1
|
Jovanovic J, Stone ML, Dooyema SR, Tao YK, Fuhrmann S, Levine EM. Diet gel-based oral drug delivery system for controlled dosing of small molecules for microglia depletion and inducible Cre recombination in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.634530. [PMID: 39896588 PMCID: PMC11785137 DOI: 10.1101/2025.01.23.634530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Small molecules like PLX5622 for microglia depletion and Tamoxifen for inducible Cre recombination are commonly used in mouse research. Traditional application methods, such as chow or oral gavage and injections, have limitations, including uncontrolled dosage and risk of injury. To address this issue, we have developed an alternative oral drug delivery system using a gel-based rodent maintenance diet that allows for controlled consumption and adjustment of dosage and is suitable for water-insoluble small molecules. We tested DietGel® 93M (93M) infused with PLX5622 (0.8 mg/g and 2.0 mg/g) in the Cx3cr1 gfp/+ retinal microglia reporter mouse and Tamoxifen-infused 93M (0.3125 mg/g) in the Rlbp1-CreERT2 ;Rosa ai14 mouse with an inducible tdTomato reporter in retinal Müller glia. Mice were single-caged and received daily batches of PLX5622-infused 93M over 14 days or Tamoxifen-infused 93M for one or three days followed by a 14-day observation period. Longitudinal scanning laser ophthalmoscopy in vivo and fixed tissue imaging were used to track GFP and tdTomato expression. Following evaluation of a suitable 93M consumption rate (g/d) to sustain body weight, the PLX5622-93M diet at both concentrations showed a 94% microglia depletion rate at 3 days and >99% after one and two weeks. The Tamoxifen-93M diet confirmed suitability for inducible Cre recombination, with significant treatment-time dependent efficacy and a positive correlation between total Tamoxifen dose and tdTomato expression. This study demonstrates that a diet gel-based drug delivery system offers a controllable and less invasive alternative to current drug application methods for PLX5622 and Tamoxifen.
Collapse
Affiliation(s)
- Joel Jovanovic
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, TN, United States
| | - Megan L Stone
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
| | - Samantha R Dooyema
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, TN, United States
| | - Yuankai K Tao
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, TN, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Sabine Fuhrmann
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, TN, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
| | - Edward M Levine
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, TN, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
2
|
Stone ML, Lee HH, Levine EM. Agarose hydrogel-mediated electroporation method for retinal tissue cultured at the air-liquid interface. iScience 2024; 27:111299. [PMID: 39628577 PMCID: PMC11612790 DOI: 10.1016/j.isci.2024.111299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/29/2024] [Accepted: 10/29/2024] [Indexed: 12/06/2024] Open
Abstract
It is advantageous to culture the ex vivo retina and other tissues at the air-liquid interface to allow for more efficient gas exchange. However, gene delivery to these cultures can be challenging. Electroporation is a fast and robust method of gene delivery, but typically requires submergence in liquid buffer for electrical current flow. We have developed a submergence-free electroporation technique that incorporates an agarose hydrogel disk between the positive electrode and retina. Inner retinal neurons and Müller glia are transfected with increased propensity toward Müller glia transfection after extended time in culture. We also observed an increase in BrdU incorporation in Müller glia following electrical stimulation, and variation in detection of transfected cells from expression vectors with different promoters. This method advances our ability to use ex vivo retinal tissue for genetic studies and should be adaptable for other tissues cultured at an air-liquid interface.
Collapse
Affiliation(s)
- Megan L. Stone
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville TN 37232, USA
| | - Hannah H. Lee
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville TN 37232, USA
| | - Edward M. Levine
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville TN 37232, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville TN 37232, USA
| |
Collapse
|
3
|
Jui J, Goldman D. Müller Glial Cell-Dependent Regeneration of the Retina in Zebrafish and Mice. Annu Rev Genet 2024; 58:67-90. [PMID: 38876121 DOI: 10.1146/annurev-genet-111523-102000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Sight is one of our most precious senses. People fear losing their sight more than any other disability. Thus, restoring sight to the blind is an important goal of vision scientists. Proregenerative species, such as zebrafish, provide a system for studying endogenous mechanisms underlying retina regeneration. Nonregenerative species, such as mice, provide a system for testing strategies for stimulating retina regeneration. Key to retina regeneration in zebrafish and mice is the Müller glial cell, a malleable cell type that is amenable to a variety of regenerative strategies. Here, we review cellular and molecular mechanisms used by zebrafish to regenerate a retina, as well as the application of these mechanisms, and other strategies to stimulate retina regeneration in mice. Although our focus is on Müller glia (MG), niche components and their impact on MG reprogramming are also discussed.
Collapse
Affiliation(s)
- Jonathan Jui
- Molecular Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA; ,
| | - Daniel Goldman
- Molecular Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA; ,
| |
Collapse
|
4
|
Vanzo-Sparks HK, Webster SE, Webster MK, Linn CL. Quantification of Proliferating and Mitotically Active Retinal Cells in Mice by Flow Cytometry. Bio Protoc 2024; 14:e5024. [PMID: 39011369 PMCID: PMC11247376 DOI: 10.21769/bioprotoc.5024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/08/2024] [Accepted: 06/13/2024] [Indexed: 07/17/2024] Open
Abstract
Adult mammals lack the ability to regenerate retinal neurons after injury. However, in previous studies from this lab, topical application of the selective alpha7 nicotinic acetylcholine receptor (nAChR) agonist, PNU-282987, has been associated with an increase in the number of retinal neurons in adult murine models both in the presence and absence of injury to the retina. Additionally, studies assaying mitotic markers have shown a substantial increase in the amount of mitotically active and proliferating cells with the topical application of the alpha7 nAChR agonist. However, these previous studies were performed using fluorescent immunolabeling and subsequent confocal microscopy, thus limiting the number of antibodies that can be multiplexed. As a result, we have developed a flow cytometry method that allows for the multiplexing and analysis of multiple external and internal markers in dissociated retinal cells. In this paper, a step-by-step protocol is described for the labeling of multiple retinal cell types such as retinal ganglion cells, rod photoreceptors, and Müller glia, concurrently with Müller glia-derived progenitor cells that arise after treatment with PNU-282987. Key features • Neurogenesis in the adult mammalian retina. • Flow cytometry of retinal cells. • PNU-282987-induced mitotic activity in the retina. • Dissociation of the retina for flow cytometry analysis. Graphical overview Schematic demonstrating the protocol for preparation of retinal cells for flow cytometry analysis. (A) Adult mice (3-6 months) are subjected to topical PBS eyedrop treatment containing DMSO (control groups) or PNU-282987 (experimental groups). Both eyedrop treatments contain 1 mg/mL of BrdU to label proliferating cells. After treatment, mice are euthanized, and retinae are harvested for dissociation using papain. (B) Dissociated retina cells are fixed and permeabilized before aliquots are taken for cell counts on a hemocytometer. After determining the number of cells present, conjugated antibodies and unconjugated primary antibodies are added at the appropriate dilutions. Fluorescent secondary antibodies are added for markers that are unconjugated. Cells are then subjected to flow cytometric analysis using a BD LSRFortessa.
Collapse
Affiliation(s)
- Hope K. Vanzo-Sparks
- Western Michigan University, Department of Biological Sciences, Kalamazoo, MI, USA
| | - Sarah E. Webster
- Western Michigan University, Department of Biological Sciences, Kalamazoo, MI, USA
| | - Mark K. Webster
- Western Michigan University, Department of Biological Sciences, Kalamazoo, MI, USA
| | - Cindy L. Linn
- Western Michigan University, Department of Biological Sciences, Kalamazoo, MI, USA
| |
Collapse
|
5
|
Sharkova M, Aparicio G, Mouzaaber C, Zolessi FR, Hocking JC. Photoreceptor calyceal processes accompany the developing outer segment, adopting a stable length despite a dynamic core. J Cell Sci 2024; 137:jcs261721. [PMID: 38477343 PMCID: PMC11058337 DOI: 10.1242/jcs.261721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Vertebrate photoreceptors detect light through a large cilium-based outer segment, which is filled with photopigment-laden membranous discs. Surrounding the base of the outer segment are microvilli-like calyceal processes (CPs). Although CP disruption has been associated with altered outer segment morphology and photoreceptor degeneration, the role of the CPs remains elusive. Here, we used zebrafish as a model to characterize CPs. We quantified CP parameters and report a strong disparity in outer segment coverage between photoreceptor subtypes. CP length is stable across light and dark conditions, yet heat-shock inducible expression of tagged actin revealed rapid turnover of the CP actin core. Detailed imaging of the embryonic retina uncovered substantial remodeling of the developing photoreceptor apical surface, including a transition from dynamic tangential processes to vertically oriented CPs immediately prior to outer segment formation. Remarkably, we also found a direct connection between apical extensions of the Müller glia and retinal pigment epithelium, arranged as bundles around the ultraviolet sensitive cones. In summary, our data characterize the structure, development and surrounding environment of photoreceptor microvilli in the zebrafish retina.
Collapse
Affiliation(s)
- Maria Sharkova
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Gonzalo Aparicio
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, 11400, Uruguay
- Institut Pasteur Montevideo, Uruguay
| | - Constantin Mouzaaber
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Flavio R. Zolessi
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, 11400, Uruguay
- Institut Pasteur Montevideo, Uruguay
| | - Jennifer C. Hocking
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Division of Anatomy, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Linn DM. Target identification and validation of the alpha7 nicotinic acetylcholine receptor as a potential therapeutic target in retinal disease. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1190439. [PMID: 38983049 PMCID: PMC11182235 DOI: 10.3389/fopht.2023.1190439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/26/2023] [Indexed: 07/11/2024]
Abstract
The role of acetylcholine (ACh) in visual processing in the mammalian retina has been the focus of research for many decades. Pioneering work on the localization of ACh discovered that the neurotransmitter is synthesized and stored in a distinct subpopulation of amacrine (starburst) cells. It has been shown that ACh release is regulated to a low resting "tonic" level, much like what is observed at the neuromuscular junction (NMJ). If there were a dysfunction in the tonic release of ACh, might post-synaptic changes render the targets of ACh [i.e., retinal ganglion cells (RGCs)] vulnerable to disease? During my time at Pharmacia & Upjohn (PNU), selective nicotinic ACh receptor (nAChR) agonists (e.g., PNU-282987) were developed as a possible therapy for central nervous system (CNS) diseases. As RGCs are the main targets of neurodegeneration in glaucoma, could the activation of this target provide neuroprotection? In response to this question, experiments to identify alpha7 nAChRs in the retina (i.e., target ID studies) followed by "proof-of-concept" experiments were conducted. Target ID studies included binding studies with retinal homogenates, [125I]-alpha-bungarotoxin (α-BTX) autoradiography, and fluorescently tagged α-BTX binding in retinal slices. Imaging studies of intracellular calcium dynamics in the retinal slice were conducted. Reverse transcription-polymerase chain reaction (RT-PCR) analysis with alpha7 nAChR knockout mice using the "laser-capture microdissection" technique, in situ hybridization studies, and RT-PCR analysis of the human retina were conducted. Collectively, these experiments confirmed the presence of alpha7 nAChRs on specific cells in the retina. "Proof-of-concept" neuroprotection studies demonstrated that PNU-282987 provided significant protection for RGCs. This protection was dose dependent and was blocked with selective antagonists. More recently, evidence for the generation of new RGCs has been reported with PNU-282987 in rodents. Interestingly, the appearance of new RGCs is more pronounced with eye-drop application than with intravitreal injection. One could postulate that this reflects the neurogenic activation of alpha7 receptors on the retinal pigment epithelium (RPE) (eye drops) vs. a neuroprotective effect on RGCs (injections). In conclusion, there does appear to be a cholinergic retinal "tone" associated with RGCs that could be utilized as a neuroprotective therapy. However, a distinct cholinergic neurogenic mechanism also appears to exist in the outer retina that could possibly be exploited to generate new RGCs lost through various disease processes.
Collapse
Affiliation(s)
- David M Linn
- Department of Biomedical Sciences, Grand Valley State University, Allendale, MI, United States
| |
Collapse
|
7
|
Echeverria V, Mendoza C, Iarkov A. Nicotinic acetylcholine receptors and learning and memory deficits in Neuroinflammatory diseases. Front Neurosci 2023; 17:1179611. [PMID: 37255751 PMCID: PMC10225599 DOI: 10.3389/fnins.2023.1179611] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/07/2023] [Indexed: 06/01/2023] Open
Abstract
Animal survival depends on cognitive abilities such as learning and memory to adapt to environmental changes. Memory functions require an enhanced activity and connectivity of a particular arrangement of engram neurons, supported by the concerted action of neurons, glia, and vascular cells. The deterioration of the cholinergic system is a common occurrence in neurological conditions exacerbated by aging such as traumatic brain injury (TBI), posttraumatic stress disorder (PTSD), Alzheimer's disease (AD), and Parkinson's disease (PD). Cotinine is a cholinergic modulator with neuroprotective, antidepressant, anti-inflammatory, antioxidant, and memory-enhancing effects. Current evidence suggests Cotinine's beneficial effects on cognition results from the positive modulation of the α7-nicotinic acetylcholine receptors (nAChRs) and the inhibition of the toll-like receptors (TLRs). The α7nAChR affects brain functions by modulating the function of neurons, glia, endothelial, immune, and dendritic cells and regulates inhibitory and excitatory neurotransmission throughout the GABA interneurons. In addition, Cotinine acting on the α7 nAChRs and TLR reduces neuroinflammation by inhibiting the release of pro-inflammatory cytokines by the immune cells. Also, α7nAChRs stimulate signaling pathways supporting structural, biochemical, electrochemical, and cellular changes in the Central nervous system during the cognitive processes, including Neurogenesis. Here, the mechanisms of memory formation as well as potential mechanisms of action of Cotinine on memory preservation in aging and neurological diseases are discussed.
Collapse
Affiliation(s)
- Valentina Echeverria
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Concepción, Chile
- Research and Development Department, Bay Pines VAHCS, Bay Pines, FL, United States
| | - Cristhian Mendoza
- Facultad de Odontologia y Ciencias de la Rehabilitacion, Universidad San Sebastián, Concepción, Chile
| | - Alex Iarkov
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Concepción, Chile
| |
Collapse
|
8
|
Spitsbergen JB, Webster SE, Linn CL. Functional Changes in the Adult Mouse Retina using an Alpha7 Nicotinic Acetylcholine Receptor Agonist after Blast Exposure. Neuroscience 2023; 512:1-15. [PMID: 36572172 DOI: 10.1016/j.neuroscience.2022.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/13/2022] [Accepted: 12/18/2022] [Indexed: 12/25/2022]
Abstract
Currently, there is a lack of treatments for retinal neurotrauma. To address this issue, this study uses an alpha7 nAChR agonist, PNU-282987, to determine it effects on functional activity in the retina shortly after a traumatic blast exposure. The objectives of this research include: (1) examination of the cellular and functional damage associated with ocular blast exposure, and (2) evaluation of structural and functional changes that occur post PNU-282987 treatment. Significant ocular blast damage was induced in adult mice after exposure to a single blast of 35 psi to the left eye. Blast-exposed transgenic mice expressing tdTomato Müller glia were treated daily with eyedrops containing PNU-282987 for 4 weeks following the blast exposure. Antibody staining studies in these transgenic mice was conducted to examine lineage tracing and electroretinograms (ERGs) were obtained to examine functional changes. Blast exposure caused a significant loss of cells in all retinal layers after 4 weeks. Immunohistochemical analysis demonstrated tdTomato-positive labeled photoreceptors and retinal ganglion cells in blast-exposed mice treated with PNU-282987. ERG recordings were taken from control animals, from blast-damaged animals and from animals exposed to blast followed by 4 weeks of PNU-282987 treatment. Scotopic ERG recordings from blast-exposed mice had significantly decreased amplitudes of a-wave, b-wave, oscillatory potentials and flicker frequencies, which were prevented after PNU-282987 treatment. In photopic experiments, the PhNR response was reduced significantly after blast exposure but the decrease was prevented after treatment with PNU-282987. These are the first experiments that demonstrate preservation of retinal function after blast exposure using an alpha7 nAChR agonist.
Collapse
Affiliation(s)
- Jake B Spitsbergen
- Western Michigan University, Department of Biological Sciences, Kalamazoo, MI 49008, USA
| | - Sarah E Webster
- Western Michigan University, Department of Biological Sciences, Kalamazoo, MI 49008, USA
| | - Cindy L Linn
- Western Michigan University, Department of Biological Sciences, Kalamazoo, MI 49008, USA.
| |
Collapse
|
9
|
Webster SE, Spitsbergen JB, Linn DM, Webster MK, Otteson D, Cooley-Themm C, Linn CL. Transcriptome Changes in Retinal Pigment Epithelium Post-PNU-282987 Treatment Associated with Adult Retinal Neurogenesis in Mice. J Mol Neurosci 2022; 72:1990-2010. [PMID: 35867327 DOI: 10.1007/s12031-022-02049-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/12/2022] [Indexed: 10/17/2022]
Abstract
PNU-282987, a selective alpha7 nicotinic acetylcholine receptor agonist, has previously been shown to have both neurogenic and broad regenerative effects in the adult murine retina. The objective of this study was to assay the molecular mechanism by which PNU-282987 promotes the production of Muller-derived progenitor cells through signaling via the resident retinal pigment epithelium. These Muller-derived progenitor cells generate a myriad of differentiated neurons throughout the retina that have previously been characterized by morphology. Herein, we demonstrate that topical application of PNU-282987 stimulates production of functional neurons as measured by electroretinograms. Further, we examine the mechanism of how this phenomenon occurs through activation of this atypical receptor using a transcriptomic approach isolated retinal pigment epithelium activated by PNU-282987 and in whole retina. We provide evidence that PNU-282987 causes a bi-modal signaling event in which early activation primes the retina with an inflammatory response and developmental signaling cues, followed by an inhibition of gliotic mechanisms and a decrease in the immune response, ending with upregulation of genes associated with specific retinal neuron generation. Taken together, these data provide evidence that PNU-282987 activates the retinal pigment epithelium to signal to Muller glia to produce Muller-derived progenitor cells, which can differentiate into new, functional neurons in adult mice. These data not only increase our understanding of how adult mammalian retinal regeneration can occur, but also provide therapeutic promise for treating functional vision loss.
Collapse
Affiliation(s)
- Sarah E Webster
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - Jake B Spitsbergen
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - David M Linn
- Department of Biomedical Sciences, Grand Valley State University, Grand Rapids, MI, USA
| | - Mark K Webster
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - Deborah Otteson
- University of Houston College of Optometry, Houston, TX, USA
| | - Cynthia Cooley-Themm
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - Cindy L Linn
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA.
| |
Collapse
|
10
|
Xie Y, Chen B. Critical Examination of Müller Glia-Derived in vivo Neurogenesis in the Mouse Retina. Front Cell Dev Biol 2022; 10:830382. [PMID: 35433694 PMCID: PMC9008276 DOI: 10.3389/fcell.2022.830382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/10/2022] [Indexed: 01/02/2023] Open
Abstract
Müller glia (MG) are a potential source of stem cells in the mammalian retina that could replenish lost retinal neurons for vision restoration. Unlike their counterpart in zebrafish, mammalian MG are quiescent and they do not spontaneously generate new retinal neurons. In recent years, extensive research efforts have been made to unlock the regenerative capabilities of Müller glia (MG) for de novo regeneration of retinal neurons in mice. Here, we discuss current research progress on MG-derived in vivo neurogenesis in the mouse retina, focusing on the use of stringent fate mapping techniques to evaluate and validate de novo regeneration of retinal neurons through the reprogramming of endogenous MG. Establishing stringent experimental criteria is critical for examining current and future studies on MG-derived regeneration of photoreceptors, retinal inter-neurons, and retinal ganglion cells.
Collapse
|
11
|
Webster SE, Sklar NC, Spitsbergen JB, Stanchfield ML, Webster MK, Linn DM, Otteson DC, Linn CL. Stimulation of α7 nAChR leads to regeneration of damaged neurons in adult mammalian retinal disease models. Exp Eye Res 2021; 210:108717. [PMID: 34348130 PMCID: PMC8459670 DOI: 10.1016/j.exer.2021.108717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/10/2021] [Accepted: 07/30/2021] [Indexed: 12/13/2022]
Abstract
The adult mammal lacks the ability to regenerate neurons lost to retinal damage or disease in a meaningful capacity. However, previous studies from this laboratory have demonstrated that PNU-282987, an α7 nicotinic acetylcholine receptor agonist, elicits a robust neurogenic response in the adult murine retina. With eye drop application of PNU-282987, Müller glia cells re-enter the cell cycle and produce progenitor-like cells that can differentiate into various types of retinal neurons. In this study, we analyzed the regenerative capability of PNU-282987 in two retinal disease models and identified the source of newly regenerated neurons. Wild-type mice and mice with a transgenic Müller-glia lineage tracer were manipulated to mimic loss of retinal cells associated with glaucoma or photoreceptor degeneration. Following treatment with PNU-282987, the regenerative response of retinal neurons was quantified and characterized. After onset of photoreceptor degeneration, PNU-282987 was able to successfully regenerate both rod and cone photoreceptors. Quantification of this response demonstrated significant regeneration, restoring photoreceptors to near wild-type density. In mice that had glaucoma-like conditions induced, PNU-282987 treatment led to a significant increase in retinal ganglion cells. Retrograde labeling of optic nerve axon fibers demonstrated that newly regenerated axons projected into the optic nerve. Lineage tracing analysis demonstrated that these new neurons were derived from Müller glia. These results demonstrate that PNU-282987 can induce retinal regeneration in adult mice following onset of retinal damage. The ability of PNU-282987 to regenerate retinal neurons in a robust manner offers a new direction for developing novel and potentially transformative treatments to combat neurodegenerative disease.
Collapse
Affiliation(s)
- Sarah E Webster
- Western Michigan University, Department of Biological Sciences, Kalamazoo, MI, United States
| | - Nathan C Sklar
- Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Jake B Spitsbergen
- Western Michigan University, Department of Biological Sciences, Kalamazoo, MI, United States
| | - Megan L Stanchfield
- Western Michigan University, Department of Biological Sciences, Kalamazoo, MI, United States
| | - Mark K Webster
- Western Michigan University, Department of Biological Sciences, Kalamazoo, MI, United States
| | - David M Linn
- Grand Valley State University, Department of Biomedical Sciences, Allendale, MI, United States
| | - Deborah C Otteson
- University of Houston College of Optometry, Houston, TX, United States
| | - Cindy L Linn
- Western Michigan University, Department of Biological Sciences, Kalamazoo, MI, United States.
| |
Collapse
|
12
|
Features of Retinal Neurogenesis as a Key Factor of Age-Related Neurodegeneration: Myth or Reality? Int J Mol Sci 2021; 22:ijms22147373. [PMID: 34298993 PMCID: PMC8303671 DOI: 10.3390/ijms22147373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022] Open
Abstract
Age-related macular degeneration (AMD) is a complex multifactorial neurodegenerative disease that constitutes the most common cause of irreversible blindness in the elderly in the developed countries. Incomplete knowledge about its pathogenesis prevents the search for effective methods of prevention and treatment of AMD, primarily of its "dry" type which is by far the most common (90% of all AMD cases). In the recent years, AMD has become "younger": late stages of the disease are now detected in relatively young people. It is known that AMD pathogenesis-according to the age-related structural and functional changes in the retina-is linked with inflammation, hypoxia, oxidative stress, mitochondrial dysfunction, and an impairment of neurotrophic support, but the mechanisms that trigger the conversion of normal age-related changes to the pathological process as well as the reason for early AMD development remain unclear. In the adult mammalian retina, de novo neurogenesis is very limited. Therefore, the structural and functional features that arise during its maturation and formation can exert long-term effects on further ontogenesis of this tissue. The aim of this review was to discuss possible contributions of the changes/disturbances in retinal neurogenesis to the early development of AMD.
Collapse
|
13
|
Paris JR, Sklar NC, Linn CL. BrdU Positive Cells Induced in a Genetic Mouse Model of Glaucoma. JOURNAL OF OPHTHALMOLOGY & VISUAL SCIENCES 2021; 6:1046. [PMID: 33829147 PMCID: PMC8023645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Previous studies have shown that eye drop application of the selective α7 nicotinic acetylcholine receptor agonist, PNU-282987, induces neurogenesis of RGCs in adult wild-type rodents. This study was designed to test the hypothesis that PNU-282987 reverses the loss of RGCs associated with glaucoma. A DBA/2J mouse model that auto-induces a glaucoma-like condition in adulthood was used for these studies. Short-term effects using PNU-282987 and BrdU eye drop treatments were examined, as well as the effects of early treatment and the effects in a chronic early treatment group in DBA/2J mice aged 3, 6 and 10 months. With and without treatment, retinas were removed, fixed, immunostained and RGC counts were assessed. IOP measurements were obtained weekly using a Tonolab tonometer. Results showed an average typical loss of BrdU positive RGCs by 29% by 10 months of age in this DBA/2J colony corresponding with a significant increase in IOP. However, the two-week short term application of PNU-282987 and BrdU induced a significant 21% increase in RGCs for DBA/2J mice at all ages. Chronic early PNU-282987 treatment produced a similarly significant increase in RGCs, while acute early treatment had no effect on RGC numbers. IOP measurements were not affected with PNU-282987 treatment. These studies demonstrated that 2-week treatment with PNU-282987, as well as chronic long-term treatment, induced a significant increase in the number of RGCs in the DBA/2J retina, counteracting the effects of the DBA/2J genetic glaucoma-like condition. These results suggest a potential future treatment of degenerative retinal diseases with PNU-282987.
Collapse
Affiliation(s)
- J R Paris
- Department of Biological Sciences, Western Michigan University, Kalamazoo MI, 49008, United States
| | - N C Sklar
- Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - C L Linn
- Department of Biological Sciences, Western Michigan University, Kalamazoo MI, 49008, United States
| |
Collapse
|
14
|
Stanchfield ML, Webster SE, Webster MK, Linn CL. Involvement of HB-EGF/Ascl1/Lin28a Genes in Dedifferentiation of Adult Mammalian Müller Glia. Front Mol Biosci 2020; 7:200. [PMID: 32923455 PMCID: PMC7457012 DOI: 10.3389/fmolb.2020.00200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022] Open
Abstract
Previous studies from this lab have determined that dedifferentiation of Müller glia occurs after eye drop application of an α7 nicotinic acetylcholine receptor (nAChR) agonist, PNU-282987, to the adult rodent eye. PNU-282987 acts on α7 nAChRs on retinal pigment epithelial cells to stimulate production of Müller-derived progenitor cells (MDPCs) and ultimately lead to neurogenesis. This current study was designed to test the hypothesis that the activation of genes involved in the HB-EGF/Ascl1/Lin28a signaling pathway in Müller glia leads to the genesis of MDPCs. RNA-seq was performed on a Müller glial cell line (rMC-1) following contact with supernatant collected from a retinal pigment epithelial (RPE) cell line treated with PNU-282987. Differentially regulated genes were compared with published literature of Müller glia dedifferentiation that occurs in lower vertebrate regeneration and early mammalian development. HB-EGF was significantly up-regulated by 8 h and expression increased through 12 h. By 48 h, up-regulation of Ascl1 and Lin28a was observed, two genes known to be rapidly induced in dedifferentiating zebrafish Müller glia. Up-regulation of other genes known to be involved in mammalian development and zebrafish regeneration were also observed, as well as down-regulation of some factors necessary for Müller glia cell identity. RNA-seq results were verified using qRT-PCR. Using immunocytochemistry, the presence of markers associated with MDCP identity, Otx2, Nestin, and Vsx2, were found to be expressed in the 48 h treatment group cultures. This study is novel in its demonstration that Müller glia in adult rodents can be induced into regenerative activity by stimulating genes involved in the HB-EGF/Ascl1/Lin28a pathway that leads to MDPCs after introducing conditioned media from PNU-282987 treated RPE. This study furthers our understanding of the mechanism by which Müller glia dedifferentiate in response to PNU-282987 in the adult mammalian retina.
Collapse
Affiliation(s)
| | | | | | - Cindy L. Linn
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, United States
| |
Collapse
|
15
|
Markitantova YV, Simirskii VN. Role of the Redox System in Initiation of a Regenerative Response of Neural Eye Tissues in Vertebrates. Russ J Dev Biol 2020. [DOI: 10.1134/s106236042001004x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Markitantova Y, Simirskii V. Inherited Eye Diseases with Retinal Manifestations through the Eyes of Homeobox Genes. Int J Mol Sci 2020; 21:E1602. [PMID: 32111086 PMCID: PMC7084737 DOI: 10.3390/ijms21051602] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
Retinal development is under the coordinated control of overlapping networks of signaling pathways and transcription factors. The paper was conceived as a review of the data and ideas that have been formed to date on homeobox genes mutations that lead to the disruption of eye organogenesis and result in inherited eye/retinal diseases. Many of these diseases are part of the same clinical spectrum and have high genetic heterogeneity with already identified associated genes. We summarize the known key regulators of eye development, with a focus on the homeobox genes associated with monogenic eye diseases showing retinal manifestations. Recent advances in the field of genetics and high-throughput next-generation sequencing technologies, including single-cell transcriptome analysis have allowed for deepening of knowledge of the genetic basis of inherited retinal diseases (IRDs), as well as improve their diagnostics. We highlight some promising avenues of research involving molecular-genetic and cell-technology approaches that can be effective for IRDs therapy. The most promising neuroprotective strategies are aimed at mobilizing the endogenous cellular reserve of the retina.
Collapse
|