1
|
Jiang H, Liu M, Yang W, Hong YK, Xu D, Nalbant EK, Clutter ED, Foroozandeh P, Kaplan N, Wysocki J, Batlle D, Miller SD, Lu K, Peng H. Activation of limbal epithelial proliferation is partly controlled by the ACE2-LCN2 pathway. iScience 2024; 27:110534. [PMID: 39175771 PMCID: PMC11338997 DOI: 10.1016/j.isci.2024.110534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/19/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024] Open
Abstract
In response to corneal injury, an activation of corneal epithelial stem cells and their direct progeny the early transit amplifying (eTA) cells to rapidly proliferate is critical for proper re-epithelialization. Thus, it is important to understand how such stem/eTA cell activation is regulated. Angiotensin-converting enzyme 2 (ACE2) is predominantly expressed in the stem/eTA-enriched limbal epithelium but its role in the limbal epithelium was unclear. Single cell RNA sequencing (scRNA-seq) suggested that Ace2 involved the proliferation of the stem/eTA cells. Ace2 was reduced following corneal injury. Such reduction enhanced limbal epithelial proliferation and downregulated LCN2, a negative regulator of proliferation in a variety of tissues, via upregulating TGFA and consequently activating epidermal growth factor receptor (EGFR). Inhibition of EGFR or overexpression of LCN2 reversed the increased proliferation in limbal epithelial cells lacking ACE2. Our findings demonstrate that after corneal injury, ACE2 is downregulated, which activates limbal epithelial cell proliferation via a TGFA/EGFR/LCN2 pathway.
Collapse
Affiliation(s)
- Huimin Jiang
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Min Liu
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Wending Yang
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yi-Kai Hong
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Dan Xu
- Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elif Kayaalp Nalbant
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elwin D. Clutter
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Parisa Foroozandeh
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nihal Kaplan
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jan Wysocki
- Medicine (Nephrology and Hypertension), Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Daniel Batlle
- Medicine (Nephrology and Hypertension), Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Stephen D. Miller
- Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kurt Lu
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Han Peng
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
2
|
Li M, Guo H, Wang B, Han Z, Wu S, Liu J, Huang H, Zhu J, An F, Lin Z, Mo K, Tan J, Liu C, Wang L, Deng X, Li G, Ji J, Ouyang H. The single-cell transcriptomic atlas and RORA-mediated 3D epigenomic remodeling in driving corneal epithelial differentiation. Nat Commun 2024; 15:256. [PMID: 38177186 PMCID: PMC10766623 DOI: 10.1038/s41467-023-44471-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024] Open
Abstract
Proper differentiation of corneal epithelial cells (CECs) from limbal stem/progenitor cells (LSCs) is required for maintenance of ocular homeostasis and clear vision. Here, using a single-cell transcriptomic atlas, we delineate the comprehensive and refined molecular regulatory dynamics during human CEC development and differentiation. We find that RORA is a CEC-specific molecular switch that initiates and drives LSCs to differentiate into mature CECs by activating PITX1. RORA dictates CEC differentiation by establishing CEC-specific enhancers and chromatin interactions between CEC gene promoters and distal regulatory elements. Conversely, RORA silences LSC-specific promoters and disrupts promoter-anchored chromatin loops to turn off LSC genes. Collectively, our work provides detailed and comprehensive insights into the transcriptional dynamics and RORA-mediated epigenetic remodeling underlying human corneal epithelial differentiation.
Collapse
Affiliation(s)
- Mingsen Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China.
| | - Huizhen Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Bofeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Zhuo Han
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Siqi Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Jiafeng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Huaxing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Jin Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Fengjiao An
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Zesong Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Kunlun Mo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Jieying Tan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Chunqiao Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Li Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Guigang Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jianping Ji
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China.
| | - Hong Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China.
| |
Collapse
|
3
|
Kaur S, Sohnen P, Swamynathan S, Du Y, Espana EM, Swamynathan SK. Molecular nature of ocular surface barrier function, diseases that affect it, and its relevance for ocular drug delivery. Ocul Surf 2023; 30:3-13. [PMID: 37543173 PMCID: PMC10837323 DOI: 10.1016/j.jtos.2023.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
The structural and functional integrity of the ocular surface, a continuous epithelial structure comprised of the cornea, the conjunctiva, and the ductal surface of the lacrimal as well as meibomian glands, is crucial for proper vision. The ocular surface barrier function (OSBF), sum of the different types of protective mechanisms that exist at the ocular surface, is essential to protect the rest of the eye from vision-threatening physical, chemical, and biological insults. OSBF helps maintain the immune privileged nature of the cornea and the aqueous humor by preventing entry of infectious agents, allergens, and noxious chemicals. Disruption of OSBF exposes the dense nerve endings of the cornea to these stimuli, resulting in discomfort and pain. This review summarizes the status of our knowledge related to the molecular nature of OSBF, describes the effect of different ocular surface disorders on OSBF, and examines the relevance of this knowledge for ocular drug delivery.
Collapse
Affiliation(s)
- Satinder Kaur
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Room 2114, Tampa, FL 33612. USA
| | - Peri Sohnen
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Room 2114, Tampa, FL 33612. USA
| | - Sudha Swamynathan
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Room 2114, Tampa, FL 33612. USA
| | - Yiqin Du
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Room 2114, Tampa, FL 33612. USA
| | - Edgar M Espana
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Room 2114, Tampa, FL 33612. USA
| | - Shivalingappa K Swamynathan
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Room 2114, Tampa, FL 33612. USA.
| |
Collapse
|
4
|
Swamynathan SK, Swamynathan S. Corneal epithelial development and homeostasis. Differentiation 2023; 132:4-14. [PMID: 36870804 PMCID: PMC10363238 DOI: 10.1016/j.diff.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/27/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
The corneal epithelium (CE), the most anterior cellular structure of the eye, is a self-renewing stratified squamous tissue that protects the rest of the eye from external elements. Each cell in this exquisite three-dimensional structure needs to have proper polarity and positional awareness for the CE to serve as a transparent, refractive, and protective tissue. Recent studies have begun to elucidate the molecular and cellular events involved in the embryonic development, post-natal maturation, and homeostasis of the CE, and how they are regulated by a well-coordinated network of transcription factors. This review summarizes the status of related knowledge and aims to provide insight into the pathophysiology of disorders caused by disruption of CE development, and/or homeostasis.
Collapse
Affiliation(s)
| | - Sudha Swamynathan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| |
Collapse
|
5
|
Wang B, Guo H, Liu D, Wu S, Liu J, Lan X, Huang H, An F, Zhu J, Ji J, Wang L, Ouyang H, Li M. ETS1-HMGA2 Axis Promotes Human Limbal Epithelial Stem Cell Proliferation. Invest Ophthalmol Vis Sci 2023; 64:12. [PMID: 36652264 PMCID: PMC9855287 DOI: 10.1167/iovs.64.1.12] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Purpose This study aimed to investigate the role and molecular mechanism of ETS1 in the proliferation and differentiation of human limbal epithelial stem cells (LESCs). Methods RNA-seq and quantitative real-time PCR were used to determine gene expression changes when ETS1 and HMGA2 was knocked down using short-hairpin RNAs or overexpressed by lentivirus. Immunofluorescence and flow cytometry experiments were performed to assess the roles of ETS1 and HMGA2 in LESC proliferation. ETS1-bound cis-regulatory elements and target genes in LESCs were identified using chromatin immunoprecipitation sequencing. The epigenetic features of ETS1-binding sites were assessed by the published histone modification and chromatin accessibility profiles. Results ETS1 was robustly expressed in LESCs but dramatically reduced on differentiation into corneal epithelial cells (CECs). ETS1 knockdown in LESCs inhibited cellular proliferation and activated CEC markers (KRT3, KRT12, CLU, and ALDH3A1). When ETS1 was overexpressed during CEC differentiation, LESC-associated genes were upregulated while CEC-associated genes were downregulated. The genome-wide binding profile of ETS1 was identified in LESCs. ETS1 occupied H3K4me3-marked promoters and H3K27ac/H3K4me1-marked enhancers. ETS1-binding sites were also enriched for chromatin accessibility signal. HMGA2 showed a consistent expression pattern with ETS1. ETS1 activates HMAG2 by binding to its promoter. Knockdown and overexpression experiments suggested that HMGA2 can promote LESC proliferation and inhibits its differentiation. Conclusions ETS1 promotes LESC proliferation and inhibits its differentiation via activating HMGA2.
Collapse
Affiliation(s)
- Bofeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Huizhen Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Dongmei Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Siqi Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jiafeng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xihong Lan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Huaxing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Fengjiao An
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jin Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jianping Ji
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Li Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Hong Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Mingsen Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
6
|
Comprehensive 3D epigenomic maps define limbal stem/progenitor cell function and identity. Nat Commun 2022; 13:1293. [PMID: 35277509 PMCID: PMC8917218 DOI: 10.1038/s41467-022-28966-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
Abstract
The insights into how genome topology couples with epigenetic states to govern the function and identity of the corneal epithelium are poorly understood. Here, we generate a high-resolution Hi-C interaction map of human limbal stem/progenitor cells (LSCs) and show that chromatin multi-hierarchical organisation is coupled to gene expression. By integrating Hi-C, epigenome and transcriptome data, we characterize the comprehensive 3D epigenomic landscapes of LSCs. We find that super-silencers mediate gene repression associated with corneal development, differentiation and disease via chromatin looping and/or proximity. Super-enhancer (SE) interaction analysis identified a set of SE interactive hubs that contribute to LSC-specific gene activation. These active and inactive element-anchored loop networks occur within the cohesin-occupied CTCF-CTCF loops. We further reveal a coordinated regulatory network of core transcription factors based on SE-promoter interactions. Our results provide detailed insights into the genome organization principle for epigenetic regulation of gene expression in stratified epithelia. Genome topology provides a structural basis for epigenome-mediated transcriptional regulation in eukaryotes. Here the authors characterized the 3D genome of stratified squamous epithelia. They generated a Hi-C map of human limbal stem/progenitor cells (LSCs) and integrated these data with epigenomics, transcription factor binding maps, and transcriptome data.
Collapse
|
7
|
Lu X, Watsky MA. Influence of Vitamin D on Corneal Epithelial Cell Desmosomes and Hemidesmosomes. Invest Ophthalmol Vis Sci 2020; 60:4074-4083. [PMID: 31561249 PMCID: PMC6779066 DOI: 10.1167/iovs.19-27796] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose We have observed noticably weak epithelial attachment in vitamin D receptor knockout mice (VDR KO) undergoing epithelial debridement. We hypothesized that VDR KO negatively affects corneal epithelial cell desmosomes and/or hemidesmosomes. Methods Transcript levels of desmosome and hemidesmosome proteins in VDR KO corneas were assessed by qPCR. Western blotting and immunochemistry were used to detect proteins in cultured cells exposed to 1,25(OH)2D3 and 24R,25(OH)2D3. Results VDR KO resulted in decreased corneal desmosomal desmoglein 1 (DSG1) and desmocollin 2 (DSC2) mRNA, and hemidesmosomal plectin mRNA. DSG1 and plectin protein expression were reduced in VDR KO corneas. DSG1 protein expression increased in VDR wild types (VDR WT) and VDR KO mouse primary epithelial cells (MPCEC) treated with 1,25(OH)2D3 and 24R,25(OH)2D3. 24R,25(OH)2D3 treatment resulted in increased plectin and integrin β4 levels in VDR WT MPCEC, and decreased levels in VDR KO MPCEC. Treatment of human corneal epithelial cells (HCEC) with 1,25(OH)2D3 and 24R,25(OH)2D3 resulted in increased DSC2 and DSG1 protein expression. Plectin and integrin β4 were only increased in 24R,25(OH)2D3 treated HCEC. Conclusions VDR KO results in reduced desmosomal and hemidesmosomal mRNA and protein levels. 1,25(OH)2D3 and 24R,25(OH)2D3 increased DSG1 protein in all cells tested. For hemidesmosome proteins, 24R,25(OH)2D3 increased plectin and integrin β4 protein expression in VDR WT and HCEC, with decreased expression in VDR KO MPCEC. Thus, vitamin D3 is involved in desmosome and hemidesmosome junction formation/regulation, and their decreased expression likely contributes to the loosely adherent corneal epithelium in VDR KO mice. Our data indicate the presence of a VDR-independent pathway.
Collapse
Affiliation(s)
- Xiaowen Lu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Mitchell A Watsky
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, United States.,The Graduate School, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
8
|
Dias-Teixeira K, Horton X, McKown R, Romano J, Laurie GW. The Lacritin-Syndecan-1-Heparanase Axis in Dry Eye Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:747-757. [PMID: 32274735 PMCID: PMC7398572 DOI: 10.1007/978-3-030-34521-1_31] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Homeostasis and visual acuity of the surface of the eye are dependent on tears, a thin film comprising at least 1800 different extracellular proteins and numerous species of lipids through which 80% of entering light is refracted at the air interface. Loss of homeostasis in dry eye disease affects 5-7% of the world's population, yet little is known about key molecular players. Our story began as an unbiased screen for regulators of tearing that led to the discovery of homeostasis-restorative 'lacritin', a tear protein whose active form is selectively deficient in dry eye. Heparanase acts as a novel 'on-switch' for lacritin ligation of syndecan-1 necessary to trigger basal tearing, as well as pertussis toxin-sensitive and FOXO-dependent signaling pathways for healing of inflammation-damaged epithelia and restoring epithelial oxidative phosphorylation by mitochondrial fusion downstream of transiently accelerated autophagy. A phase 2 clinical trial has tested the applicability of this mechanism to the resolution of dry eye disease. Results are not yet available. With lacritin proteoforms detected in cerebral spinal fluid, plasma, and urine, the capacity of the lacritin-syndecan-1-heparanase axis to restore homeostasis might have wide systemic relevance to other organs.
Collapse
Affiliation(s)
| | - Xavier Horton
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Robert McKown
- School of Integrated Sciences, James Madison University, Harrisonburg, VA, USA
| | - Jeffrey Romano
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Gordon W Laurie
- Departments of Cell Biology, Biomedical Engineering and Ophthalmology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
9
|
Swamynathan SK, Wells A. Conjunctival goblet cells: Ocular surface functions, disorders that affect them, and the potential for their regeneration. Ocul Surf 2020; 18:19-26. [PMID: 31734511 PMCID: PMC7004882 DOI: 10.1016/j.jtos.2019.11.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/15/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023]
Abstract
Conjunctival goblet cells (CGCs) are specialized cells that produce and secrete soluble mucins to the tear film that bathes the ocular surface. CGC numbers and functions are affected in various ocular surface diseases including dry eye disease with diverse etiologies. In this review we will (i) summarize the important functions of CGCs in ocular surface health, (ii) describe the ocular surface diseases that affect CGC numbers and function, (iii) provide an update on recent research outcomes that elucidate CGC differentiation, gene expression and functions, and (iv) present evidence in support of the prediction that restoring CGC numbers and/or functions is a viable strategy for alleviating ocular surface disorders that impact the CGCs.
Collapse
Affiliation(s)
- Shivalingappa K Swamynathan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Fox Center for Vision Restoration, University of Pittsburgh, Pittsburgh, PA, USA; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Alan Wells
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Veterans Affairs Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Tiwari A, Swamynathan S, Alexander N, Gnalian J, Tian S, Kinchington PR, Swamynathan SK. KLF4 Regulates Corneal Epithelial Cell Cycle Progression by Suppressing Canonical TGF-β Signaling and Upregulating CDK Inhibitors P16 and P27. Invest Ophthalmol Vis Sci 2019; 60:731-740. [PMID: 30786277 PMCID: PMC6383833 DOI: 10.1167/iovs.18-26423] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose Krüppel-like factor 4 (KLF4) promotes corneal epithelial (CE) cell fate while suppressing mesenchymal properties. TGF-β plays a crucial role in cell differentiation and development, and if dysregulated, it induces epithelial-mesenchymal transition (EMT). As KLF4 and TGF-β regulate each other in a context-dependent manner, we evaluated the role of the crosstalk between KLF4 and TGF-β-signaling in CE homeostasis. Methods We used spatiotemporally regulated ablation of Klf4 within the adult mouse CE in ternary transgenic Klf4Δ/ΔCE (Klf4LoxP/LoxP/ Krt12rtTA/rtTA/ Tet-O-Cre) mice and short hairpin RNA (shRNA)-mediated knockdown or lentiviral vector-mediated overexpression of KLF4 in human corneal limbal epithelial (HCLE) cells to evaluate the crosstalk between KLF4 and TGF-β-signaling components. Expression of TGF-β signaling components and cyclin-dependent kinase (CDK) inhibitors was quantified by quantitative PCR, immunoblots, and/or immunofluorescent staining. Results CE-specific ablation of Klf4 resulted in (1) upregulation of TGF-β1, -β2, -βR1, and -βR2; (2) downregulation of inhibitory Smad7; (3) hyperphosphorylation of Smad2/3; (4) elevated nuclear localization of phospho-Smad2/3 and Smad4; and (5) downregulation of CDK inhibitors p16 and p27. Consistently, shRNA-mediated knockdown of KLF4 in HCLE cells resulted in upregulation of TGF-β1 and -β2, hyperphosphorylation and nuclear localization of SMAD2/3, downregulation of SMAD7, and elevated SMAD4 nuclear localization. Furthermore, overexpression of KLF4 in HCLE cells resulted in downregulation of TGF-β1, -βR1, and -βR2 and upregulation of SMAD7, p16, and p27. Conclusions Collectively, these results demonstrate that KLF4 regulates CE cell cycle progression by suppressing canonical TGF-β signaling and overcomes the undesirable concomitant decrease in TGF-β–dependent CDK inhibitors p16 and p27 expression by directly upregulating them.
Collapse
Affiliation(s)
- Anil Tiwari
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Sudha Swamynathan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Nicholas Alexander
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - John Gnalian
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States.,School of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Shenghe Tian
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Paul R Kinchington
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States.,Department of Molecular Microbiology and Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Shivalingappa K Swamynathan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States.,Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| |
Collapse
|