1
|
Sarkis S, Chamard C, Johansen B, Daien V, Michon F. Challenging glaucoma with emerging therapies: an overview of advancements against the silent thief of sight. Front Med (Lausanne) 2025; 12:1527319. [PMID: 40206485 PMCID: PMC11979169 DOI: 10.3389/fmed.2025.1527319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/07/2025] [Indexed: 04/11/2025] Open
Abstract
Glaucoma, a leading cause of irreversible blindness, represents a significant challenge in ophthalmology. This review examines recent advancements in glaucoma treatment, focusing on innovative medications and creative strategies. While new agents offer promising methods for lowering intraocular pressure (IOP), they also pose challenges related to efficacy and side effects. Alongside IOP reduction, emerging neuroprotective approaches are being explored to safeguard retinal ganglion cells (RGCs) from glaucoma-induced damage. The review also evaluates the potential of novel drug delivery systems, such as biodegradable implants and nanoparticles, to enhance treatment effectiveness and patient adherence. Additionally, it highlights the role of personalized medicine in identifying new biomarkers and customizing therapies based on individual genetic and environmental factors.
Collapse
Affiliation(s)
- Solange Sarkis
- Institute for Neurosciences of Montpellier, Univ Montpellier, Institut national de la santé et de la recherche médicale (INSERM), Montpellier, France
- Laboratoires Théa, Clermont-Ferrand, France
| | - Chloé Chamard
- Institute for Neurosciences of Montpellier, Univ Montpellier, Institut national de la santé et de la recherche médicale (INSERM), Montpellier, France
- Department of Ophthalmology, Gui de Chauliac Hospital, Montpellier, France
| | | | - Vincent Daien
- Institute for Neurosciences of Montpellier, Univ Montpellier, Institut national de la santé et de la recherche médicale (INSERM), Montpellier, France
- Department of Ophthalmology, Gui de Chauliac Hospital, Montpellier, France
- Sydney Medical School, The Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Frederic Michon
- Institute for Neurosciences of Montpellier, Univ Montpellier, Institut national de la santé et de la recherche médicale (INSERM), Montpellier, France
- Department of Ophthalmology, Gui de Chauliac Hospital, Montpellier, France
| |
Collapse
|
2
|
Chen JN, Yang XJ, Cong M, Zhu LJ, Wu X, Wang LT, Sha L, Yu Y, He QR, Ding F, Xian H, Shi HY. Promotive effect of skin precursor-derived Schwann cells on brachial plexus neurotomy and motor neuron damage repair through milieu-regulating secretome. Regen Ther 2024; 27:365-380. [PMID: 38694448 PMCID: PMC11061650 DOI: 10.1016/j.reth.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 05/04/2024] Open
Abstract
Brachial plexus injury (BPI) with motor neurons (MNs) damage still remain poor recovery in preclinical research and clinical therapy, while cell-based therapy approaches emerged as novel strategies. Previous work of rat skin precursor-derived Schwann cells (SKP-SCs) provided substantial foundation for repairing peripheral nerve injury (PNI). Given that, our present work focused on exploring the repair efficacy and possible mechanisms of SKP-SCs implantation on rat BPI combined with neurorrhaphy post-neurotomy. Results indicated the significant locomotive and sensory function recovery, with improved morphological remodeling of regenerated nerves and angiogenesis, as well as amelioration of target muscles atrophy and motor endplate degeneration. Besides, MNs could restore from oxygen-glucose-deprivation (OGD) injury upon SKP-SCs-sourced secretome treatment, implying the underlying paracrine mechanisms. Moreover, rat cytokine array assay detected 67 cytokines from SKP-SC-secretome, and bioinformatic analyses of screened 32 cytokines presented multiple functional clusters covering diverse cell types, including inflammatory cells, Schwann cells, vascular endothelial cells (VECs), neurons, and SKP-SCs themselves, relating distinct biological processes to nerve regeneration. Especially, a panel of hypoxia-responsive cytokines (HRCK), can participate into multicellular biological process regulation for permissive regeneration milieu, which underscored the benefits of SKP-SCs and sourced secretome, facilitating the chorus of nerve regenerative microenvironment. Furthermore, platelet-derived growth factor-AA (PDGF-AA) and vascular endothelial growth factor-A (VEGF-A) were outstanding cytokines involved with nerve regenerative microenvironment regulating, with significantly elevated mRNA expression level in hypoxia-responsive SKP-SCs. Altogether, through recapitulating the implanted SKP-SCs and derived secretome as niche sensor and paracrine transmitters respectively, HRCK would be further excavated as molecular underpinning of the neural recuperative mechanizations for efficient cell therapy; meanwhile, the analysis paradigm in this study validated and anticipated the actions and mechanisms of SKP-SCs on traumatic BPI repair, and was beneficial to identify promising bioactive molecule cocktail and signaling targets for cell-free therapy strategy on neural repair and regeneration.
Collapse
Affiliation(s)
- Jia-nan Chen
- School of Medicine, Nantong University, Nantong, 226001, China
- Department of Pediatric Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiao-jia Yang
- School of Medicine, Nantong University, Nantong, 226001, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Meng Cong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Ling-jie Zhu
- School of Medicine, Nantong University, Nantong, 226001, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Xia Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Li-ting Wang
- School of Medicine, Nantong University, Nantong, 226001, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Lei Sha
- School of Medicine, Nantong University, Nantong, 226001, China
| | - Yan Yu
- School of Medicine, Nantong University, Nantong, 226001, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Qian-ru He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Hua Xian
- School of Medicine, Nantong University, Nantong, 226001, China
- Department of Pediatric Surgery, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| | - Hai-yan Shi
- School of Medicine, Nantong University, Nantong, 226001, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| |
Collapse
|
3
|
Pickel L, Kim SJ, Hacibekiroglu S, Nagy A, Lee J, Sung HK. The Circadian Clock of Müller Glia Is Necessary for Retinal Homeostasis and Neuronal Survival. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:2179-2193. [PMID: 39147235 DOI: 10.1016/j.ajpath.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 08/17/2024]
Abstract
Biological processes throughout the body are orchestrated in time through the regulation of local circadian clocks. The retina is among the most metabolically active tissues, with demands depending greatly on the light/dark cycle. Most cell types within the rodent retina are known to express the circadian clock; however, retinal clock expression in humans has not previously been localized. Moreover, the effect of local circadian clock dysfunction on retinal homeostasis is incompletely understood. The current study indicated an age-dependent decline in circadian clock gene and protein expression in the human retina. An animal model of targeted Bmal1 deficiency was used to identify the circadian clock of the retinal Müller glia as essential for neuronal survival, vascular integrity, and retinal function. These results suggest a potential role for the local retinal circadian clock within the Müller glia in age-related retinal disease and retinal degeneration.
Collapse
Affiliation(s)
- Lauren Pickel
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada; Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Soo Jin Kim
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Translational Biomedical Research Group, Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Sabiha Hacibekiroglu
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Andras Nagy
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Junyeop Lee
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Translational Biomedical Research Group, Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea.
| | - Hoon-Ki Sung
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Cullen PF, Gammerdinger WJ, Sui SJH, Mazumder AG, Sun D. Transcriptional profiling of retinal astrocytes identifies a specific marker and points to functional specialization. Glia 2024; 72:1604-1628. [PMID: 38785355 PMCID: PMC11262981 DOI: 10.1002/glia.24571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/19/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Astrocyte heterogeneity is an increasingly prominent research topic, and studies in the brain have demonstrated substantial variation in astrocyte form and function, both between and within regions. In contrast, retinal astrocytes are not well understood and remain incompletely characterized. Along with optic nerve astrocytes, they are responsible for supporting retinal ganglion cell axons and an improved understanding of their role is required. We have used a combination of microdissection and Ribotag immunoprecipitation to isolate ribosome-associated mRNA from retinal astrocytes and investigate their transcriptome, which we also compared to astrocyte populations in the optic nerve. Astrocytes from these regions are transcriptionally distinct, and we identified retina-specific astrocyte genes and pathways. Moreover, although they share much of the "classical" gene expression patterns of astrocytes, we uncovered unexpected variation, including in genes related to core astrocyte functions. We additionally identified the transcription factor Pax8 as a highly specific marker of retinal astrocytes and demonstrated that these astrocytes populate not only the retinal surface, but also the prelaminar region at the optic nerve head. These findings are likely to contribute to a revised understanding of the role of astrocytes in the retina.
Collapse
Affiliation(s)
- Paul F Cullen
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| | - William J Gammerdinger
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Shannan J Ho Sui
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Arpan G Mazumder
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| | - Daniel Sun
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| |
Collapse
|
5
|
Gherghel D, De Moraes G. Barriers to IOP-independent treatments in glaucoma clinical trials. Eye (Lond) 2023; 37:1955-1957. [PMID: 36400853 PMCID: PMC10333330 DOI: 10.1038/s41433-022-02305-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Doina Gherghel
- College of Health and Life Sciences, Vascular Research Laboratory, Aston University, Birmingham, UK.
- Division of Cardiovascular Sciences, Manchester University, Manchester, UK.
| | - Gustavo De Moraes
- Bernard and Shirlee Brown Glaucoma Research Laboratory, Department of Ophthalmology, Columbia University Irving Medical Center, New York City, NY, USA
| |
Collapse
|
6
|
Benhar I, Ding J, Yan W, Whitney IE, Jacobi A, Sud M, Burgin G, Shekhar K, Tran NM, Wang C, He Z, Sanes JR, Regev A. Temporal single-cell atlas of non-neuronal retinal cells reveals dynamic, coordinated multicellular responses to central nervous system injury. Nat Immunol 2023; 24:700-713. [PMID: 36807640 DOI: 10.1038/s41590-023-01437-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/13/2023] [Indexed: 02/22/2023]
Abstract
Non-neuronal cells are key to the complex cellular interplay that follows central nervous system insult. To understand this interplay, we generated a single-cell atlas of immune, glial and retinal pigment epithelial cells from adult mouse retina before and at multiple time points after axonal transection. We identified rare subsets in naive retina, including interferon (IFN)-response glia and border-associated macrophages, and delineated injury-induced changes in cell composition, expression programs and interactions. Computational analysis charted a three-phase multicellular inflammatory cascade after injury. In the early phase, retinal macroglia and microglia were reactivated, providing chemotactic signals concurrent with infiltration of CCR2+ monocytes from the circulation. These cells differentiated into macrophages in the intermediate phase, while an IFN-response program, likely driven by microglia-derived type I IFN, was activated across resident glia. The late phase indicated inflammatory resolution. Our findings provide a framework to decipher cellular circuitry, spatial relationships and molecular interactions following tissue injury.
Collapse
Affiliation(s)
- Inbal Benhar
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | - Jiarui Ding
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Computer Science, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wenjun Yan
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Irene E Whitney
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Anne Jacobi
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Malika Sud
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Grace Burgin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Karthik Shekhar
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemical and Biomolecular Engineering, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Nicholas M Tran
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Chen Wang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Joshua R Sanes
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Genentech, South San Francisco, CA, USA.
| |
Collapse
|
7
|
Chen H, Zheng G, Chen H, Li L, Xu Z, Xu L. Evaluations of aqueous humor protein markers in different types of glaucoma. Medicine (Baltimore) 2022; 101:e31048. [PMID: 36254076 PMCID: PMC9575751 DOI: 10.1097/md.0000000000031048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
To compare the concentrations of protein markers in aqueous humor (AH) of patients with primary open-angle glaucoma (POAG), chronic angle-closure glaucoma (CACG), acute primary angle closure (APAC), and cataract without glaucoma as the control group. AH samples were collected at the beginning of surgery from 82 eyes of 82 patients who were divided into POAG (n = 23), CACG (n = 21), APAC (n = 19), and cataract groups (n = 19). The expression levels of interferon-gamma (IFN-γ), interleukin-2 (IL-2), interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-17A (IL-17A), lymphotoxin-alpha (LT-α), monocyte chemotactic protein-1 (MCP-1), matrix metalloproteinase-2 (MMP-2), brain derived neurotrophic factor (BDNF), basic fibroblast growth factor (bFGF), platelet-derived growth factor-AA (PDGF-AA), vascular endothelial growth factor (VEGF), tissue inhibitor of metalloproteinases-1 (TIMP-1), and tumor necrosis factor-alpha (TNF-α) in AH were detected using a microsphere-based immunoassay. The AH levels of TNF-α, MMP-2, MCP-1, IFN-γ, and TIMP-1 in the APAC and CACG groups were significantly higher than those in control eyes. Additionally, the AH levels of interleukin-6 (IL-6) and VEGF in the APAC group were significantly higher than those in the control group (CG). The interleukin-8 (IL-8) levels in patients with POAG were significantly higher than those in control eyes, whereas the LT-α levels were significantly lower than those in control eyes. IL-6 levels were significantly correlated with the coefficient of variation (CV), whereas IL-6 levels were significantly negatively correlated with the frequency of hexagonal cells (HEX) and corneal endothelial cell density (CD). The levels of TNF-α, MMP-2, MCP-1, IFN-γ, TIMP-1, IL-6, IL-8, VEGF, and LT-α were different among the three types of glaucoma. These different types of glaucoma may be caused by various pathogeneses, which opens avenues for further investigation into the pathogenesis of glaucoma and discoveries new targets and pathways for the treatment of glaucoma.
Collapse
Affiliation(s)
- Haiyan Chen
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Haikou, Hainan Province, China
| | - Gang Zheng
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Haikou, Hainan Province, China
| | - Huijie Chen
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lu Li
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Haikou, Hainan Province, China
| | - Zhuojun Xu
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Haikou, Hainan Province, China
| | - Li Xu
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Haikou, Hainan Province, China
- *Correspondence: Li Xu, Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Haikou, 570311, Hainan Province, China (e-mail: )
| |
Collapse
|
8
|
Wang J, Fu MS, Zhou MW, Ke BL, Zhang ZH, Xu X. Potential effects of angiogenesis-related factors on the severity of APAC and surgical outcomes of trabeculectomy. BMC Ophthalmol 2021; 21:297. [PMID: 34384366 PMCID: PMC8359530 DOI: 10.1186/s12886-021-02051-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 07/26/2021] [Indexed: 11/10/2022] Open
Abstract
Background EPO (erythropoietin) and PDGF (platelet derived growth factor) families are thought to be associated with angiogenesis under hypoxic condition. The sharp rise of intraocular pressure in acute primary angle closure (APAC) results in an inefficient supply of oxygen and nutrients. We aimed to measure the expression of EPO and PDGF family members in APAC eyes and demonstrate their associations with APAC’s surgical success rate. Methods Concentrations of EPO, PDGF-AA, -BB, -CC and -DD collected in aqueous humor samples of 55 patients recruited were measured. Before operations, correlations between target proteins and IOP (intraocular pressure) were detected between APAC (acute primary angle closure) and cataract patients. Based on the post-operative follow-up, the effects of EPO and PDGF family members on the successful rate of trabeculectomy were tested. Results The levels of EPO, PDGF-CC and -DD were significantly elevated in the APAC group compared to the cataract group. During the post-operative follow-up, EPO, PDGF-CC and -DD showed significant differences between the success and failure groups. In multivariable linear regression analyses, failed filtration surgery was more likely in APAC eyes with higher EPO level. The Kaplan-Meier survival plot suggested that the success rate in eyes with low EPO level was significantly higher than that in eyes with high EPO level. Conclusion The levels of EPO, PDGF-CC and -DD were significantly elevated in failure group. EPO level correlated with preoperative IOP and numbers of eyedrops, and higher EPO level in aqueous humor is a risk factor for trabeculectomy failure. It can be a biomarker to estimate the severity of APAC and the success rate of surgery. The investigation of mechanism of EPO in APAC a may have potential clinical applications for the surgical treatment of APAC.
Collapse
Affiliation(s)
- Jing Wang
- National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China.,Eye & ENT Hospital, Fudan University, 83 Fenyang Rd, Shanghai, 20000, China
| | - Ming-Shui Fu
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China.,Eye & ENT Hospital, Fudan University, 83 Fenyang Rd, Shanghai, 20000, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Min-Wen Zhou
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China.,Eye & ENT Hospital, Fudan University, 83 Fenyang Rd, Shanghai, 20000, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Bi-Lian Ke
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China.,Eye & ENT Hospital, Fudan University, 83 Fenyang Rd, Shanghai, 20000, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi-Hua Zhang
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China. .,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China. .,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China. .,Eye & ENT Hospital, Fudan University, 83 Fenyang Rd, Shanghai, 20000, China. .,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Xun Xu
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China.,Eye & ENT Hospital, Fudan University, 83 Fenyang Rd, Shanghai, 20000, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
Lineage Contribution of PDGFR α-Expressing Cells in the Developing Mouse Eye. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4982227. [PMID: 34285913 PMCID: PMC8275403 DOI: 10.1155/2021/4982227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 02/02/2023]
Abstract
PDGFRα signaling is critically important in ocular development. Previous data on PDGFRα lacks an expression map with high spatial and temporal resolution and lineage information. In this study, we aim to present a detailed PDGFRα expression and lineage map from early embryogenesis to adulthood. PDGFRα-CreER; mT/mG reporter mice were analyzed. mEGFP-positive cells contributed to multiple ocular lineages in a spatiotemporally regulated manner. A dynamic PDGFRα expression was identified in corneal stromal cells, lens epithelial cells, lens fiber cells, and retinal astrocytes during the entire period of eye development, while PDGFRα expression in retinal astrocytes from E17.5 onwards and in Müller glial cells was identified within two weeks after birth. By revealing detailed characterization of gene expression and function, we present a comprehensive map of PDGFRα-expressing cells in the eye for a better understanding of PDGFRα signaling's role during eye development.
Collapse
|
10
|
Díaz-Lezama N, Wolf A, Koch S, Pfaller AM, Biber J, Guillonneau X, Langmann T, Grosche A. PDGF Receptor Alpha Signaling Is Key for Müller Cell Homeostasis Functions. Int J Mol Sci 2021; 22:ijms22031174. [PMID: 33503976 PMCID: PMC7865899 DOI: 10.3390/ijms22031174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 01/09/2023] Open
Abstract
Müller cells, the major retinal macroglia, are key to maintaining vascular integrity as well as retinal fluid and ion homeostasis. Although platelet derived growth factor (PDGF) receptor expression in Müller glia has been reported earlier, their actual role for Müller cell function and intimate interaction with cells of the retinal neurovascular unit remains unclear. To close this gap of knowledge, Müller cell-specific PDGF receptor alpha (PDGFRα) knockout (KO) mice were generated, characterized, and subjected to a model of choroidal neovascularization (CNV). PDGFRα-deficient Müller cells could not counterbalance hypoosmotic stress as efficiently as their wildtype counterparts. In wildtypes, the PDGFRα ligand PDGF-BB prevented Müller cell swelling induced by the administration of barium ions. This effect could be blocked by the PDGFR family inhibitor AC710. PDGF-BB could not restore the capability of an efficient volume regulation in PDGFRα KO Müller cells. Additionally, PDGFRα KO mice displayed reduced rod and cone-driven light responses. Altogether, these findings suggest that Müller glial PDGFRα is central for retinal functions under physiological conditions. In contrast, Müller cell-specific PDGFRα KO resulted in less vascular leakage and smaller lesion areas in the CNV model. Of note, the effect size was comparable to pharmacological blockade of PDGF signaling alone or in combination with anti-vascular endothelial growth factor (VEGF) therapy—a treatment regimen currently being tested in clinical trials. These data imply that targeting PDGF to treat retinal neovascular diseases may have short-term beneficial effects, but may elicit unwarranted side effects given the putative negative effects on Müller cell homeostatic functions potentially interfering with a long-term positive outcome.
Collapse
Affiliation(s)
- Nundehui Díaz-Lezama
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany; (N.D.-L.); (S.K.); (A.M.P.); (J.B.)
| | - Anne Wolf
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50931 Cologne, Germany; (A.W.); (T.L.)
| | - Susanne Koch
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany; (N.D.-L.); (S.K.); (A.M.P.); (J.B.)
| | - Anna M. Pfaller
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany; (N.D.-L.); (S.K.); (A.M.P.); (J.B.)
| | - Josef Biber
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany; (N.D.-L.); (S.K.); (A.M.P.); (J.B.)
| | - Xavier Guillonneau
- Institut de la Vision, INSERM, CNRS, Sorbonne Université, F-75012 Paris, France;
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50931 Cologne, Germany; (A.W.); (T.L.)
| | - Antje Grosche
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany; (N.D.-L.); (S.K.); (A.M.P.); (J.B.)
- Correspondence:
| |
Collapse
|
11
|
Alqawlaq S, Livne-Bar I, Williams D, D'Ercole J, Leung SW, Chan D, Tuccitto A, Datti A, Wrana JL, Corbett AH, Schmitt-Ulms G, Sivak JM. An endogenous PI3K interactome promoting astrocyte-mediated neuroprotection identifies a novel association with RNA-binding protein ZC3H14. J Biol Chem 2021; 296:100118. [PMID: 33234594 PMCID: PMC7948738 DOI: 10.1074/jbc.ra120.015389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 11/06/2022] Open
Abstract
Astrocytes can support neuronal survival through a range of secreted signals that protect against neurotoxicity, oxidative stress, and apoptotic cascades. Thus, analyzing the effects of the astrocyte secretome may provide valuable insight into these neuroprotective mechanisms. Previously, we characterized a potent neuroprotective activity mediated by retinal astrocyte conditioned media (ACM) on retinal and cortical neurons in metabolic stress models. However, the molecular mechanism underlying this complex activity in neuronal cells has remained unclear. Here, a chemical genetics screen of kinase inhibitors revealed phosphoinositide 3-kinase (PI3K) as a central player transducing ACM-mediated neuroprotection. To identify additional proteins contributing to the protective cascade, endogenous PI3K was immunoprecipitated from neuronal cells exposed to ACM or control media, followed by MS/MS proteomic analyses. These data pointed toward a relatively small number of proteins that coimmunoprecipitated with PI3K, and surprisingly only five were regulated by the ACM signal. These hits included expected PI3K interactors, such as the platelet-derived growth factor receptor A (PDGFRA), as well as novel RNA-binding protein interactors ZC3H14 (zinc finger CCCH-type containing 14) and THOC1 (THO complex protein 1). In particular, ZC3H14 has recently emerged as an important RNA-binding protein with multiple roles in posttranscriptional regulation. In validation studies, we show that PI3K recruitment of ZC3H14 is necessary for PDGF-induced neuroprotection and that this interaction is present in primary retinal ganglion cells. Thus, we identified a novel non-cell autonomous neuroprotective signaling cascade mediated through PI3K that requires recruitment of ZC3H14 and may present a promising strategy to promote astrocyte-secreted prosurvival signals.
Collapse
Affiliation(s)
- Samih Alqawlaq
- Department of Vision Science, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Ontario, Canada
| | - Izhar Livne-Bar
- Department of Vision Science, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Ontario, Canada
| | - Declan Williams
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, Canada
| | - Joseph D'Ercole
- Department of Vision Science, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Ontario, Canada
| | - Sara W Leung
- Department of Biology, Emory University, Atlanta, Georgia, USA
| | - Darren Chan
- Department of Vision Science, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Ontario, Canada
| | - Alessandra Tuccitto
- Department of Vision Science, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Ontario, Canada
| | - Alessandro Datti
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Jeffrey L Wrana
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, Georgia, USA
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, Canada
| | - Jeremy M Sivak
- Department of Vision Science, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Ontario, Canada.
| |
Collapse
|
12
|
Current Medical Therapy and Future Trends in the Management of Glaucoma Treatment. J Ophthalmol 2020; 2020:6138132. [PMID: 32774906 PMCID: PMC7391108 DOI: 10.1155/2020/6138132] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/29/2020] [Indexed: 01/02/2023] Open
Abstract
Glaucoma is a neurodegenerative disease characterized by progressive loss of retinal ganglion cells and their axons. Lowering of intraocular pressure (IOP) is currently the only proven treatment strategy for glaucoma. However, some patients show progressive loss of visual field and quality of life despite controlled IOP which indicates that other factors are implicated in glaucoma. Therefore, approaches that could prevent or decrease the rate of progression and do not rely on IOP lowering have gained much attention. Effective neuroprotection has been reported in animal models of glaucoma, but till now, no neuroprotective agents have been clinically approved. The present update provides an overview of currently available IOP-lowering medications. Moreover, potential new treatment targets for IOP-lowering and neuroprotective therapy are discussed. Finally, future trends in glaucoma therapy are addressed, including sustained drug delivery systems and progress toward personalized medicine.
Collapse
|
13
|
Wang Z, Gao F, Zhang M, Zheng Y, Zhang F, Xu L, Cao L, He W. Intravitreal Injection of Human Retinal Progenitor Cells for Treatment of Retinal Degeneration. Med Sci Monit 2020; 26:e921184. [PMID: 32221273 PMCID: PMC7139196 DOI: 10.12659/msm.921184] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background Retinal degeneration causes irreversible blindness. Human retinal progenitor cells (hRPCs) have the potential to treat retinal diseases. The vitreous cavity is a relatively immune-privileged site that is suitable for stem cell transplantation in the treatment of retinal diseases. This study aimed to evaluate the therapeutic efficacy and safety of intravitreal injection of hRPCs in retinal degeneration therapy. Material/Methods hRPCs were primary-cultured and injected into the vitreous cavity of RCS rats. To determine whether hRPCs formed teratomas in immune-deficient mice, hRPCs at different passages were transplanted into BALB/c-nu mice. The visual function was detected by electroretinography recording. Changes in the outer nuclear layer (ONL) were analyzed by histological testing and cell counting. The protective mechanism was further assessed by cytokine antibody array. Results Intravitreal transplantation of hRPCs maintained retinal function and preserved retinal morphology. Importantly, grafted cells in the vitreous cavity were well tolerated, with no adverse effects. Teratoma was not formed in BALB/c-nu mice after hRPCs transplantation. The number of hRPCs-injected eyes and thickness of ONL in the hRPCs-treated group were higher than those in the untreated group and HBSS injection group. The cytokine antibody array revealed that hRPCs expressed GDF-15, PDGF-AA, EGF, and NT-4. Conclusions Our findings show that intravitreal injection of hRPCs is effective and safe in protecting photoreceptor cells in RCS rats, but were no longer effective at 12 weeks after transplantation. Moreover, hRPCs released multiple neurotrophic factors that may be involved in treating retinal disease.
Collapse
Affiliation(s)
- Zhuoshi Wang
- Key Laboratory of Medical Cell Biology, Institute of Translational Medicine, China Medical University, Shenyang, Liaoning, China (mainland).,Clinical Research Center, He Eye Hospital of He University, Shenyang, Liaoning, China (mainland)
| | - Fei Gao
- Stem Cell Research Center, Precision Medical Innovation Institute, He University, Shenyang, Liaoning, China (mainland)
| | - Mingqi Zhang
- Stem Cell Research Center, Precision Medical Innovation Institute, He University, Shenyang, Liaoning, China (mainland)
| | - Yuqiang Zheng
- Stem Cell Research Center, Precision Medical Innovation Institute, He University, Shenyang, Liaoning, China (mainland)
| | - Fenglei Zhang
- Stem Cell Research Center, Precision Medical Innovation Institute, He University, Shenyang, Liaoning, China (mainland)
| | - Ling Xu
- Clinical Research Center, He Eye Hospital of He University, Shenyang, Liaoning, China (mainland)
| | - Liu Cao
- Key Laboratory of Medical Cell Biology, Institute of Translational Medicine, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Wei He
- Key Laboratory of Medical Cell Biology, Institute of Translational Medicine, China Medical University, Shenyang, Liaoning, China (mainland).,Clinical Research Center, He Eye Hospital of He University, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
14
|
Mead B, Tomarev S. Retinal ganglion cell neuroprotection by growth factors and exosomes: lessons from mesenchymal stem cells. Neural Regen Res 2018; 13:228-229. [PMID: 29557366 PMCID: PMC5879888 DOI: 10.4103/1673-5374.226392] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Ben Mead
- Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stanislav Tomarev
- Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
15
|
Yang Y, Zhao J, Zhang J, Lei Y, Yuan F, Liu L, Gao H, Guo H, Niu X, Chen R, Fu X, Han Y, Han H, Chan T, Zhao L, Wang H, Zheng Q, Li X. Regulation of macrophage migration in ischemic mouse hearts via an AKT2/NBA1/SPK1 pathway. Oncotarget 2017; 8:115345-115359. [PMID: 29383164 PMCID: PMC5777776 DOI: 10.18632/oncotarget.23263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 12/01/2017] [Indexed: 11/25/2022] Open
Abstract
The role of the AKT2/NBA1/SPK1 signaling cascade in macrophage migration regulation and post-ischemic cardiac remodeling was investigated. We determined that the AKT2/NBA1/SPK1 signaling cascade regulated macrophage migration. A novel role for NBA1 in macrophage migration was discovered. Elevated AKT2 phosphorylation, NBA1, SPK1 (along with phosphorylated SPK1) levels, macrophage recruitment, apoptosis, and fibrosis were found within the infarct area. Atorvastatin had a beneficial effect on cardiac remodeling following myocardial infarction by inhibiting AKT2/NBA1/SPK1-mediated macrophage recruitment, apoptosis, and collagen deposition while increasing angiogenesis in the infarct area. Atorvastatin-related protection of cardiac remodeling following myocardial infarction was abolished in SPK1-KO mice. The AKT2/NAB1/SPK1 pathway is a novel regulating factor of macrophage migration and cardiac remodeling after myocardial infarction.
Collapse
Affiliation(s)
- Yanping Yang
- Cardiovascular Department, Tangdu Hospital, The Fourth Military Medical University, Xian 710038, PR China
| | - Jieqiong Zhao
- Cardiovascular Department, Tangdu Hospital, The Fourth Military Medical University, Xian 710038, PR China
| | - Juan Zhang
- Cardiovascular Department, Tangdu Hospital, The Fourth Military Medical University, Xian 710038, PR China
| | - Yonghong Lei
- Wound Healing and Cell Biology Laboratory, The First Affiliated Hospital, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Fang Yuan
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Lu Liu
- Department of Nutrition, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Haibo Gao
- Cardiovascular Department, Tangdu Hospital, The Fourth Military Medical University, Xian 710038, PR China
| | - Hua Guo
- Cardiovascular Department, Tangdu Hospital, The Fourth Military Medical University, Xian 710038, PR China
| | - Xiaolin Niu
- Cardiovascular Department, Tangdu Hospital, The Fourth Military Medical University, Xian 710038, PR China
| | - Ruirui Chen
- Cardiovascular Department, Tangdu Hospital, The Fourth Military Medical University, Xian 710038, PR China
| | - Xiaobing Fu
- Wound Healing and Cell Biology Laboratory, The First Affiliated Hospital, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Yan Han
- Department of Plastic Surgery, Chinese General Hospital, Beijing 100853, PR China
| | - Hua Han
- Department of Molecular Biology, The Fourth Military Medical University, Xian 710038, PR China
| | - Tung Chan
- Cardiovascular Department, Tangdu Hospital, The Fourth Military Medical University, Xian 710038, PR China
| | - Lianyou Zhao
- Cardiovascular Department, Tangdu Hospital, The Fourth Military Medical University, Xian 710038, PR China
| | - Haichang Wang
- Cardiovascular Department, Tangdu Hospital, The Fourth Military Medical University, Xian 710038, PR China
| | - Qiangsun Zheng
- Cardiovascular Department, Tangdu Hospital, The Fourth Military Medical University, Xian 710038, PR China
- Cardiovascular Department, Xibei Hospital, Xian 710038, PR China
| | - Xue Li
- Cardiovascular Department, Tangdu Hospital, The Fourth Military Medical University, Xian 710038, PR China
| |
Collapse
|
16
|
Abstract
PDGFs and their receptors are critical regulators of numerous tissues and organs, including the eye. Extensive studies have shown that PDGFs and their receptors play critical roles in many ocular neovascular diseases, such as neovascular age-related macular degeneration, retinopathy of prematurity, and proliferative vitreoretinopathy. In addition, PDGFs and PDGFRs are also important players in ocular diseases involving the degeneration of retinal neuronal and vascular cells, such as glaucoma and retinitis pigmentosa. Due to their critical roles in the pathogenesis of many blinding ocular diseases, the PDGFs and PDGFRs have been considered as important target molecules for the treatment of eye diseases. PDGF-C and PDGF-D are relatively new members of the PDGF family and are potent angiogenic and survival factors. Recent studies have demonstrated their important roles in different types of eye diseases. Thus, modulating PDGF-C and PDGF-D activities may have therapeutic values for the treatment of ocular neovascular and degenerative diseases. This review mainly summarizes the recent advances on PDGF-C and PDGF-D biology in relationship to some major ocular diseases.
Collapse
Affiliation(s)
- Anil Kumar
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, 54 South Xianlie Road, Guangzhou 510060, Guangdong, PR China
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, 54 South Xianlie Road, Guangzhou 510060, Guangdong, PR China.
| |
Collapse
|