groups: mean qAF values were 241.3 (inner eight) and 212.8 (middle ring) in group 1 and 235.9 (inner eight) and 210.0 (middle ring) in group 2 ( P = 1.0 and 1.0). We compared these eyes with healthy controls comprising 39 eyes. Quantitative autofluorescence signals (inner eight: 164.7; middle ring: 148.9) differed significantly compared with both CSC manifest ( P < 0.001) and fellow eyes ( P < 0.001). CONCLUSION Our results show that patients with CSC have increased qAF values in both eyes with manifest CSC and asymptomatic, clinically unremarkable fellow eyes in comparison with healthy controls. This finding suggests that qAF alterations are present even before clinical signs can be observed.
Collapse
|
10
|
von der Emde L, Rennen GC, Vaisband M, Hasenauer J, Liegl R, Fleckenstein M, Pfau M, Holz FG, Ach T. Impact of lens autofluorescence and opacification on retinal imaging. BMJ Open Ophthalmol 2024; 9:e001628. [PMID: 38684375 PMCID: PMC11086461 DOI: 10.1136/bmjophth-2023-001628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Retinal imaging, including fundus autofluorescence (FAF), strongly depends on the clearness of the optical media. Lens status is crucial since the ageing lens has both light-blocking and autofluorescence (AF) properties that distort image analysis. Here, we report both lens opacification and AF metrics and the effect on automated image quality assessment. METHODS 227 subjects (range: 19-89 years old) received quantitative AF of the lens (LQAF), Scheimpflug, anterior chamber optical coherence tomography as well as blue/green FAF (BAF/GAF), and infrared (IR) imaging. LQAF values, the Pentacam Nucleus Staging score and the relative lens reflectivity were extracted to estimate lens opacification. Mean opinion scores of FAF and IR image quality were compiled by medical readers. A regression model for predicting image quality was developed using a convolutional neural network (CNN). Correlation analysis was conducted to assess the association of lens scores, with retinal image quality derived from human or CNN annotations. RESULTS Retinal image quality was generally high across all imaging modalities (IR (8.25±1.99) >GAF >BAF (6.6±3.13)). CNN image quality prediction was excellent (average mean absolute error (MAE) 0.9). Predictions were comparable to human grading. Overall, LQAF showed the highest correlation with image quality grading criteria for all imaging modalities (eg, Pearson correlation±CI -0.35 (-0.50 to 0.18) for BAF/LQAF). BAF image quality was most vulnerable to an increase in lenticular metrics, while IR (-0.19 (-0.38 to 0.01)) demonstrated the highest resilience. CONCLUSION The use of CNN-based retinal image quality assessment achieved excellent results. The study highlights the vulnerability of BAF to lenticular remodelling. These results can aid in the development of cut-off values for clinical studies, ensuring reliable data collection for the monitoring of retinal diseases.
Collapse
Affiliation(s)
- Leon von der Emde
- Department of Ophthalmology, University Hospital Bonn, Bonn, NRW, Germany
- University of Bonn, Bonn, Nordrhein-Westfalen, Germany
| | - Geena C Rennen
- Department of Ophthalmology, University Hospital Bonn, Bonn, NRW, Germany
| | - Marc Vaisband
- Life & Medical Sciences Institute, University of Bonn, Bonn, Nordrhein-Westfalen, Germany
- Department of Internal Medicine III with Haematology, Laboratory for Immunological and Molecular Cancer Research, Bonn, Germany
| | - Jan Hasenauer
- Life & Medical Sciences Institute, Bonn, Germany
- Helmholtz Center Munich- German Research Center for Environmental Health, Institute of Computational Biology, Bonn, Germany
| | - Raffael Liegl
- Department of Ophthalmology, University Hospital Bonn, Bonn, NRW, Germany
| | - Monika Fleckenstein
- Department of Ophthalmology, University Hospital Bonn, Bonn, NRW, Germany
- Department of Ophthalmology and Visual Science, University of Utah Health, Salt Lake City, Utah, USA
| | - Maximilian Pfau
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Basel-Stadt, Switzerland
| | - Frank G Holz
- Department of Ophthalmology, Rheinische Friedrich-Wilhelms-Universitat Bonn, Bonn, Germany
| | - Thomas Ach
- Department of Ophthalmology, University Hospital Bonn, Bonn, NRW, Germany
| |
Collapse
|
11
|
Berlin A, Fischer NA, Clark ME, Kar D, Swain TA, Martindale RM, McGwin G, Crosson JN, Sloan KR, Owsley C, Curcio CA. Quantitative Autofluorescence at AMD's Beginnings Highlights Retinal Topography and Grading System Differences: ALSTAR2 Baseline. Ophthalmologica 2024; 247:1-13. [PMID: 38599207 PMCID: PMC11499297 DOI: 10.1159/000538696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/24/2024] [Indexed: 04/12/2024]
Abstract
INTRODUCTION The aims of the study were to describe baseline quantitative (short-wavelength) autofluorescence (qAF) findings in a large pseudophakic cohort at age-related macular degeneration (AMD)'s beginnings and to assess qAF8 as an outcome measure and evaluate Age-Related Eye Disease Study (AREDS) and Beckman grading systems. METHODS In the ALSTAR2 baseline cohort (NCT04112667), 346 pseudophakic eyes of 188 persons (74.0 ± 5.5 years) were classified as normal (N = 160 by AREDS, 158 by Beckman), early AMD (eAMD) (N = 104, 66), and intermediate AMD (iAMD) (N = 82, 122). Groups were compared via mean qAF intensities in a 6°-8° annulus (qAF8) and maps of differences between observations and the overall mean, divided by standard deviation (Z-score). RESULTS qAF8 did not differ significantly among diagnostic groups by either stratification (p = 0.0869 AREDS; p = 0.0569 by Beckman). Notably, 45 eyes considered eAMD by AREDS became iAMD by Beckman. For AREDS-stratified eyes, Z-score maps showed higher centrally located qAF for normal, near the mean in eAMD, and lower values for iAMD. Maps deviated from this pattern for Beckman-stratified eyes. CONCLUSIONS In a large sample of pseudophakic eyes, qAF8 does not differ overall from normal aging to iAMD but also does not capture the earliest AMD activity in the macula lutea. AREDS classification gives results more consistent with a slow decline in histologic autofluorescence than Beckman classification.
Collapse
Affiliation(s)
- Andreas Berlin
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA,
- University Hospital Würzburg, Würzburg, Germany,
| | - Nathan A Fischer
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Retina Consultants of Alabama, Birmingham, Alabama, USA
| | - Mark E Clark
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Deepayan Kar
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Thomas A Swain
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Richard M Martindale
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Retina Consultants of Alabama, Birmingham, Alabama, USA
| | - Gerald McGwin
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jason N Crosson
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Retina Consultants of Alabama, Birmingham, Alabama, USA
| | - Kenneth R Sloan
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Cynthia Owsley
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
12
|
von der Emde L, Rennen GC, Vaisband M, Hasenauer J, Liegl R, Fleckenstein M, Pfau M, Holz FG, Ach T. Personalized Lens Correction Improves Quantitative Fundus Autofluorescence Analysis. Invest Ophthalmol Vis Sci 2024; 65:13. [PMID: 38466288 DOI: 10.1167/iovs.65.3.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
Purpose Quantitative fundus autofluorescence (QAF) currently deploys an age-based score to correct for lens opacification. However, in elderly people, lens opacification varies strongly between individuals of similar age, and innate lens autofluorescence is not included in the current correction formula. Our goal was to develop and compare an individualized formula. Methods One hundred thirty participants were examined cross-sectionally, and a subset of 30 participants received additional multimodal imaging 2-week post-cataract-surgery. Imaging included the Scheimpflug principle, anterior chamber optical coherence tomography (AC-OCT), lens quantitative autofluorescence (LQAF), and retinal QAF imaging. Among the subset, least absolute shrinkage and selection operator regression and backward selection was implemented to determine which lens score best predicts the QAF value after lens extraction. Subsequently, a spline mixed model was applied to the whole cohort to quantify the influence of LQAF and Scheimpflug on QAF. Results Age and LQAF measurements were found to be the most relevant variables, whereas AC-OCT measurements and Scheimpflug were eliminated by backward selection. Both an increase in Scheimpflug and LQAF values were associated with a decrease in QAF. The prediction error of the spline model (mean absolute error [MAE] ± standard deviation) of 32.2 ± 23.4 (QAF a.u.) was markedly lower compared to the current age-based formula MAE of 96.1 ± 93.5. Both smooth terms, LQAF (P < 0.01) and Scheimpflug (P < 0.001), were significant for the spline mixed model. Conclusions LQAF imaging proved to be the most predictive for the impact of the natural lens on QAF imaging. The application of lens scores in the clinic could improve the accuracy of QAF imaging interpretation and might allow including aged patients in future QAF studies.
Collapse
Affiliation(s)
- Leon von der Emde
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Geena C Rennen
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Marc Vaisband
- University of Bonn, Life and Medical Sciences Institute, Bonn, Germany
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center; Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR); Paracelsus Medical University, Salzburg, Austria, Cancer Cluster Salzburg, Austria
| | - Jan Hasenauer
- University of Bonn, Life and Medical Sciences Institute, Bonn, Germany
- Helmholtz Center Munich-German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany
| | - Raffael Liegl
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Monika Fleckenstein
- Department of Ophthalmology and Visual Science, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
| | - Maximilian Pfau
- Institute of Molecular and Clinical Ophthalmology Basel, Mittlere Strasse 91, Basel, Switzerland
| | - Frank G Holz
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Thomas Ach
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
13
|
Bourauel L, Vaisband M, von der Emde L, Bermond K, Tarau IS, Heintzmann R, Holz FG, Curcio CA, Hasenauer J, Ach T. Spectral Analysis of Human Retinal Pigment Epithelium Cells in Healthy and AMD Eyes. Invest Ophthalmol Vis Sci 2024; 65:10. [PMID: 38170540 PMCID: PMC10768704 DOI: 10.1167/iovs.65.1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Purpose Retinal pigment epithelium (RPE) cells show strong autofluorescence (AF). Here, we characterize the AF spectra of individual RPE cells in healthy eyes and those affected by age-related macular degeneration (AMD) and investigate associations between AF spectral response and the number of intracellular AF granules per cell. Methods RPE-Bruch's membrane flatmounts of 22 human donor eyes, including seven AMD-affected eyes (early AMD, three; geographic atrophy, one; neovascular, three) and 15 unaffected macula (<51 years, eight; >80 years, seven), were imaged at the fovea, perifovea, and near-periphery using confocal AF microscopy (excitation 488 nm), and emission spectra were recorded (500-710 nm). RPE cells were manually segmented with computer assistance and stratified by disease status, and emission spectra were analyzed using cubic spline transforms. Intracellular granules were manually counted and classified. Linear mixed models were used to investigate associations between spectra and the number of intracellular granules. Results Spectra of 5549 RPE cells were recorded. The spectra of RPE cells in healthy eyes showed similar emission curves that peaked at 580 nm for fovea and perifovea and at 575 and 580 nm for near-periphery. RPE spectral curves in AMD eyes differed significantly, being blue shifted by 10 nm toward shorter wavelengths. No significant association coefficients were found between wavelengths and granule counts. Conclusions This large series of RPE cell emission spectra at precisely predefined retinal locations showed a hypsochromic spectral shift in AMD. Combining different microscopy techniques, our work has identified cellular RPE spectral AF and subcellular granule properties that will inform future in vivo investigations using single-cell imaging.
Collapse
Affiliation(s)
- Leonie Bourauel
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Marc Vaisband
- Institute of Life & Medical Sciences, University of Bonn, Bonn, Germany
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute Laboratory for Immunological and Molecular Cancer Research, Paracelsus Medical University, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | | | - Katharina Bermond
- Department of Ophthalmology, Ludwigshafen Hospital, Ludwigshafen, Germany
| | - Ioana Sandra Tarau
- Department of Ophthalmology, Asklepios Klinik Nord - Heidberg, Hamburg, Germany
| | - Rainer Heintzmann
- Leibniz Institute of Photonic Technology, Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Jena, Germany
| | - Frank G. Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Christine A. Curcio
- Department of Ophthalmology, University of Alabama at Birmingham, Alabama, Alabama, United States
| | - Jan Hasenauer
- Institute of Life & Medical Sciences, University of Bonn, Bonn, Germany
| | - Thomas Ach
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| |
Collapse
|
14
|
Mousavi M, Mousavi A, Jamei B, Sameni H, Zarbakhsh S, Aboutaleb Kadkhodaeian H. Classification, location, and intensity of granules in retinal pigment epithelium following sodium iodate injection in rat animal model. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:286-296. [PMID: 38333749 PMCID: PMC10849205 DOI: 10.22038/ijbms.2023.71194.15465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/23/2023] [Indexed: 02/10/2024]
Abstract
Objectives Age-related macular degeneration (AMD) is one of the eye diseases that can affect a person's central vision. Retinal pigment epithelium (RPE) cells are damaged in this medical condition and some pigments are presented in these cells. Here, we aimed to investigate melanin and lipofuscin granules of RPE cells as a precursor of AMD. Materials and Methods Hooded rats (n=18) were divided into two groups and received 100 μl of sodium iodate (SI) into the retro-orbital sinus of their eyes at 40 and 60 mg/kg doses. The total number of melanin and lipofuscin granules, different types of granules, cytoplasmic dispersion of granules as well as morphological changes in the shape and number of nuclei of RPE cells were evaluated over the course of 1-30 days. Results The total number of melanin pigments increases over time at a dose of 40 mg/kg and decreases at a dose of 60 mg/kg. Also, the total number of lipofuscin granules in 40 mg/kg increases over time and decreases in 60 mg/kg. Autofluorescent intensity (AF) is also increased at 40 mg/kg, but at 60 mg/kg, the highest intensity is on day 7. Also, the highest number of multinucleated giant cells was on day 7 at 60 mg/kg and the most changes in cell appearance due to sodium iodate injection were seen on the first day after injection. Conclusion We demonstrated that granules and autofluorescent intensity appear to decrease at high doses of sodium iodate, which is similar to the advanced stage of the AMD disease, where the number of granules and AF intensity increase in the middle and even early stages of the disease.
Collapse
Affiliation(s)
- Mahboube Mousavi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Anatomy, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Aliasghar Mousavi
- Visual Health Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Behnam Jamei
- Neurosciences Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Sameni
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Anatomy, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Sam Zarbakhsh
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Anatomy, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hamid Aboutaleb Kadkhodaeian
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Anatomy, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Visual Health Center, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
15
|
Różanowska MB. Lipofuscin, Its Origin, Properties, and Contribution to Retinal Fluorescence as a Potential Biomarker of Oxidative Damage to the Retina. Antioxidants (Basel) 2023; 12:2111. [PMID: 38136230 PMCID: PMC10740933 DOI: 10.3390/antiox12122111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Lipofuscin accumulates with age as intracellular fluorescent granules originating from incomplete lysosomal digestion of phagocytosed and autophagocytosed material. The purpose of this review is to provide an update on the current understanding of the role of oxidative stress and/or lysosomal dysfunction in lipofuscin accumulation and its consequences, particularly for retinal pigment epithelium (RPE). Next, the fluorescence of lipofuscin, spectral changes induced by oxidation, and its contribution to retinal fluorescence are discussed. This is followed by reviewing recent developments in fluorescence imaging of the retina and the current evidence on the prognostic value of retinal fluorescence for the progression of age-related macular degeneration (AMD), the major blinding disease affecting elderly people in developed countries. The evidence of lipofuscin oxidation in vivo and the evidence of increased oxidative damage in AMD retina ex vivo lead to the conclusion that imaging of spectral characteristics of lipofuscin fluorescence may serve as a useful biomarker of oxidative damage, which can be helpful in assessing the efficacy of potential antioxidant therapies in retinal degenerations associated with accumulation of lipofuscin and increased oxidative stress. Finally, amendments to currently used fluorescence imaging instruments are suggested to be more sensitive and specific for imaging spectral characteristics of lipofuscin fluorescence.
Collapse
Affiliation(s)
- Małgorzata B. Różanowska
- School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, Wales, UK;
- Cardiff Institute for Tissue Engineering and Repair (CITER), Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, Wales, UK
| |
Collapse
|
16
|
von der Emde L, Mallwitz M, Vaisband M, Hasenauer J, Saßmannshausen M, Terheyden JH, Sloan KR, Schmitz-Valckenberg S, Finger RP, Holz FG, Ach T. Retest variability and patient reliability indices of quantitative fundus autofluorescence in age-related macular degeneration: a MACUSTAR study report. Sci Rep 2023; 13:17417. [PMID: 37833348 PMCID: PMC10576044 DOI: 10.1038/s41598-023-43417-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
This study aimed to determine the retest variability of quantitative fundus autofluorescence (QAF) in patients with and without age-related macular degeneration (AMD) and evaluate the predictive value of patient reliability indices on retest reliability. A total of 132 eyes from 68 patients were examined, including healthy individuals and those with various stages of AMD. Duplicate QAF imaging was conducted at baseline and 2 weeks later across six study sites. Intraclass correlation (ICC) analysis was used to evaluate the consistency of imaging, and mean opinion scores (MOS) of image quality were generated by two researchers. The contribution of MOS and other factors to retest variation was assessed using mixed-effect linear models. Additionally, a Random Forest Regressor was trained to evaluate the extent to which manual image grading of image quality could be replaced by automated assessment (inferred MOS). The results showed that ICC values were high for all QAF images, with slightly lower values in AMD-affected eyes. The average inter-day ICC was found to be 0.77 for QAF segments within the QAF8 ring and 0.74 for peripheral segments. Image quality was predicted with a mean absolute error of 0.27 on a 5-point scale, and of all evaluated reliability indices, MOS/inferred MOS proved most important. The findings suggest that QAF allows for reliable testing of autofluorescence levels at the posterior pole in patients with AMD in a multicenter, multioperator setting. Patient reliability indices could serve as eligibility criteria for clinical trials, helping identify patients with adequate retest reliability.
Collapse
Affiliation(s)
- Leon von der Emde
- Department of Ophthalmology, University Hospital Bonn, University of Bonn, Ernst-Abbe-Straße 2, 53127, Bonn, Germany
| | - Merten Mallwitz
- Department of Ophthalmology, University Hospital Bonn, University of Bonn, Ernst-Abbe-Straße 2, 53127, Bonn, Germany
| | - Marc Vaisband
- Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria
| | - Jan Hasenauer
- Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
- Helmholtz Center Munich-German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany
| | - Marlene Saßmannshausen
- Department of Ophthalmology, University Hospital Bonn, University of Bonn, Ernst-Abbe-Straße 2, 53127, Bonn, Germany
| | - Jan Henrik Terheyden
- Department of Ophthalmology, University Hospital Bonn, University of Bonn, Ernst-Abbe-Straße 2, 53127, Bonn, Germany
| | - Kenneth R Sloan
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Alabama, AL, USA
| | | | - Robert P Finger
- Department of Ophthalmology, University Hospital Bonn, University of Bonn, Ernst-Abbe-Straße 2, 53127, Bonn, Germany
| | - Frank G Holz
- Department of Ophthalmology, University Hospital Bonn, University of Bonn, Ernst-Abbe-Straße 2, 53127, Bonn, Germany
| | - Thomas Ach
- Department of Ophthalmology, University Hospital Bonn, University of Bonn, Ernst-Abbe-Straße 2, 53127, Bonn, Germany.
| |
Collapse
|
17
|
Parmann R, Tsang SH, Sparrow JR. Primary versus Secondary Elevations in Fundus Autofluorescence. Int J Mol Sci 2023; 24:12327. [PMID: 37569703 PMCID: PMC10419315 DOI: 10.3390/ijms241512327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
The method of quantitative fundus autofluorescence (qAF) can be used to assess the levels of bisretinoids in retinal pigment epithelium (RPE) cells so as to aid the interpretation and management of a variety of retinal conditions. In this review, we focused on seven retinal diseases to highlight the possible pathways to increased fundus autofluorescence. ABCA4- and RDH12-associated diseases benefit from known mechanisms whereby gene malfunctioning leads to elevated bisretinoid levels in RPE cells. On the other hand, peripherin2/RDS-associated disease (PRPH2/RDS), retinitis pigmentosa (RP), central serous chorioretinopathy (CSC), acute zonal occult outer retinopathy (AZOOR), and ceramide kinase like (CERKL)-associated retinal degeneration all express abnormally high fundus autofluorescence levels without a demonstrated pathophysiological pathway for bisretinoid elevation. We suggest that, while a known link from gene mutation to increased production of bisretinoids (as in ABCA4- and RDH12-associated diseases) causes primary elevation in fundus autofluorescence, a secondary autofluorescence elevation also exists, where an impairment and degeneration of photoreceptor cells by various causes leads to an increase in bisretinoid levels in RPE cells.
Collapse
Affiliation(s)
- Rait Parmann
- Departments of Ophthalmology, Columbia University, 635 W. 165th Street, New York, NY 10032, USA
| | - Stephen H. Tsang
- Departments of Ophthalmology, Columbia University, 635 W. 165th Street, New York, NY 10032, USA
- Departments of Pathology and Cell Biology, Columbia University, 635 W. 165th Street, New York, NY 10032, USA
| | - Janet R. Sparrow
- Departments of Ophthalmology, Columbia University, 635 W. 165th Street, New York, NY 10032, USA
- Departments of Pathology and Cell Biology, Columbia University, 635 W. 165th Street, New York, NY 10032, USA
| |
Collapse
|
18
|
Radun V, Berlin A, Tarau IS, Kleefeldt N, Reichel C, Hillenkamp J, Holz FG, Sloan KR, Saßmannshausen M, Ach T. Quantitative Fundus Autofluorescence in Systemic Chloroquine/Hydroxychloroquine Therapy: One Year Follow-Up. Transl Vis Sci Technol 2023; 12:8. [PMID: 37418250 PMCID: PMC10337803 DOI: 10.1167/tvst.12.7.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023] Open
Abstract
Purpose Systemic chloroquine/hydroxychloroquine (CQ/HCQ) can cause severe ocular side effects including bull's eye maculopathy (BEM). Recently, we reported higher quantitative autofluorescence (QAF) levels in patients with CQ/HCQ intake. Here, QAF in patients taking CQ/HCQ in a 1-year follow-up is reported. Methods Fifty-eight patients currently or previously treated with CQ/HCQ (cumulative doses 94-2435 g) and 32 age- and sex-matched healthy subjects underwent multimodal retinal imaging (infrared, red free, fundus autofluorescence [FAF], QAF [488 nm], and spectral-domain optical coherence tomography (SD-OCT). For analysis, custom written FIJI plugins were used for image processing, multimodal image stacks assembling, and QAF calculation. Results Thirty patients (28 without BEM and 2 with BEM, age range = 25-69 years) were followed up (370 ± 63 days). QAF values in patients taking CQ/HCQ showed a significant increase between baseline and follow-up examination: 282.0 ± 67.9 to 297.7 ± 70.0 (QAF a.u.), P = 0.002. An increase up to 10% was observed in the superior macular hemisphere. Eight individuals (including 1 patient with BEM) had a pronounced QAF increase of up to 25%. Compared to healthy controls, QAF levels in patients taking CQ/HCQ were significantly increased (P = 0.04). Conclusions Our study confirms our previous finding of increased QAF in patients taking CQ/HCQ with a further significant QAF increase from baseline to follow-up. Whether pronounced QAF increase might predispose for rapid progression toward structural changes and BEM development is currently investigated in ongoing studies. Translational Relevance In addition to standard screening tools during systemic CQ/HCQ treatment, QAF imaging might be useful in CQ/HCQ monitoring and could serve as a screening tool in the future.
Collapse
Affiliation(s)
- Victoria Radun
- University Hospital Würzburg, Department of Ophthalmology, Würzburg, Germany
| | - Andreas Berlin
- University Hospital Würzburg, Department of Ophthalmology, Würzburg, Germany
| | - Ioana-Sandra Tarau
- University Hospital Würzburg, Department of Ophthalmology, Würzburg, Germany
- Asklepios Hospital Hamburg, Department of Ophthalmology, Hamburg, Germany
| | - Nikolai Kleefeldt
- University Hospital Würzburg, Department of Ophthalmology, Würzburg, Germany
| | - Clara Reichel
- University Hospital Würzburg, Department of Ophthalmology, Würzburg, Germany
| | - Jost Hillenkamp
- University Hospital Würzburg, Department of Ophthalmology, Würzburg, Germany
| | - Frank G Holz
- University Hospital Bonn, Department of Ophthalmology, Bonn, Germany
| | - Kenneth R Sloan
- Asklepios Hospital Hamburg, Department of Ophthalmology, Hamburg, Germany
| | | | - Thomas Ach
- University Hospital Würzburg, Department of Ophthalmology, Würzburg, Germany
- University Hospital Bonn, Department of Ophthalmology, Bonn, Germany
| |
Collapse
|
19
|
Birtel J, Bauer T, Pauleikhoff L, Rüber T, Gliem M, Charbel Issa P. Fundus autofluorescence imaging using red excitation light. Sci Rep 2023; 13:9916. [PMID: 37336979 DOI: 10.1038/s41598-023-36217-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 05/31/2023] [Indexed: 06/21/2023] Open
Abstract
Retinal disease accounts significantly for visual impairment and blindness. An important role in the pathophysiology of retinal disease and aging is attributed to lipofuscin, a complex of fluorescent metabolites. Fundus autofluorescence (AF) imaging allows non-invasive mapping of lipofuscin and is a key technology to diagnose and monitor retinal disease. However, currently used short-wavelength (SW) excitation light has several limitations, including glare and discomfort during image acquisition, reduced image quality in case of lens opacities, limited visualization of the central retina, and potential retinal light toxicity. Here, we establish a novel imaging modality which uses red excitation light (R-AF) and overcomes these drawbacks. R-AF images are high-quality, high-contrast fundus images and image interpretation may build on clinical experience due to similar appearance of pathology as on SW-AF images. Additionally, R-AF images may uncover disease features that previously remained undetected. The R-AF signal increases with higher abundance of lipofuscin and does not depend on photopigment bleaching or on the amount of macular pigment. Improved patient comfort, limited effect of cataract on image quality, and lack of safety concerns qualify R-AF for routine clinical monitoring, e.g. for patients with age-related macular degeneration, Stargardt disease, or for quantitative analysis of AF signal intensity.
Collapse
Affiliation(s)
- Johannes Birtel
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Bauer
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Laurenz Pauleikhoff
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Theodor Rüber
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Martin Gliem
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Peter Charbel Issa
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK.
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
20
|
Cheong KX, Ong CJT, Chandrasekaran PR, Zhao J, Teo KYC, Mathur R. Review of Retinal Imaging Modalities for Hydroxychloroquine Retinopathy. Diagnostics (Basel) 2023; 13:diagnostics13101752. [PMID: 37238236 DOI: 10.3390/diagnostics13101752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
This review provides an overview of conventional and novel retinal imaging modalities for hydroxychloroquine (HCQ) retinopathy. HCQ retinopathy is a form of toxic retinopathy resulting from HCQ use for a variety of autoimmune diseases, such as rheumatoid arthritis and systemic lupus erythematosus. Each imaging modality detects a different aspect of HCQ retinopathy and shows a unique complement of structural changes. Conventionally, spectral-domain optical coherence tomography (SD-OCT), which shows loss or attenuation of the outer retina and/or retinal pigment epithelium-Bruch's membrane complex, and fundus autofluorescence (FAF), which shows parafoveal or pericentral abnormalities, are used to assess HCQ retinopathy. Additionally, several variations of OCT (retinal and choroidal thickness measurements, choroidal vascularity index, widefield OCT, en face imaging, minimum intensity analysis, and artificial intelligence techniques) and FAF techniques (quantitative FAF, near-infrared FAF, fluorescence lifetime imaging ophthalmoscopy, and widefield FAF) have been applied to assess HCQ retinopathy. Other novel retinal imaging techniques that are being studied for early detection of HCQ retinopathy include OCT angiography, multicolour imaging, adaptive optics, and retromode imaging, although further testing is required for validation.
Collapse
Affiliation(s)
- Kai Xiong Cheong
- Singapore Eye Research Institute, Singapore National Eye Centre, 11 Third Hospital Avenue, Singapore 168751, Singapore
| | - Charles Jit Teng Ong
- Singapore Eye Research Institute, Singapore National Eye Centre, 11 Third Hospital Avenue, Singapore 168751, Singapore
| | - Priya R Chandrasekaran
- Singapore Eye Research Institute, Singapore National Eye Centre, 11 Third Hospital Avenue, Singapore 168751, Singapore
| | - Jinzhi Zhao
- Singapore Eye Research Institute, Singapore National Eye Centre, 11 Third Hospital Avenue, Singapore 168751, Singapore
| | - Kelvin Yi Chong Teo
- Singapore Eye Research Institute, Singapore National Eye Centre, 11 Third Hospital Avenue, Singapore 168751, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore 169857, Singapore
| | - Ranjana Mathur
- Singapore Eye Research Institute, Singapore National Eye Centre, 11 Third Hospital Avenue, Singapore 168751, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
21
|
Kim HJ, Zhao J, Walewski JL, Sparrow JR. A High Fat Diet Fosters Elevated Bisretinoids. J Biol Chem 2023; 299:104784. [PMID: 37146972 DOI: 10.1016/j.jbc.2023.104784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/07/2023] Open
Abstract
High dietary fat intake is associated with metabolic dysregulation, but little is known regarding the effects of a high fat diet (HFD) on photoreceptor cell functioning. We explored the intersection of a high fat diet (HFD) and the visual cycle adducts that form in photoreceptor cells by non-enzymatic reactions. In black C57BL/6J mice and albino C57BL/6Jc2j mice raised on a high fat diet until age 3, 6 or 12 months, chromatographically quantified bisretinoids were increased relative to mice on a standard diet. In vivo measurement of fundus autofluorescence, the source of which is bisretinoid, also revealed a significant increase in the HFD-mice. Additionally, mice provided with a diet high in fat presented with elevated retinol-binding protein 4 (RBP4) the protein responsible for transporting retinol in plasma. Vitamin A was elevated in plasma although not in ocular tissue. Bisretinoids form in photoreceptor cell outer segments by random reactions of retinaldehyde with phosphatidylethanolamine. We found that the latter phospholipid was significantly increased in mice fed a HFD versus mice on a control diet. In leptin-deficient ob/ob mice, a genetic model of obesity, plasma levels of Rbp4 protein were higher but bisretinoids in retina were not elevated. Photoreceptor cell viability measured as outer nuclear layer thickness was reduced in the ob/ob mice relative to wild-type. The accelerated formation of bisretinoid we observed in diet induced obese mice is related to the high fat intake and to increased delivery of vitamin A to the visual cycle.
Collapse
Affiliation(s)
- Hye Jin Kim
- Departments of Ophthalmology, Columbia University Medical Center, 635 W. 165(th) Street, New York NY, 10032
| | - Jin Zhao
- Departments of Ophthalmology, Columbia University Medical Center, 635 W. 165(th) Street, New York NY, 10032
| | - Jose L Walewski
- Departments of Medicine, Columbia University Medical Center, 635 W. 165(th) Street, New York NY, 10032
| | - Janet R Sparrow
- Departments of Ophthalmology, Columbia University Medical Center, 635 W. 165(th) Street, New York NY, 10032; Departments of Pathology and Cell Biology, Columbia University Medical Center, 635 W. 165(th) Street, New York NY, 10032.
| |
Collapse
|
22
|
Paavo M, Lee W, Parmann R, Lima de Carvalho JR, Zernant J, Tsang SH, Allikmets R, Sparrow JR. Insights Into PROM1-Macular Disease Using Multimodal Imaging. Invest Ophthalmol Vis Sci 2023; 64:27. [PMID: 37093133 PMCID: PMC10148657 DOI: 10.1167/iovs.64.4.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/15/2023] [Indexed: 04/25/2023] Open
Abstract
Purpose To describe the features of genetically confirmed PROM1-macular dystrophy in multimodal images. Methods Thirty-six (36) eyes of 18 patients (5-66 years; mean age, 42.4 years) were prospectively studied by clinical examination and multimodal imaging. Short-wavelength autofluorescence (SW-AF) and quantitative fundus autofluorescence (qAF) images were acquired with a scanning laser ophthalmoscope (HRA+OCT, Heidelberg Engineering) modified by insertion of an internal autofluorescent reference. Further clinical testing included near-infrared autofluorescence (NIR-AF; HRA2, Heidelberg Engineering) with semiquantitative analysis, spectral domain-optical coherence tomography (HRA+OCT) and full-field electroretinography. All patients were genetically confirmed by exome sequencing. Results All 18 patients presented with varying degrees of maculopathy. One family with individuals affected across two generations exhibited granular fleck-like deposits across the posterior pole. Areas of granular deposition in SW-AF and NIR-AF corresponded to intermittent loss of the ellipsoid zone, whereas discrete regions of hypoautofluorescence corresponded with a loss of outer retinal layers in spectral-domain optical coherence tomography scans. For 18 of the 20 eyes, qAF levels within the macula were within the 95% confidence intervals of healthy age-matched individuals; nor was the mean NIR-AF signal increased relative to healthy eyes. Conclusions Although PROM1-macular dystrophy (Stargardt disease 4) can exhibit phenotypic overlap with recessive Stargardt disease, significantly increased SW-AF levels were not detected. As such, elevated bisretinoid lipofuscin may not be a feature of the pathophysiology of PROM1 disease. The qAF approach could serve as a method of early differential diagnosis and may help to identify appropriate disease targets as therapeutics become available to treat inherited retinal disease.
Collapse
Affiliation(s)
- Maarjaliis Paavo
- Departments of Ophthalmology, Columbia University Medical Center, New York, New York, United States
- Helsinki University Eye Hospital, Helsinki, Finland
| | - Winston Lee
- Departments of Ophthalmology, Columbia University Medical Center, New York, New York, United States
| | - Rait Parmann
- Departments of Ophthalmology, Columbia University Medical Center, New York, New York, United States
| | | | - Jana Zernant
- Departments of Ophthalmology, Columbia University Medical Center, New York, New York, United States
| | - Stephen H. Tsang
- Departments of Ophthalmology, Columbia University Medical Center, New York, New York, United States
- Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States
| | - Rando Allikmets
- Departments of Ophthalmology, Columbia University Medical Center, New York, New York, United States
- Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States
| | - Janet R. Sparrow
- Departments of Ophthalmology, Columbia University Medical Center, New York, New York, United States
- Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States
| |
Collapse
|
23
|
Quantitative Autofluorescence in Non-Neovascular Age Related Macular Degeneration. Biomedicines 2023; 11:biomedicines11020560. [PMID: 36831096 PMCID: PMC9952913 DOI: 10.3390/biomedicines11020560] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Quantitative autofluorescence (qAF8) level is a presumed surrogate marker of lipofuscin content in the retina. We investigated the changes in the qAF8 levels in non-neovascular AMD. In this prospective cohort study, Caucasians aged ≥50 years with varying severity of non-neovascular AMD in at least one eye and Snellen visual acuity ≥6/18 were recruited. The qAF8 levels were analysed in the middle eight segments of the Delori pattern (HEYEX software, Heidelberg, Germany). The AMD categories were graded using both the Beckman classification and multimodal imaging (MMI) to include the presence of subretinal drusenoid deposits (SDD). A total of 353 eyes from 231 participants were analyzed. Compared with the age-matched controls, the qAF8 values decreased in the eyes with AMD (adjusted % difference = -19.7% [95% CI -28.8%, -10.4%]; p < 0.001) and across the AMD categories, (adjusted % differences; Early, -13.1% (-24.4%, -1%), p = 0.04; intermediate AMD (iAMD), -22.9% (-32.3%, -13.1%), p < 0.001; geographic atrophy -25.2% (-38.1%, -10.4%), p = 0.002). On MMI, the qAF8 was reduced in the AMD subgroups relative to the controls, (adjusted % differences; Early, -5.8% (-18.9%, 8.3%); p = 0.40; iAMD, -26.7% (-36.2%, -15.6%); p < 0.001; SDD, -23.7% (-33.6%, -12.2%); p < 0.001; atrophy, -26.7% (-39.3%, -11.3%), p = 0.001). The qAF8 levels declined early in AMD and were not significantly different between the severity levels of non-neovascular AMD, suggesting the early and sustained loss of function of the retinal pigment epithelium in AMD.
Collapse
|
24
|
Dhooge PPA, Möller PT, Meland N, Stingl K, Boon CJF, Lotery AJ, Parodi MB, Herrmann P, Klein W, Fsadni MG, Wheeler-Schilling TH, Holz FG, Hoyng CB, Schmitz-Valckenberg S. Repeatability of Quantitative Autofluorescence Imaging in a Multicenter Study Involving Patients With Recessive Stargardt Disease 1. Transl Vis Sci Technol 2023; 12:1. [PMID: 36723966 PMCID: PMC9904328 DOI: 10.1167/tvst.12.2.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 12/29/2022] [Indexed: 02/02/2023] Open
Abstract
Purpose This study assesses the repeatability of quantitative autofluorescence (qAF) in a multicenter setting and evaluates qAF as the end point for clinical trials in recessive Stargardt disease 1 (STGD1). Methods A total of 102 patients with STGD1 underwent qAF imaging as part of the Stargardt Remofuscin Treatment Trial (STARTT; EudraCT No. 2018-001496-20). For 166 eyes, we obtained qAF imaging at 2 visits, with 2 recordings per visit. The qAF8 values were independently determined by the study site and a central reading center. Intra- and inter-visit reproducibility, as well as interobserver (study site versus reading center) reproducibility were obtained using intraclass correlation (ICC), one-sample t-test, and Bland-Altman coefficient of repeatability. Results The qAF repeatability was ± 26.1% for intra-visit, ± 40.5% for inter-visit, and ± 20.2% for the interobserver reproducibility measures. Intra-visit repeatability was good to excellent for all sites (ICC of 0.88-0.96). Variability between visits was higher with an overall ICC of 0.76 (0.69-0.81). We observed no significant difference in qAF values across sites between visits (7.06 ± 93.33, P = 0.238). Conclusions Real-life test-retest variability of qAF is higher in this set of data than previously reported in single center settings. With improved operator training and by selecting the better of two recordings for evaluation, qAF serves as a useful method for assessing changes in autofluorescence signal. Translational Relevance The qAF can be adopted as a clinical trial end point, but steps to counterbalance variability should be considered.
Collapse
Affiliation(s)
- Patty P. A. Dhooge
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Philipp T. Möller
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- GRADE Reading Center, Bonn, Germany
| | - Nils Meland
- SMERUD Medical Research International AS, Thunes vei 2, Oslo, Norway
| | - Katarina Stingl
- Univeristy Eye Hospital, Center for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Camiel J. F. Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Ophthalmology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | | | | | - Philipp Herrmann
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- Center for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany
| | | | - Mario G. Fsadni
- Katairo GmbH, Kusterdingen, Germany
- International Pharm-Med Ltd., Bramhall, UK
| | | | - Frank G. Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- GRADE Reading Center, Bonn, Germany
| | - Carel B. Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Steffen Schmitz-Valckenberg
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- GRADE Reading Center, Bonn, Germany
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - for the Soraprazan Consortium
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- GRADE Reading Center, Bonn, Germany
- Univeristy Eye Hospital, Center for Ophthalmology, University of Tuebingen, Tuebingen, Germany
- SMERUD Medical Research International AS, Thunes vei 2, Oslo, Norway
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Ophthalmology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Faculty of Medicine, University of Southampton, Southampton, UK
- Department of Ophthalmology, Ospedale San Raffaele, Milano, Italy
- Center for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany
- Katairo GmbH, Kusterdingen, Germany
- International Pharm-Med Ltd., Bramhall, UK
- Center for Ophthalmology and Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
25
|
Dysli C, Dysli M, Wolf S, Zinkernagel M. Fluorescence lifetime distribution in phakic and pseudophakic healthy eyes. PLoS One 2023; 18:e0279158. [PMID: 36608033 PMCID: PMC9821472 DOI: 10.1371/journal.pone.0279158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 11/14/2022] [Indexed: 01/07/2023] Open
Abstract
PURPOSE To investigate the influence of the lens status and to describe fundus autofluorescence lifetimes (FLT) in a large cohort of healthy eyes across a wide age range. MATERIALS AND METHODS FLT data were acquired from healthy phakic and pseudophakic eyes using fluorescence lifetime imaging ophthalmoscopy (FLIO). Retinal autofluorescence was excited with a 473 nm laser and emitted autofluorescence was detected in a short and a long spectral channel (SSC: 498-560 nm; LSC: 560-720 nm). RESULTS 141 healthy eyes from 141 participants (56 ± 18 years) were included. The shortest mean FLTs were measured within the macular center, followed by the temporal inner and outer ETDRS (Early Treatment Diabetic Retinopathy Study) grid segments, and the remaining areas of the inner and the outer ETDRS ring. In phakic participants (81%), mean, short and long FLTs correlated with the age (SSC: r2 = 0.54; LSC: r2 = 0.7; both p<0.0001) with an increase of about 33 ps in the SSC resp. 28 ps in the LSC per decade. In pseudophakic subjects (19%), mean FLTs only correlated with age in the long spectral channel (r2 = 0.44; p = 0.0002) but not in the short spectral channel (r2 = 0.066; p = 0.2). CONCLUSIONS Fundus autofluorescence lifetimes are age dependent. FLTs in the SSC are more susceptible to lens opacities but less dependent on age changes, whereas FLTs in the LSC are largely independent of the lens status but display a higher degree of age dependency. STUDY REGISTRY ClinicalTrials.gov NCT01981148.
Collapse
Affiliation(s)
- Chantal Dysli
- Department of Ophthalmology, Inselspital, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Muriel Dysli
- Department of Ophthalmology, Inselspital, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Sebastian Wolf
- Department of Ophthalmology, Inselspital, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Martin Zinkernagel
- Department of Ophthalmology, Inselspital, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
26
|
Arrigo A, Aragona E, Battaglia Parodi M, Bandello F. Quantitative approaches in multimodal fundus imaging: State of the art and future perspectives. Prog Retin Eye Res 2023; 92:101111. [PMID: 35933313 DOI: 10.1016/j.preteyeres.2022.101111] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023]
Abstract
When it first appeared, multimodal fundus imaging revolutionized the diagnostic workup and provided extremely useful new insights into the pathogenesis of fundus diseases. The recent addition of quantitative approaches has further expanded the amount of information that can be obtained. In spite of the growing interest in advanced quantitative metrics, the scientific community has not reached a stable consensus on repeatable, standardized quantitative techniques to process and analyze the images. Furthermore, imaging artifacts may considerably affect the processing and interpretation of quantitative data, potentially affecting their reliability. The aim of this survey is to provide a comprehensive summary of the main multimodal imaging techniques, covering their limitations as well as their strengths. We also offer a thorough analysis of current quantitative imaging metrics, looking into their technical features, limitations, and interpretation. In addition, we describe the main imaging artifacts and their potential impact on imaging quality and reliability. The prospect of increasing reliance on artificial intelligence-based analyses suggests there is a need to develop more sophisticated quantitative metrics and to improve imaging technologies, incorporating clear, standardized, post-processing procedures. These measures are becoming urgent if these analyses are to cross the threshold from a research context to real-life clinical practice.
Collapse
Affiliation(s)
- Alessandro Arrigo
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy.
| | - Emanuela Aragona
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy
| | - Maurizio Battaglia Parodi
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy
| | - Francesco Bandello
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy
| |
Collapse
|
27
|
Fundus Photography Methodologies to Assess RP Patients. Methods Mol Biol 2022; 2560:81-90. [PMID: 36481885 DOI: 10.1007/978-1-0716-2651-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of fundus photography and imaging has improved our ability to diagnose and monitor inherited retinal degenerations. Nowadays, color fundus photography has become a staple in evaluating patients with retinitis pigmentosa (RP). Other important multimodal forms of fundus photography used today include red-free fundus photography, short-wavelength autofluorescence, and near-infrared autofluorescence. These photography methodologies provide valuable information on the natural history of disease progression, which in turn can lead to the identification of viable outcome measurements for current and future therapeutic trials. Further advances and developments in the field of fundus imaging will help in our understanding of RP and allied disorders.
Collapse
|
28
|
Berlin A, Clark ME, Swain TA, Fischer NA, McGwin G, Sloan KR, Owsley C, Curcio CA. Impact of the Aging Lens and Posterior Capsular Opacification on Quantitative Autofluorescence Imaging in Age-Related Macular Degeneration. Transl Vis Sci Technol 2022; 11:23. [PMID: 36239964 PMCID: PMC9586138 DOI: 10.1167/tvst.11.10.23] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Purpose The purpose of this study was to investigate quantitative autofluorescence (qAF8) in patients with and without early or intermediate age-related macular degeneration (AMD); to determine the impact of the aged crystalline lens and posterior capsular opacification (PCO). Methods In phakic and pseudophakic eyes ≥60 years, AMD status was determined by the Beckman system. PCO presence and severity was extracted from clinical records. qAF8 was calculated using custom FIJI plugins. Differences in qAF8, stratified by lens status, PCO severity, and AMD status, were analyzed using generalized estimating equations. Results In 210 eyes of 115 individuals (mean age = 75.7 ± 6.6 years), qAF8 was lower in intermediate AMD compared to early AMD (P = 0.05). qAF8 did not differ between phakic and pseudophakic eyes (P = 0.8909). In phakic (n = 83) and pseudophakic (n = 127) eyes considered separately, qAF8 did not differ by AMD status (P = 0.0936 and 0.3494, respectively). Qualitative review of qAF images in phakic eyes illustrated high variability. In pseudophakic eyes, qAF8 did not differ with PCO present versus absent (54.5% vs. 45.5%). Review of implanted intraocular lenses (IOLs) revealed that 43.9% were blue-filter IOLs. Conclusions qAF8 was not associated with AMD status, up to intermediate AMD, considering only pseudophakic eyes to avoid noisy images in phakic eyes. In pseudophakic eyes, qAF8 was not affected by PCO. Because blue-filter IOLs may reduce levels of exciting light for qAF8, future studies investigating qAF in eyes with different IOL types are needed. Translational Relevance To reduce variability in observational studies and clinical trials requiring qAF8, pseudophakic participants without blue-filter IOLs or advanced PCO should be preferentially enrolled.
Collapse
Affiliation(s)
- Andreas Berlin
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA,University Hospital Würzburg, Würzburg, Germany
| | - Mark E. Clark
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Thomas A. Swain
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nathan A. Fischer
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gerald McGwin
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA,Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kenneth R. Sloan
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Cynthia Owsley
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
29
|
Schweitzer D, Haueisen J, Klemm M. Suppression of natural lens fluorescence in fundus autofluorescence measurements: review of hardware solutions. BIOMEDICAL OPTICS EXPRESS 2022; 13:5151-5170. [PMID: 36425615 PMCID: PMC9664869 DOI: 10.1364/boe.462559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 06/16/2023]
Abstract
Fluorescence lifetime imaging ophthalmoscopy (FLIO), a technique for investigating metabolic changes in the eye ground, can reveal the first signs of diseases related to metabolism. The fluorescence of the natural lens overlies the fundus fluorescence. Although the influence of natural lens fluorescence can be somewhat decreased with mathematical models, excluding this influence during the measurement by using hardware enables more exact estimation of the fundus fluorescence. Here, we analyze four 1-photon excitation hardware solutions to suppress the influence of natural lens fluorescence: aperture stop separation, confocal scanning laser ophthalmoscopy, combined confocal scanning laser ophthalmoscopy and aperture stop separation, and dual point confocal scanning laser ophthalmoscopy. The effect of each principle is demonstrated in examples. The best suppression is provided by the dual point principle, realized with a confocal scanning laser ophthalmoscope. In this case, in addition to the fluorescence of the whole eye, the fluorescence of the anterior part of the eye is detected from a non-excited spot of the fundus. The intensity and time-resolved fluorescence spectral data of the fundus are derived through the subtraction of the simultaneously measured fluorescence of the excited and non-excited spots. Advantages of future 2-photon fluorescence excitation are also discussed. This study provides the first quantitative evaluation of hardware principles to suppress the fluorescence of the natural lens during measurements of fundus autofluorescence.
Collapse
Affiliation(s)
- D. Schweitzer
- Department of Ophthalmology, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany
| | - J. Haueisen
- Institute of Biomedical Engineering and Informatics, POB 100565, 98694 Ilmenau, Germany
| | - M. Klemm
- Institute of Biomedical Engineering and Informatics, POB 100565, 98694 Ilmenau, Germany
| |
Collapse
|
30
|
Parmann R, Greenstein VC, Tsang SH, Sparrow JR. Choroideremia Carriers: Dark-Adapted Perimetry and Retinal Structures. Invest Ophthalmol Vis Sci 2022; 63:4. [PMID: 35816046 PMCID: PMC9284471 DOI: 10.1167/iovs.63.8.4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose In choroideremia (CHM) carriers, scotopic sensitivity was assessed by dark adapted chromatic perimetry (DACP) and outer retinal structure was evaluated by multimodal imaging. Methods Nine carriers (18 eyes) and 13 healthy controls (13 eyes) underwent DACP testing with cyan and red stimuli. Analysis addressed peripapillary (4 test locations closest to the optic disc), macular (52 locations), and peripheral (60 locations outside the macula) regions. Responses were considered to be rod-mediated when cyan relative to red sensitivity was >5 dB. Fundus imaging included spectral domain optical coherence tomography (SD-OCT), short-wavelength (SW-AF), near-infrared (NIR-AF), ultrawide-field (200 degrees) pseudocolor fundus imaging, and quantitative (qAF) fundus autofluorescence. Results Detection of the cyan stimulus was rod mediated in essentially all test locations (99.7%). In the macular and peripheral areas, DACP sensitivity values were not significantly different from healthy eyes. In the peripapillary area, sensitivities were significantly decreased (P < 0.05). SD-OCT imaging ranged from hyper-reflective lesions and discontinuities of the outer retinal bands to hypertransmission of signal. SW-AF and NIR-AF images presented with peripapillary atrophy in seven patients (14 eyes). Mosaicism was detectable in SW-AF images in seven patients and in NIR-AF images in five patients. Frank hypo-autofluorescence was visible in eight patients with distinct chorioretinopathy in seven patients. The qAF values were below the 95% confidence interval (CI) of healthy age-matched individuals in 12 eyes. Conclusions Rod mediated scotopic sensitivity was comparable to that in control eyes in macular and peripheral areas but was decreased in the peripapillary area where changes in retinal structure were also most severe.
Collapse
Affiliation(s)
- Rait Parmann
- Departments of Ophthalmology, Columbia University, New York, NY, United States
| | | | - Stephen H Tsang
- Departments of Ophthalmology, Columbia University, New York, NY, United States.,Departments of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Janet R Sparrow
- Departments of Ophthalmology, Columbia University, New York, NY, United States.,Departments of Pathology and Cell Biology, Columbia University, New York, NY, United States
| |
Collapse
|
31
|
Parrulli S, Cozzi M, Airaldi M, Romano F, Viola F, Sarzi‐Puttini P, Staurenghi G, Invernizzi A. Quantitative autofluorescence findings in patients undergoing hydroxychloroquine treatment. Clin Exp Ophthalmol 2022; 50:500-509. [PMID: 35503294 PMCID: PMC9545387 DOI: 10.1111/ceo.14090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/28/2022]
Abstract
Background Methods Results Conclusions
Collapse
Affiliation(s)
- Salvatore Parrulli
- Eye Clinic, Department of Biomedical and Clinical Science “Luigi Sacco”, Sacco Hospital University of Milan Milan Italy
| | - Mariano Cozzi
- Eye Clinic, Department of Biomedical and Clinical Science “Luigi Sacco”, Sacco Hospital University of Milan Milan Italy
| | - Matteo Airaldi
- Eye Clinic, Department of Biomedical and Clinical Science “Luigi Sacco”, Sacco Hospital University of Milan Milan Italy
| | - Francesco Romano
- Eye Clinic, Department of Biomedical and Clinical Science “Luigi Sacco”, Sacco Hospital University of Milan Milan Italy
| | - Francesco Viola
- Ophthalmological Unit Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Milan Italy
- Department of Clinical Sciences and Community Health University of Milan Milan Italy
| | | | - Giovanni Staurenghi
- Eye Clinic, Department of Biomedical and Clinical Science “Luigi Sacco”, Sacco Hospital University of Milan Milan Italy
| | - Alessandro Invernizzi
- Eye Clinic, Department of Biomedical and Clinical Science “Luigi Sacco”, Sacco Hospital University of Milan Milan Italy
- The University of Sydney, Save Sight Institute, Discipline of Ophthalmology Sydney Medical School Sydney New South Wales Australia
| |
Collapse
|
32
|
Kotnala A, Senthilkumari S, Wu G, Stewart TG, Curcio CA, Halder N, Singh SB, Kumar A, Velpandian T. Retinal Pigment Epithelium in Human Donor Eyes Contains Higher Levels of Bisretinoids Including A2E in Periphery than Macula. Invest Ophthalmol Vis Sci 2022; 63:6. [PMID: 35671050 PMCID: PMC9187938 DOI: 10.1167/iovs.63.6.6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose With age, human retinal pigment epithelium (RPE) accumulates bisretinoid fluorophores that may impact cellular function and contribute to age-related macular degeneration (AMD). Bisretinoids are comprised of a central pyridinium, dihydropyridinium, or cyclohexadiene ring. The pyridinium bisretinoid A2E has been extensively studied, and its quantity in the macula has been questioned. Age-changes and distributions of other bisretinoids are not well characterized. We measured levels of three bisretinoids and oxidized A2E in macula and periphery in human donor eyes of different ages. Methods Eyes (N = 139 donors, 61 women and 78 men, aged 40–80 years) were dissected into 8 mm diameter macular and temporal periphery punches. Using liquid chromatography – electrospray ionization – mass spectrometry (LC-ESI-MS) and an authentic synthesized standard, we quantified A2E (ng). Using LC-ESI-MS and a 50-eye-extract of A2E, we semiquantified A2E and 3 other compounds (eye extract equivalent units [EEEUs): A2-glycerophosphoethanolamine (A2GPE), dihydropyridine phosphatidyl ethanolamine (A2DHPE), and monofuranA2E (MFA2E). Results A2E quantities in ng and EEEUs were highly correlated (r = 0.97, P < 0.001). From 262 eyes, 5 to 9-fold higher levels were observed in the peripheral retina than in the macula for all assayed compounds. A2E, A2DHPE, and MFA2E increased with age, whereas A2GPE remained unaffected. No significant right-left or male-female differences were detected. Conclusions Significantly higher levels were observed in the periphery than in the macula for all assayed compounds signifying biologic differences between these regions. Levels of oxidized A2E parallel native A2E and not the distribution of retinal illuminance. Data will assist with the interpretion of clinical trial outcomes of agents targeting bisretinoid-related pathways.
Collapse
Affiliation(s)
- Ankita Kotnala
- Ocular Pharmacology & Pharmacy Division, All India Institute of Medical Sciences, New Delhi, India
| | - Srinivasan Senthilkumari
- Department of Ocular Pharmacology, Aravind Medical Research Foundation (AMRF), Dr. G. Venkataswamy Eye Research Institute, #1, Anna Nagar, Madurai -20, Tamilnadu, India
| | - Gong Wu
- Department of Biostatics, Vanderbilt University Medical Centre, Nashville, Tennessee, United States
| | - Thomas G Stewart
- Department of Biostatics, Vanderbilt University Medical Centre, Nashville, Tennessee, United States
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Nabanita Halder
- Ocular Pharmacology & Pharmacy Division, All India Institute of Medical Sciences, New Delhi, India
| | | | - Atul Kumar
- Department of Ophthalmology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Thirumurthy Velpandian
- Ocular Pharmacology & Pharmacy Division, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
33
|
Chen DK, Modi Y, Al-Aswad LA. Promoting Transparency and Standardization in Ophthalmologic Artificial Intelligence: A Call for Artificial Intelligence Model Card. Asia Pac J Ophthalmol (Phila) 2022; 11:215-218. [PMID: 35772083 DOI: 10.1097/apo.0000000000000469] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Dinah K Chen
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, US
| | - Yash Modi
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, US
| | - Lama A Al-Aswad
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, US
- Department of Population Health, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, US
| |
Collapse
|
34
|
Tang JAH, Granger CE, Kunala K, Parkins K, Huynh KT, Bowles-Johnson K, Yang Q, Hunter JJ. Adaptive optics fluorescence lifetime imaging ophthalmoscopy of in vivo human retinal pigment epithelium. BIOMEDICAL OPTICS EXPRESS 2022; 13:1737-1754. [PMID: 35414970 PMCID: PMC8973160 DOI: 10.1364/boe.451628] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 05/18/2023]
Abstract
The intrinsic fluorescence properties of lipofuscin - naturally occurring granules that accumulate in the retinal pigment epithelium - are a potential biomarker for the health of the eye. A new modality is described here which combines adaptive optics technology with fluorescence lifetime detection, allowing for the investigation of functional and compositional differences within the eye and between subjects. This new adaptive optics fluorescence lifetime imaging ophthalmoscope was demonstrated in 6 subjects. Repeated measurements between visits had a minimum intraclass correlation coefficient of 0.59 Although the light levels were well below maximum permissible exposures, the safety of the imaging paradigm was tested using clinical measures; no concerns were raised. This new technology allows for in vivo adaptive optics fluorescence lifetime imaging of the human RPE mosaic.
Collapse
Affiliation(s)
- Janet A. H. Tang
- The Institute of Optics, University of Rochester, Rochester, NY 14627, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- Contributed equally
| | - Charles E. Granger
- The Institute of Optics, University of Rochester, Rochester, NY 14627, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- Contributed equally
| | - Karteek Kunala
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
| | - Keith Parkins
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
| | - Khang T. Huynh
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Kristen Bowles-Johnson
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- Flaum Eye Institute, University of Rochester, Rochester, NY 14627, USA
| | - Qiang Yang
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
| | - Jennifer J. Hunter
- The Institute of Optics, University of Rochester, Rochester, NY 14627, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
- Flaum Eye Institute, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
35
|
Bermond K, von der Emde L, Tarau IS, Bourauel L, Heintzmann R, Holz FG, Curcio CA, Sloan KR, Ach T. Autofluorescent Organelles Within the Retinal Pigment Epithelium in Human Donor Eyes With and Without Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2022; 63:23. [PMID: 35050307 PMCID: PMC8787573 DOI: 10.1167/iovs.63.1.23] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Human retinal pigment epithelium (RPE) cells contain lipofuscin, melanolipofuscin, and melanosome organelles that impact clinical autofluorescence (AF) imaging. Here, we quantified the effect of age-related macular degeneration (AMD) on granule count and histologic AF of RPE cell bodies. Methods Seven AMD-affected human RPE-Bruch's membrane flatmounts (early and intermediate = 3, late dry = 1, and neovascular = 3) were imaged at fovea, perifovea, and near periphery using structured illumination and confocal AF microscopy (excitation 488 nm) and compared to RPE-flatmounts with unremarkable macula (n = 7, >80 years). Subsequently, granules were marked with computer assistance, and classified by their AF properties. The AF/cell was calculated from confocal images. The total number of granules and AF/cell was analyzed implementing a mixed effect analysis of covariance (ANCOVA). Results A total of 152 AMD-affected RPE cells were analyzed (fovea = 22, perifovea = 60, and near-periphery = 70). AMD-affected RPE cells showed increased variability in size and a significantly increased granule load independent of the retinal location (fovea: P = 0.02, perifovea: P = 0.04, and near periphery: P < 0.01). The lipofuscin fraction of total organelles decreased and the melanolipofuscin fraction increased in AMD, at all locations (especially the fovea). AF was significantly lower in AMD-affected cells (fovea: <0.01, perifovea: <0.01, and near periphery: 0.02). Conclusions In AMD RPE, lipofuscin was proportionately lowest in the fovea, a location also known to be affected by accumulation of soft drusen and preservation of cone-mediated visual acuity. Enlarged RPE cell bodies displayed increased net granule count but diminished total AF. Future studies should also assess the impact on AF imaging of RPE apical processes containing melanosomes.
Collapse
Affiliation(s)
- Katharina Bermond
- Department of Ophthalmology, Ludwigshafen Hospital, Ludwigshafen, Germany
| | - Leon von der Emde
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Ioana-Sandra Tarau
- Department of Ophthalmology, University Hospital Würzburg, Würzburg, Germany
| | - Leonie Bourauel
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Rainer Heintzmann
- Leibniz Institute of Photonic Technology, Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Jena, Germany
| | - Frank G Holz
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Christine A Curcio
- Department of Ophthalmology, University of Alabama at Birmingham, Alabama, AL, United States
| | - Kenneth R Sloan
- Department of Ophthalmology, University of Alabama at Birmingham, Alabama, AL, United States
| | - Thomas Ach
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
36
|
Lin KH, Tran T, Kim S, Park S, Chen J, Stout JT, Chen R, Rogers J, Yiu G, Thomasy S, Moshiri A. Age-related changes in the rhesus macaque eye. Exp Eye Res 2021; 212:108754. [PMID: 34506802 PMCID: PMC8785649 DOI: 10.1016/j.exer.2021.108754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE To assess age-related changes in the rhesus macaque eye and evaluate them to corresponding human age-related eye disease. METHODS Data from eye exams and imaging tests including intraocular pressure (IOP), lens thickness, axial length, and retinal optical coherence tomography (OCT) images were evaluated from 142 individuals and statistically analyzed for age-related changes. Quantitative autofluorescence (qAF) was measured as was the presence of macular lesions as related to age. RESULTS Ages of the 142 rhesus macaques ranged from 0.7 to 29 years (mean = 16.4 years, stdev = 7.5 years). Anterior segment measurements such as IOP, lens thickness, and axial length were acquired. Advanced retinal imaging in the form of optical coherence tomography and qAF were obtained. Quantitative assessments were made and variations by age groups were analyzed to compare with established age-related changes in human eyes. Quantitative analysis of data revealed age-related increase in intraocular pressure (0.165 mm Hg per increase in year of age), ocular biometry (lens thickness 7.2 μm per increase in year of age; and axial length 52.8 μm per increase in year of age), and presence of macular lesions. Age-related changes in thicknesses of retinal layers on OCT were observed and quantified, showing decreased thickness of the retinal ganglion cell layer and inner nuclear layer, and increased thickness of photoreceptor outer segment and choroidal layers. Age was correlated with increased qAF by 1.021 autofluorescence units per increase in year of age. CONCLUSIONS The rhesus macaque has age-related ocular changes similar to humans. IOP increases with age while retinal ganglion cell layer thickness decreases. Macular lesions develop in some aged animals. Our findings support the concept that rhesus macaques may be useful for the study of important age-related diseases such as glaucoma, macular diseases, and cone disorders, and for development of therapies for these diseases.
Collapse
Affiliation(s)
- Kira H Lin
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California-Davis, 1 Garrod Drive, Davis, CA, 95695, USA
| | - Tu Tran
- Department of Ophthalmology & Vision Science, School of Medicine, U.C. Davis, Sacramento, CA, 95817, USA
| | - Soohyun Kim
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - Sangwan Park
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - Jiajia Chen
- Department of Ophthalmology & Vision Science, School of Medicine, U.C. Davis, Sacramento, CA, 95817, USA
| | - J Timothy Stout
- Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Rui Chen
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Glenn Yiu
- Department of Ophthalmology & Vision Science, School of Medicine, U.C. Davis, Sacramento, CA, 95817, USA
| | - Sara Thomasy
- Department of Ophthalmology & Vision Science, School of Medicine, U.C. Davis, Sacramento, CA, 95817, USA; Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - Ala Moshiri
- Department of Ophthalmology & Vision Science, School of Medicine, U.C. Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
37
|
INVESTIGATING A GROWTH PREDICTION MODEL IN ADVANCED AGE-RELATED MACULAR DEGENERATION WITH SOLITARY GEOGRAPHIC ATROPHY USING QUANTITATIVE AUTOFLUORESCENCE. Retina 2021; 40:1657-1664. [PMID: 31584560 DOI: 10.1097/iae.0000000000002653] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE To investigate geographic atrophy (GA) progression using quantitative autofluorescence (qAF) in eyes with solitary GA. METHODS Forty-three eyes of 26 patients (age 79.7 ± 7.2 years; 28 women; 16 pseudophakic) underwent spectral-domain optical coherence tomography and qAF imaging at baseline and after 12 months. The junctional zone (AJZ) and a nonaffected 300-µm-wide control area (AC) were delineated on spectral-domain optical coherence tomography scans and transferred to the qAF image. Linear mixed models were calculated to investigate the association between GA progression and qAF, age, and baseline GA area. Mixed model analyses of variance were used to investigate differences in qAF between areas. RESULTS Quantitative autofluorescence of the three inferior sections of both the AJZ (P = 0.028; P = 0.014 and P = 0.032) and the AC (P = 0.043; P = 0.02 and P = 0.028) were significantly associated with GA progression after 12 months. However, qAF measurements were not associated with GA progression in the overall model (P > 0.05). Mean qAF was significantly lower in the AJZ and growth area (AG12) than in the AC (both P ≤ 0.001). CONCLUSION The authors report a statistically significant association between GA growth area and qAF measurements at specific retinal locations and a significant difference in qAF between the GA border and unaffected areas outside the lesion. Quantitative autofluorescence measurements may be limitedly useful for predicting GA progression.
Collapse
|
38
|
Pole C, Ameri H. Fundus Autofluorescence and Clinical Applications. J Ophthalmic Vis Res 2021; 16:432-461. [PMID: 34394872 PMCID: PMC8358768 DOI: 10.18502/jovr.v16i3.9439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/01/2021] [Indexed: 12/20/2022] Open
Abstract
Fundus autofluorescence (FAF) has allowed in vivo mapping of retinal metabolic derangements and structural changes not possible with conventional color imaging. Incident light is absorbed by molecules in the fundus, which are excited and in turn emit photons of specific wavelengths that are captured and processed by a sensor to create a metabolic map of the fundus. Studies on the growing number of FAF platforms has shown each may be suited to certain clinical scenarios. Scanning laser ophthalmoscopes, fundus cameras, and modifications of these each have benefits and drawbacks that must be considered before and after imaging to properly interpret the images. Emerging clinical evidence has demonstrated the usefulness of FAF in diagnosis and management of an increasing number of chorioretinal conditions, such as age-related macular degeneration, central serous chorioretinopathy, retinal drug toxicities, and inherited retinal degenerations such as retinitis pigmentosa and Stargardt disease. This article reviews commercial imaging platforms, imaging techniques, and clinical applications of FAF.
Collapse
Affiliation(s)
- Cameron Pole
- Retina Division, USC Roski Eye Institute, Keck School of Medicine, University of South California, Los Angeles, CA, USA
| | - Hossein Ameri
- Retina Division, USC Roski Eye Institute, Keck School of Medicine, University of South California, Los Angeles, CA, USA
| |
Collapse
|
39
|
Heath Jeffery RC, Chen FK. Stargardt disease: Multimodal imaging: A review. Clin Exp Ophthalmol 2021; 49:498-515. [PMID: 34013643 PMCID: PMC8366508 DOI: 10.1111/ceo.13947] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/15/2021] [Indexed: 12/20/2022]
Abstract
Stargardt disease (STGD1) is an autosomal recessive retinal dystrophy, characterised by bilateral progressive central vision loss and subretinal deposition of lipofuscin-like substances. Recent advances in molecular diagnosis and therapeutic options are complemented by the increasing recognition of new multimodal imaging biomarkers that may predict genotype and disease progression. Unique non-invasive imaging features of STDG1 are useful for gene variant interpretation and may even provide insight into the underlying molecular pathophysiology. In addition, pathognomonic imaging features of STGD1 have been used to train neural networks to improve time efficiency in lesion segmentation and disease progression measurements. This review will discuss the role of key imaging modalities, correlate imaging signs across varied STGD1 presentations and illustrate the use of multimodal imaging as an outcome measure in determining the efficacy of emerging STGD1 specific therapies.
Collapse
Affiliation(s)
- Rachael C. Heath Jeffery
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute)The University of Western AustraliaNedlandsWestern AustraliaAustralia
- Department of OphthalmologyRoyal Perth HospitalPerthWestern AustraliaAustralia
| | - Fred K. Chen
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute)The University of Western AustraliaNedlandsWestern AustraliaAustralia
- Department of OphthalmologyRoyal Perth HospitalPerthWestern AustraliaAustralia
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and PhysicsSir Charles Gairdner HospitalPerthWestern AustraliaAustralia
- Department of OphthalmologyPerth Children's HospitalNedlandsWestern AustraliaAustralia
| |
Collapse
|
40
|
Lin KH, Tran T, Kim S, Park S, Stout JT, Chen R, Rogers J, Yiu G, Thomasy S, Moshiri A. Advanced Retinal Imaging and Ocular Parameters of the Rhesus Macaque Eye. Transl Vis Sci Technol 2021; 10:7. [PMID: 34111251 PMCID: PMC8107642 DOI: 10.1167/tvst.10.6.7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To determine the range of normal ocular biometry and perform advanced retinal imaging and functional assessment of the rhesus macaque eye. Methods We performed ocular phenotyping on rhesus macaques at the California National Primate Research Center. This process consisted of anterior and posterior segment eye examination by ophthalmologists, advanced retinal imaging, and functional retinal electrophysiology. Results Full eye examinations were performed on 142 animals, consisting of pupillary light reflex, tonometry, external examination and photography, anterior slit lamp examination, and posterior segment examination by indirect ophthalmoscopy. Ages of the rhesus macaques ranged from 0.7 to 29 years (mean, 16.4 ± 7.5 years). Anterior segment measurements such as intraocular pressure (n = 142), corneal thickness (n = 84), lens thickness (n = 114), and axial length (n = 114) were acquired. Advanced retinal imaging in the form of fundus photography (n = 78), optical coherence tomography (n = 60), and quantitative autofluorescence (n = 44) was obtained. Electroretinography (n = 75) was used to assay retinal function. Quantitative analyses of the macular structure, retinal layer segmentation, and rod and cone photoreceptor electrical responses are reported. Quantitative assessments were made and variations between sexes were analyzed to compare with established sex changes in human eyes. Conclusions The rhesus macaque has an ocular structure and function very similar to that of the human eye. In particular macular structure and retinal function is very similar to humans, making this species particularly useful for the study of macular biology and development of therapies for cone photoreceptor disorders. Translational Relevance Rhesus macaques are an ideal model for future vision science studies of human eye diseases.
Collapse
Affiliation(s)
- Kira H Lin
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - Tu Tran
- Department of Ophthalmology & Vision Science, School of Medicine, University of California-Davis, Sacramento, CA, USA
| | - Soohyun Kim
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - Sangwan Park
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - J Timothy Stout
- Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| | - Rui Chen
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Glenn Yiu
- Department of Ophthalmology & Vision Science, School of Medicine, University of California-Davis, Sacramento, CA, USA
| | - Sara Thomasy
- Department of Ophthalmology & Vision Science, School of Medicine, University of California-Davis, Sacramento, CA, USA.,Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - Ala Moshiri
- Department of Ophthalmology & Vision Science, School of Medicine, University of California-Davis, Sacramento, CA, USA
| |
Collapse
|
41
|
Pröbster C, Tarau IS, Berlin A, Kleefeldt N, Hillenkamp J, Nentwich MM, Sloan KR, Ach T. Quantitative Fundus Autofluorescence in the Developing and Maturing Healthy Eye. Transl Vis Sci Technol 2021; 10:15. [PMID: 34003900 PMCID: PMC7884289 DOI: 10.1167/tvst.10.2.15] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Purpose Quantitative fundus autofluorescence (QAF) enables comparisons of autofluorescence intensities among participants. While clinical QAF reports mostly focused on the healthy and diseased adult retina, only very limited data of QAF in the maturing eye are available. Here, we report QAF in a large cohort of healthy children. Methods In this prospective monocentric cross-sectional study, 70 healthy Caucasian children (5–18 years) were multimodal imaged, including QAF and spectral domain optical coherence tomography. QAF and retinal thicknesses were measured at predefined locations (along horizontal meridian; Early Treatment Diabetic Retinopathy Study [ETDRS] grid) and correlated using custom written Fiji plugins. Standard retinae for different age groups were generated. Results Fifty-three participants were included. QAF was low in childhood but increased steadily (P < 0.001), also at the fovea (P < 0.001), with no gender differences (P = 0.61). The QAF distribution was similar to adults showing highest values superior-temporally. At individual points, retinal thickness remained stable, while using the ETDRS pattern, the retinal pigment epithelium (RPE) thickness increased significantly with aging. Standard QAF retinae of age groups also showed an increase with aging. Conclusions QAF can be reliably performed in young children. Function–structure correlation showed a thickening of the RPE and an increasing QAF with aging, probably related to the histologic low number of RPE autofluorescent granules at a younger age but further deposition of these granules during maturation. Standard retinae help to distinguish abnormal QAF in the diseased retina of age-matched patients. Translational Relevance Our data bridge the gap between preclinical QAF and clinical data application and structural OCT correlation in children.
Collapse
Affiliation(s)
- Carla Pröbster
- Department of Ophthalmology, University Hospital Würzburg, Würzburg, Germany
| | - Ioana-Sandra Tarau
- Department of Ophthalmology, University Hospital Würzburg, Würzburg, Germany
| | - Andreas Berlin
- Department of Ophthalmology, University Hospital Würzburg, Würzburg, Germany
| | - Nikolai Kleefeldt
- Department of Ophthalmology, University Hospital Würzburg, Würzburg, Germany
| | - Jost Hillenkamp
- Department of Ophthalmology, University Hospital Würzburg, Würzburg, Germany
| | - Martin M Nentwich
- Department of Ophthalmology, University Hospital Würzburg, Würzburg, Germany
| | - Kenneth R Sloan
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Thomas Ach
- Department of Ophthalmology, University Hospital Würzburg, Würzburg, Germany.,Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
42
|
Influence of lens opacities and cataract severity on quantitative fundus autofluorescence as a secondary outcome of a randomized clinical trial. Sci Rep 2021; 11:12685. [PMID: 34135449 PMCID: PMC8209039 DOI: 10.1038/s41598-021-92309-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/24/2021] [Indexed: 11/21/2022] Open
Abstract
The aim of this study is to investigate the impact of age-related lens opacities and advanced cataract, quantified by LOCS III grading, on quantitative autofluorescence (qAF) measurements in patients before and after cataract surgery. Images from a randomized controlled trial evaluating the impact of femtosecond-laser assisted cataract surgery (FLACS) on retinal thickness were analyzed post-hoc. One-hundred and twenty eyes from 60 consecutive patients with age-related cataract were included and assessed with qAF and optical coherence tomography (OCT) before, 1, 3 and 6 weeks after cataract surgery (randomized 1:1 to FLACS or phacoemulsification). LOCS III grading was performed before surgery. Pre- to post-surgical qAF values, as well as the impact of LOCS III gradings, surgery technique, gender, axial length and age on post-surgery qAF values was investigated using generalized linear mixed models. For this analysis, 106 eyes from 53 patients were usable. No difference in qAF was found between FLACS and phacoemulsification (p > 0.05) and results were pooled for the total cohort. Mean pre-surgical qAF was 89.45 ± 44.9 qAF units, with a significant mean increase of 178.4–191.6% after surgery (p < 0.001). No significant difference was found between the three follow-up visits after surgery (p > 0.05). Higher LOCS III cortical opacity quantifications were associated with a significantly greater increase in qAF after surgery (estimate: 98.56, p = 0.006) and nuclear opacities showed a trend toward an increased change (estimate: 48.8, p = 0.095). Considerable interactions were identified between baseline qAF and cortical opacities, nuclear opacities and posterior subcapsular opacities, as well as nuclear opacities and cortical opacities (p = 0.012, p = 0.064 and p = 0.069, respectively). Quantitative autofluorescence signals are significantly reconstituted after cataract surgery and LOCS III gradings are well associated with post-surgical qAF values. Careful consideration of age-related lens opacities is vital for the correct interpretation of qAF, especially in retinal diseases affecting the elderly. ClinicalTrials.gov Identifier: NCT03465124.
Collapse
|
43
|
Reiter GS, Hacker V, Told R, Schranz M, Krotka P, Schlanitz FG, Sacu S, Pollreisz A, Schmidt-Erfurth U. LONGITUDINAL CHANGES IN QUANTITATIVE AUTOFLUORESCENCE DURING PROGRESSION FROM INTERMEDIATE TO LATE AGE-RELATED MACULAR DEGENERATION. Retina 2021; 41:1236-1241. [PMID: 33084296 DOI: 10.1097/iae.0000000000002995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE To prospectively investigate the development of quantitative autofluorescence (qAF) during progression from intermediate to late age-related macular degeneration (AMD). METHODS Quantitative autofluorescence images from patients with intermediate AMD were acquired every three months with a Spectralis HRA + OCT (Heidelberg Engineering, Heidelberg, Germany) using a built-in autofluorescence reference. The association between changes in longitudinal qAF and progression toward late AMD was assessed using Cox regression models with time-dependent covariates. RESULTS One hundred and twenty-one eyes of 71 patients were included, and 653 qAF images were acquired. Twenty-one eyes of 17 patients converted to late AMD (median follow-up: 21 months; 12 eyes: atrophic AMD; nine eyes: neovascular AMD). The converting patients' mean age was 74.6 ± 4.4 years. Eleven eyes in the converting group (52.4%) were pseudophakic. The presence of an intraocular lens did not affect the qAF regression slopes (P > 0.05). The median change for atrophic AMD was -2.34 qAF units/3 months and 0.78 qAF units/3 months for neovascular AMD. A stronger decline in qAF was significantly associated with an increased risk of developing atrophic AMD (hazard ratio = 1.022, P < 0.001). This association, however, was not present in the group progressing toward neovascular AMD (hazard ratio = 1.001, P = 0.875). CONCLUSION The qAF signal declines with progression to atrophy, contrary to developing neovascularization. Quantitative autofluorescence may allow identification of patients at risk of progressing to late AMD and benefits individualized patient care in intermediate AMD.
Collapse
Affiliation(s)
- Gregor S Reiter
- Department of Ophthalmology and Optometry, Christian Doppler Laboratory for Ophthalmic Image Analysis, Vienna Reading Center, Medical University of Vienna, Vienna, Austria
- Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Valentin Hacker
- Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Reinhard Told
- Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Markus Schranz
- Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Pavla Krotka
- Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Ferdinand G Schlanitz
- Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Stefan Sacu
- Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Andreas Pollreisz
- Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Ursula Schmidt-Erfurth
- Department of Ophthalmology and Optometry, Christian Doppler Laboratory for Ophthalmic Image Analysis, Vienna Reading Center, Medical University of Vienna, Vienna, Austria
- Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
44
|
Abstract
To describe fundus autofluorescence (FAF) patterns in premature infants and to determine whether FAF increases gradually with increasing post-gestational age. This was a cross-sectional, observational and descriptive case series. FAF images were obtained from patients screened for Retinopathy of Prematurity. The presence of the following hypo-autofluorescence areas/structures was graded and ranked: macular pigment (foveal centre), optic nerve head, peripapillary vessels/vascular arcade (PP/VA), and equatorial vessels (EqV). Ranks were attributed to the number of structures visualized from the posterior pole towards the periphery. The rank of FAF could then be analysed by Spearman’s correlation against age. Additionally, patients were divided by age into group 1 (< 40 weeks of corrected gestational age (WCGA)) and group 2 (> 40 WCGA). Differences between groups were tested with the Mann–Whitney U test. Thirteen patients were analysed. The mean WCGA at examination was 47.85 weeks. Spearman’s correlation showed a strong positive correlation (r = 0.714) (P = 0.006) of FAF and WCGA. The Mann–Whitney U test revealed that the PP/VA and EqV were significantly more visible at > 40 WCGA than at < 40 WCGA (8.0 [P = 0.016] and 7.5 [P = 0.03], respectively). Patterns of FAF are described for the first time in premature infants. FAF increases gradually with age and centrifugally from the posterior pole towards the equator in premature infants.
Collapse
|
45
|
Deitch I, Ferenchak K, Miller JB. Quantitative autofluorescence: Review of Current Technical Aspects and Applications in Chorioretinal Disease. Semin Ophthalmol 2021; 36:346-350. [PMID: 33818290 DOI: 10.1080/08820538.2021.1908570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Purpose: In this review we discuss the broad clinical application of qAF and provide a descriptive summary of the phenotypic findings of different chorioretinal pathologies.Background: Quantitative Fundus autofluorescence (qAF) is a novel developing technology that can aid in diagnosis and longitudinal disease monitoring by measuring and comparing autofluorescence intensities. Fundus autofluorescence (FAF) is a noninvasive imaging method that creates a density map of the fluorophores of the ocular fundus and provides both functional and topographic anatomic information about retinal cells. Fluorophores are molecules that have the ability to temporarily absorb irradiated light, and emit a small amount of light of a different wavelength. Different endogenous fluorophores can be found in the ocular fundus. Changes in accumulation of retinal fluorophores usually indicate retinal pathology and create characteristic patterns of hyper-autofluorescence and hypo-autofluorescence that help establish a diagnosis.Conclusion: qAF allows a safe non-invasive visualization of the retina, enables a standard for AF intensities comparison and aids to the understanding of the genotype-phenotype correlations.
Collapse
Affiliation(s)
- Iris Deitch
- Department of Ophthalmology, Retina Service Mass Eye and Ear Harvard Medical School, Boston, MA, United States
| | - Kevin Ferenchak
- Department of Ophthalmology, Retina Service Mass Eye and Ear Harvard Medical School, Boston, MA, United States
| | - John B Miller
- Department of Ophthalmology, Retina Service Mass Eye and Ear Harvard Medical School, Boston, MA, United States
| |
Collapse
|
46
|
NATURAL HISTORY OF QUANTITATIVE AUTOFLUORESCENCE IN INTERMEDIATE AGE-RELATED MACULAR DEGENERATION. Retina 2021; 41:694-700. [PMID: 32740494 DOI: 10.1097/iae.0000000000002923] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE To investigate differences in quantitative autofluorescence (qAF) imaging measurements between eyes with and without large drusen, and whether qAF measurements change over time in the eyes with large drusen. METHODS Eighty-five eyes from participants with bilateral large drusen and 51 eyes from healthy participants underwent qAF imaging at least once, and the age-related macular degeneration participants were reviewed 6-monthly. Normalized grey values at 9° to 11° eccentricity from the fovea were averaged to provide a summary measure of qAF values (termed qAF8). RESULTS In a multivariable model, qAF8 measurements were not significantly different between age-related macular degeneration eyes with large drusen and healthy eyes (P = 0.130), and qAF8 measurements showed a decline over time in the age-related macular degeneration eyes (P = 0.013). CONCLUSION These findings add to the body of evidence that qAF levels are not increased in eyes with large drusen compared with healthy eyes, and qAF levels show a significant decline over time in the age-related macular degeneration eyes. These findings highlight how the relationship between qAF levels and retinal pigment epithelium health does not seem to be straightforward. Further investigation is required to better understand this relationship, especially if qAF levels are to be used as an outcome measure in intervention trials.
Collapse
|
47
|
Bermond K, Berlin A, Tarau IS, Wobbe C, Heintzmann R, Curcio CA, Sloan KR, Ach T. Characteristics of normal human retinal pigment epithelium cells with extremes of autofluorescence or intracellular granule count. ACTA ACUST UNITED AC 2021; 6. [PMID: 34291192 PMCID: PMC8291732 DOI: 10.21037/aes-2021-01] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background: Cells of the retinal pigment epithelium (RPE) accumulate different kinds of granules (lipofuscin, melanolipofuscin, melanosomes) within their cell bodies, with lipofuscin and melanolipofuscin being autofluorescent after blue light excitation. High amounts of lipofuscin granules within the RPE have been associated with the development of RPE cell death and age-related macular degeneration (AMD); however, this has not been confirmed in histology so far. Here, based on our previous dataset of RPE granule characteristics, we report the characteristics of RPE cells from human donor eyes that show either high or low numbers of intracellular granules or high or low autofluorescence (AF) intensities. Methods: RPE flatmounts of fifteen human donors were examined using high-resolution structured illumination microscopy (HR-SIM) and laser scanning microscopy (LSM). Autofluorescent granules were analyzed regarding AF phenotype and absolute number of granules. In addition, total AF intensity per cell and granule density (number of granules per cell area) were determined. For the final analysis, RPE cells with total granule number below 5th or above the 95th percentile, or a total AF intensity ± 1.5 standard deviations above or below the mean were included, and compared to the average RPE cell at the same location. Data are presented as mean ± standard deviation. Results: Within 420 RPE cells examined, 42 cells were further analyzed due to extremes regarding total granule numbers. In addition, 20 RPE cells had AF 1.5 standard deviations below, 28 RPE cells above the mean local AF intensity. Melanolipofuscin granules predominate in RPE cells with low granule content and low AF intensity. RPE cells with high granule content have nearly twice (1.8 times) as many granules as an average RPE cell. Conclusions: In normal eyes, outliers regarding autofluorescent granule load and AF intensity signals are rare among RPE cells, suggesting that granule deposition and subsequent AF follows intrinsic control mechanisms at a cellular level. The AF of a cell is related to the composition of intracellular granule types. Ongoing studies using AMD donor eyes will examine possible disease related changes in granule distribution and further put lipofuscińs role in aging and AMD further into perspective.
Collapse
Affiliation(s)
- Katharina Bermond
- Department of Ophthalmology, University Hospital Würzburg, Würzburg, Germany.,Department of Ophthalmology, Ludwigshafen Hospital, Ludwigshafen, Germany
| | - Andreas Berlin
- Department of Ophthalmology, University Hospital Würzburg, Würzburg, Germany
| | - Ioana-Sandra Tarau
- Department of Ophthalmology, University Hospital Würzburg, Würzburg, Germany
| | - Christina Wobbe
- Department of Ophthalmology, University Hospital Würzburg, Würzburg, Germany
| | - Rainer Heintzmann
- Leibniz Institute of Photonic Technology, Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Jena, Germany
| | - Christine A Curcio
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kenneth R Sloan
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Thomas Ach
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
48
|
Schmitz-Valckenberg S, Pfau M, Fleckenstein M, Staurenghi G, Sparrow JR, Bindewald-Wittich A, Spaide RF, Wolf S, Sadda SR, Holz FG. Fundus autofluorescence imaging. Prog Retin Eye Res 2021; 81:100893. [PMID: 32758681 DOI: 10.1016/j.preteyeres.2020.100893] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/20/2020] [Accepted: 07/25/2020] [Indexed: 12/20/2022]
Abstract
Fundus autofluorescence (FAF) imaging is an in vivo imaging method that allows for topographic mapping of naturally or pathologically occurring intrinsic fluorophores of the ocular fundus. The dominant sources are fluorophores accumulating as lipofuscin in lysosomal storage bodies in postmitotic retinal pigment epithelium cells as well as other fluorophores that may occur with disease in the outer retina and subretinal space. Photopigments of the photoreceptor outer segments as well as macular pigment and melanin at the fovea and parafovea may act as filters of the excitation light. FAF imaging has been shown to be useful with regard to understanding of pathophysiological mechanisms, diagnostics, phenotype-genotype correlation, identification of prognostic markers for disease progression, and novel outcome parameters to assess efficacy of interventional strategies in chorio-retinal diseases. More recently, the spectrum of FAF imaging has been expanded with increasing use of green in addition to blue FAF, introduction of spectrally-resolved FAF, near-infrared FAF, quantitative FAF imaging and fluorescence life time imaging (FLIO). This article gives an overview of basic principles, FAF findings in various retinal diseases and an update on recent developments.
Collapse
Affiliation(s)
- Steffen Schmitz-Valckenberg
- Department of Ophthalmology, University of Bonn, Bonn, Germany; John A. Moran Eye Center, University of Utah, Salt Lake City, USA
| | - Maximilian Pfau
- Department of Ophthalmology, University of Bonn, Bonn, Germany; Department of Biomedical Data Science, Stanford University, USA
| | | | - Giovanni Staurenghi
- Department of Biomedical and Clinical Science "Luigi Sacco", Luigi Sacco Hospital University of Milan, Italy
| | - Janet R Sparrow
- Departments of Ophthalmology and Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Almut Bindewald-Wittich
- Department of Ophthalmology, University of Bonn, Bonn, Germany; Augenheilkunde Heidenheim MVZ, Heidenheim, Germany
| | - Richard F Spaide
- Vitreous Retina Macula Consultants of New York, New York, NY, USA
| | - Sebastian Wolf
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Srinivas R Sadda
- Doheny Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Frank G Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany.
| |
Collapse
|
49
|
Abstract
PURPOSE To correlate drusen morphology and outer retinal status with autofluorescence (AF) imaging in patients with intermediate age-related macular degeneration. METHODS Drusen type and morphology were analyzed using color fundus photography and spectral-domain optic coherence tomography, whereas fundus AF was used for drusen AF evaluation. Additional structural changes on spectral-domain optic coherence tomography, such as disruption of external limiting membrane, ellipsoid zone, and retinal pigment epithelium/Bruch membrane complex, as well as the presence of choroidal hypertransmission at correspondent locations were also evaluated and correlated with fundus AF findings. Spearman's correlation coefficient was used to analyze the correlation between spectral-domain optic coherence tomography morphological characteristics of drusen and AF appearance of the corresponding drusen. Strength of correlation was calculated (r), and a P value < 0.05 was considered statistically significant. RESULTS Two hundred and twenty-eight drusen from 53 eyes of 53 patients were analyzed, 130 soft drusen (57.02%) and 98 cuticular drusen (42.98%). Sixty percent of the drusen were isoautofluorescent (n = 136), 35% hyperautofluorescent (n = 80), and 5% hypoautofluorescent (n = 12). We found positive correlation between drusen AF and hyperreflective foci (r = 0.4). Outer retinal layers morphology (external limiting membrane and ellipsoid zone status and hypertransmission) also correlates with autofluorescent findings (r = 0.3). CONCLUSION Multimodal imaging reveals a broad spectrum of ultrastructural changes, which may reflect different stages in the evolution of drusen. Our results suggest that drusen morphological characteristics and autofluorescent findings are correlated but other factors or cofactors may be involved. The described correlations will help us understand new progression biomarkers of nonexudative age-related macular degeneration.
Collapse
|
50
|
Kim HJ, Sparrow JR. Bisretinoid phospholipid and vitamin A aldehyde: shining a light. J Lipid Res 2021; 62:100042. [PMID: 32371567 PMCID: PMC7933493 DOI: 10.1194/jlr.tr120000742] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/29/2020] [Indexed: 12/17/2022] Open
Abstract
Vitamin A aldehyde covalently bound to opsin protein is embedded in a phospholipid-rich membrane that supports photon absorption and phototransduction in photoreceptor cell outer segments. Following absorption of a photon, the 11-cis-retinal chromophore of visual pigment in photoreceptor cells isomerizes to all-trans-retinal. To maintain photosensitivity 11-cis-retinal must be replaced. At the same time, however, all-trans-retinal has to be handled so as to prevent nonspecific aldehyde activity. Some molecules of retinaldehyde upon release from opsin are efficiently reduced to retinol. Other molecules are released into the lipid phase of the disc membrane where they form a conjugate [N-retinylidene-PE (NRPE)] through a Schiff base linkage with PE. The reversible formation of NRPE serves as a transient sink for retinaldehyde that is intended to return retinaldehyde to the visual cycle. However, if instead of hydrolyzing to PE and retinaldehyde, NRPE reacts with a second molecule of retinaldehyde, a synthetic pathway is initiated that leads to the formation of multiple species of unwanted bisretinoid fluorophores. We report on recently identified members of the bisretinoid family, some of which differ with respect to the acyl chains associated with the glycerol backbone. We discuss processing of the lipid moieties of these fluorophores in lysosomes of retinal pigment epithelial cells, their fluorescence characters, and new findings related to light- and iron-associated oxidation of bisretinoids.
Collapse
Affiliation(s)
- Hye Jin Kim
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Janet R Sparrow
- Department of Ophthalmology, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|