1
|
Zhang X, Xia M, Wu Y, Zhang F. Branched-Chain Amino Acids Metabolism and Their Roles in Retinopathy: From Relevance to Mechanism. Nutrients 2023; 15:2161. [PMID: 37432261 DOI: 10.3390/nu15092161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 07/12/2023] Open
Abstract
Retinopathy is one of the leading causes of irreversible blindness and vision loss worldwide. Imbalanced nutrients play important roles in the pathogenesis and pathophysiology of retinal diseases. Branched-Chain Amino Acids (BCAAs), as essential amino acids, perform a variety of biological functions, including protein synthesis, glucose metabolism, lipid metabolism, inflammation, and oxidative stress in metabolic tissues of diabetes and aging-related diseases. Recently, it has been shown that BCAAs are highly related to neuroprotection, oxidative stress, inflammatory and glutamate toxicity in the retina of retinopathy. Therefore, this review summarizes the alterations of BCAA levels in retinopathy, especially diabetic retinopathy and aging-related macular disease, and the genetics, functions, and mechanisms of BCAAs in the retina as well as other metabolic tissues for reference. All of these efforts aim to provide fundamental knowledge of BCAAs for further discoveries and research on retina health based on the sensing and signaling of essential amino acids.
Collapse
Affiliation(s)
- Xiaonan Zhang
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Liaoning Provence Key Laboratory of Genome Engineered Animal Models, National Center of Genetically Engineered Animal Models for International Research, Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian 116000, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
| | - Mengxue Xia
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
| | - Yingjie Wu
- Liaoning Provence Key Laboratory of Genome Engineered Animal Models, National Center of Genetically Engineered Animal Models for International Research, Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian 116000, China
- Shandong Provincial Hospital, School of Laboratory Animal & Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Fang Zhang
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
| |
Collapse
|
2
|
Ventrella D, Maya-Vetencourt JF, Elmi A, Barone F, Aniballi C, Muscatello LV, Mete M, Pertile G, Benfenati F, Bacci ML. The p-ERG spatial acuity in the biomedical pig under physiological conditions. Sci Rep 2022; 12:15479. [PMID: 36104429 PMCID: PMC9474814 DOI: 10.1038/s41598-022-19925-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/06/2022] [Indexed: 11/09/2022] Open
Abstract
Pigs are becoming an important pre-clinical animal species for translational ophthalmology, due to similarities with humans in anatomical and physiological patterns. Different models of eye disorders have been proposed, and they are good candidates to assess biocompatibility/functionality of retinal prostheses. Electroretinography is a common tool allowing to gain information on retinal function, with several types of electroretinogram (ERG) been implemented including full field (ff-ERG), multifocal (mf-ERG) and pattern (p-ERG). p-ERG represents a valuable tool to monitor Retinal Ganglion Cells (RGCs) activity and can be used to calculate p-ERG spatial acuity. Unfortunately, scarce methodological data are available regarding recording/interpretation of p-ERG and retinal acuity in biomedical pigs yet enhancing knowledge regarding pig vision physiology will allow for more refined and responsible use of such species. Aim of this study was to record p-ERG in juvenile pigs to functionally assess visual acuity. Six female hybrid pigs underwent two p-ERG recording sessions at 16 and 19 weeks of age. Photopic ff-ERG were also recorded; optical coherence tomography (OCT) and histology were used to confirm retinal integrity. ff-ERG signals were repeatable within/across sessions. All p-ERG traces consistently displayed characterizing peaks, and the progressive decrease of amplitude in response to the increment of spatial frequency revealed the reliability of the method. Mean p-ERG spatial acuities were 5.7 ± 0.14 (16 weeks) and 6.2 ± 0.15 cpd (19 weeks). Overall, the p-ERG recordings described in the present work seem reliable and repeatable, and may represent an important tool when it comes to vision assessment in pigs.
Collapse
|
3
|
Maya-Vetencourt JF, Di Marco S, Mete M, Di Paolo M, Ventrella D, Barone F, Elmi A, Manfredi G, Desii A, Sannita WG, Bisti S, Lanzani G, Pertile G, Bacci ML, Benfenati F. Biocompatibility of a Conjugated Polymer Retinal Prosthesis in the Domestic Pig. Front Bioeng Biotechnol 2020; 8:579141. [PMID: 33195139 PMCID: PMC7605258 DOI: 10.3389/fbioe.2020.579141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/18/2020] [Indexed: 12/18/2022] Open
Abstract
The progressive degeneration of retinal photoreceptors is one of the most significant causes of blindness in humans. Conjugated polymers represent an attractive solution to the field of retinal prostheses, and a multi-layer fully organic prosthesis implanted subretinally in dystrophic Royal College of Surgeons (RCS) rats was able to rescue visual functions. As a step toward human translation, we report here the fabrication and in vivo testing of a similar device engineered to adapt to the human-like size of the eye of the domestic pig, an excellent animal paradigm to test therapeutic strategies for photoreceptors degeneration. The active conjugated polymers were layered onto two distinct passive substrates, namely electro-spun silk fibroin (ESF) and polyethylene terephthalate (PET). Naive pigs were implanted subretinally with the active device in one eye, while the contralateral eye was sham implanted with substrate only. Retinal morphology and functionality were assessed before and after surgery by means of in vivo optical coherence tomography and full-field electroretinogram (ff-ERG) analysis. After the sacrifice, the retina morphology and inflammatory markers were analyzed by immunohistochemistry of the excised retinas. Surprisingly, ESF-based prostheses caused a proliferative vitreoretinopathy with disappearance of the ff-ERG b-wave in the implanted eyes. In contrast, PET-based active devices did not evoke significant inflammatory responses. As expected, the subretinal implantation of both PET only and the PET-based prosthesis locally decreased the thickness of the outer nuclear layer due to local photoreceptor loss. However, while the implantation of the PET only substrate decreased the ff-ERG b-wave amplitude with respect to the pre-implant ERG, the eyes implanted with the active device fully preserved the ERG responses, indicating an active compensation of the surgery-induced photoreceptor loss. Our findings highlight the possibility of developing a new generation of conjugated polymer/PET-based prosthetic devices that are highly biocompatible and potentially suitable for subretinal implantation in patients suffering from degenerative blindness.
Collapse
Affiliation(s)
- José Fernando Maya-Vetencourt
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico, San Martino Hospital, Genova, Italy.,Department of Biology, University of Pisa, Pisa, Italy
| | - Stefano Di Marco
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico, San Martino Hospital, Genova, Italy.,Department of Biotechnology and Applied Clinical Science, University of L'Aquila, L'Aquila, Italy
| | - Maurizio Mete
- Department of Ophthalmology, Sacro Cuore Don Calabria Hospital, Negrar, Italy
| | - Mattia Di Paolo
- Department of Biotechnology and Applied Clinical Science, University of L'Aquila, L'Aquila, Italy
| | - Domenico Ventrella
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Francesca Barone
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Alberto Elmi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Manfredi
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Milan, Italy
| | - Andrea Desii
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Milan, Italy
| | - Walter G Sannita
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - Silvia Bisti
- Department of Biotechnology and Applied Clinical Science, University of L'Aquila, L'Aquila, Italy.,Consorzio Interuniversitario INBB, Rome, Italy
| | - Guglielmo Lanzani
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Milan, Italy
| | - Grazia Pertile
- Department of Ophthalmology, Sacro Cuore Don Calabria Hospital, Negrar, Italy
| | - Maria Laura Bacci
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico, San Martino Hospital, Genova, Italy
| |
Collapse
|
4
|
Barone F, Muscatello LV, Ventrella D, Elmi A, Romagnoli N, Mandrioli L, Maya-Vetencourt JF, Bombardi C, Mete M, Sarli G, Benfenati F, Pertile G, Bacci ML. The porcine iodoacetic acid model of retinal degeneration: Morpho-functional characterization of the visual system. Exp Eye Res 2020; 193:107979. [PMID: 32087230 DOI: 10.1016/j.exer.2020.107979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 02/13/2020] [Accepted: 02/16/2020] [Indexed: 10/25/2022]
Abstract
Porcine models of ophthalmological diseases are often used in pre-clinical translational studies due to pigs' similarities to humans. In particular, the iodoacetic acid (IAA) model of photoreceptor degeneration seems to mimic well the endstage phenotype of human pathologies as retinitis pigmentosa and age-related macular degeneration, with high potential for prosthesis/retinal devices testing. IAA is capable of inducing photoreceptor death by blockage of glycolysis, and its effects on the retina have been described. Nonetheless, up to date, literature lacks of a comprehensive morpho-functional characterization of the entire visual system of this model. This gap is particularly critical for prosthesis testing as inner retinal structures and optic pathways must be preserved to elicit cortical responses and restore vision. In this study, we investigated the functional and anatomical features of the visual system of IAA-treated pigs and compared them to control animals. IAA was administered intravenously at 12 mg/kg; control animals received saline solution (NaCl 0.9% w/v). Electrophysiological analyses included full-field (ffERGs) and pattern (PERGs) electroretinograms and flash visually evoked potentials (fVEPs). Histological evaluations were performed on the retina and the optic pathways and included thickness of the different retinal layers, ganglion cells count, and immunohistochemistry for microglial cells, macroglial cells, and oligodendrocytes. The histological results indicate that IAA treatment does not affect the morphology of the inner retina and optic pathways. Electrophysiology confirms the selective rod and partial cone degeneration, but is ambiguous as to the functionality of the optic pathways, seemingly preserved as indicated by the still detectable fVEPs. Overall, the work ameliorates the characterization of such rapid and cost-effective model, providing more strength and reliability for future pre-clinical translational trials.
Collapse
Affiliation(s)
- Francesca Barone
- National Eye Institute, National Institute of Health, 10 Center Dr, Bethesda, 20814, MD, USA; Ophthalmology Department, Sacro Cuore Hospital - Don Calabria, Via Don A. Sempreboni 5, Negrar, 37024, VR, Italy
| | - Luisa Vera Muscatello
- Department of Veterinary Medical Sciences, Alma Mater Studiorum Univerisity of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, 40064, BO, Italy
| | - Domenico Ventrella
- Department of Veterinary Medical Sciences, Alma Mater Studiorum Univerisity of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, 40064, BO, Italy.
| | - Alberto Elmi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum Univerisity of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, 40064, BO, Italy
| | - Noemi Romagnoli
- Department of Veterinary Medical Sciences, Alma Mater Studiorum Univerisity of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, 40064, BO, Italy
| | - Luciana Mandrioli
- Department of Veterinary Medical Sciences, Alma Mater Studiorum Univerisity of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, 40064, BO, Italy
| | - Josè Fernando Maya-Vetencourt
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Via Morego 30, Genova, 16163, GE, Italy; Department of Biology, University of Pisa, Via Alessandro Volta 4Bis, Pisa, 56126, PI, Italy
| | - Cristiano Bombardi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum Univerisity of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, 40064, BO, Italy
| | - Maurizio Mete
- Ophthalmology Department, Sacro Cuore Hospital - Don Calabria, Via Don A. Sempreboni 5, Negrar, 37024, VR, Italy
| | - Giuseppe Sarli
- Department of Veterinary Medical Sciences, Alma Mater Studiorum Univerisity of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, 40064, BO, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Via Morego 30, Genova, 16163, GE, Italy; Department of Experimental Medicine, University of Genoa, Via Leon Battista Alberti 2, Genova, 16132, GE, Italy
| | - Grazia Pertile
- Ophthalmology Department, Sacro Cuore Hospital - Don Calabria, Via Don A. Sempreboni 5, Negrar, 37024, VR, Italy
| | - Maria Laura Bacci
- Department of Veterinary Medical Sciences, Alma Mater Studiorum Univerisity of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, 40064, BO, Italy
| |
Collapse
|