1
|
Ma L, Liu Q, Liu X, Chang H, Jin S, Ma W, Xu F, Liu H. Paraventricular Hypothalamic Nucleus Upregulates Intraocular Pressure Via Glutamatergic Neurons. Invest Ophthalmol Vis Sci 2023; 64:43. [PMID: 37773501 PMCID: PMC10547014 DOI: 10.1167/iovs.64.12.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 08/11/2023] [Indexed: 10/01/2023] Open
Abstract
Purpose The neuroregulatory center of intraocular pressure (IOP) is located in the hypothalamus. An efferent neural pathway exists between the hypothalamic nuclei and the autonomic nerve endings in the anterior chamber of the eye. This study was designed to investigate whether the paraventricular hypothalamic nucleus (PVH) regulates IOP as the other nuclei do. Methods Optogenetic manipulation of PVH neurons was used in this study. Light stimulation was applied via an optical fiber embedded over the PVH to activate projection neurons after AAV2/9-CaMKIIα-hChR2-mCherry was injected into the right PVH of C57BL/6J mice. The same methods were used to inhibit projection neurons after AAV2/9-CaMKIIα-eNpHR3.0-mCherry was injected into the bilateral PVH of C57BL/6J mice. AAV2/9-EF1α-DIO-hChR2-mCherry was injected into the right PVH of Vglut2-Cre mice to elucidate the effect of glutamatergic neuron-specific activation. IOP was measured before and after light manipulation. Associated nuclei activation was clarified by c-Fos immunohistochemical staining. Only mice with accurate viral expression and fiber embedding were included in the statistical analysis. Results Activation of projection neurons in the right PVH induced significant bilateral IOP elevation (n = 11, P < 0.001); the ipsilateral IOP increased more noticeably (n = 11, P < 0.05); Bilateral inhibition of PVH projection neurons did not significantly influence IOP (n = 5, P > 0.05). Specific activation of glutamatergic neurons among PVH projection neurons also induced IOP elevation in both eyes (n = 5, P < 0.001). The dorsomedial hypothalamic nucleus, ventromedial hypothalamic nucleus, locus coeruleus and basolateral amygdaloid nucleus responded to light stimulation of PVH in AAV-ChR2 mice. Conclusions The PVH may play a role in IOP upregulation via glutamatergic neurons.
Collapse
Affiliation(s)
- Lin Ma
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Liu
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Liu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Chang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sen Jin
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Wenyu Ma
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Fuqiang Xu
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haixia Liu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Mohamed Y, Passaglia CL. A portable feedback-controlled pump for monitoring eye outflow facility in conscious rats. PLoS One 2023; 18:e0280332. [PMID: 36630474 PMCID: PMC9833506 DOI: 10.1371/journal.pone.0280332] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/27/2022] [Indexed: 01/12/2023] Open
Abstract
Intraocular pressure (IOP) is heavily influenced by the resistance of trabecular outflow pathways through which most of the aqueous humor produced by the eye continuously drains. The standard method of quantifying outflow resistance and other aspects of ocular fluid dynamics is eye cannulation, which allows for direct measurement and manipulation of IOP and flow in animal models. Since the method is invasive, indirect techniques that are slower and less accurate must be used for chronological studies. A novel technology is introduced that can autonomously measure outflow facility in conscious rats multiple times a day. A smart portable micropump infuses fluid into the eye through a permanently-implanted cannula and dynamically adjusts flow rate using a unique proportional feedback algorithm that sets IOP to a target level, even though IOP fluctuates erratically in awake free-moving animals. Pressure-flow data collected by the system from anesthetized rats were validated against intraocular recordings with commercial pressure and flow sensors. System and sensor estimates of outflow facility were indistinguishable, averaging 23 ± 3 nl·min-1·mmHg-1 across animals (n = 11). Pressure-flow data were then collected round-the-clock for several days from conscious rats, while outflow facility was measured every few hours. A significant diurnal facility rhythm was observed in every animal (n = 4), with mean daytime level of 22 ± 10 nl·min-1·mmHg-1 and mean nighttime level of 15 ± 7 nl·min-1·mmHg-1. The rhythm correlated with diurnal changes in IOP and likely contributed prominently to those changes based on the day-night swing in facility magnitude. Hence, the portable smart pump offers a unique tool for repeated long-term monitoring of outflow facility and other possible parameters of ocular health. It could also be useful in animal glaucoma studies for reversibly inducing acute or chronic ocular hypertension without explicitly damaging trabecular outflow pathways.
Collapse
Affiliation(s)
- Youssef Mohamed
- Department of Medical Engineering, University of South Florida, Tampa, FL, United States of America
| | - Christopher L. Passaglia
- Department of Medical Engineering, University of South Florida, Tampa, FL, United States of America
- Department of Ophthalmology, University of South Florida, Tampa, FL, United States of America
| |
Collapse
|
3
|
Xu D, Wu F, Yu Y, Lou X, Ye M, Zhang H, Zhao Y. Sympathetic activation leads to Schlemm's canal expansion via increasing vasoactive intestinal polypeptide secretion from trabecular meshwork. Exp Eye Res 2022; 224:109235. [PMID: 36049555 DOI: 10.1016/j.exer.2022.109235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 11/04/2022]
Abstract
We previously demonstrated vasoactive intestinal polypeptide (VIP) eyedrops reduce intraocular pressure (IOP) and stabilize cytoskeleton of the Schlemm's canal (SC) endothelium in a chronic ocular hypertension rat model. Here we determine if the trabecular meshwork (TM) releases endogenous VIP and affect SC in paracrine manner, and whether this cellular interaction via VIP is strengthened under stimulated sympathetic activity. A rat model of moderate-intensity exercise was established to stimulate sympathetic activation. IOP post exercise was measured by a rebound tonometer. Sympathetic nerve activity at the TM was immunofluorescence-stained with DβH and PGP9.5. Morphological changes of TM and SC were quantitatively measured by hematoxylin-eosin (HE) staining. Further, epinephrine was applied to mimic sympathetic excitation on primary rat TM cells, and ELISA to measure VIP levels in the medium. The cytoskeleton protective effect of VIP in the epinephrine-stimulated conditioned medium (Epi-CM) was evaluated in oxidative stressed human umbilical vein endothelial cells (HUVECs). Elevated sympathetic nerve activity was found at TM post exercise. Changes accompanying the sympathetic excitation included thinned TM, expanded SC and decreased IOP, which were consistent with epinephrine treatment. Epinephrine decreased TM cell size, enhanced VIP expression and release in the medium in vitro. Epi-CM restored linear F-actin and cell junction integrity in H2O2 treated HUVECs. Blockage of VIP receptor by PG99-465 attenuated the protective capability of Epi-CM. VIP expression was upregulated at TM and the inner wall of SC post exercise in vivo. PG99-465 significantly attenuated exercise-induced SC expansion and IOP reduction. Thus, the sympathetic activation promoted VIP release from TM cells and subsequently expanded SC via stabilizing cytoskeleton, which resulted in IOP reduction.
Collapse
Affiliation(s)
- Dingwen Xu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feipeng Wu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yixian Yu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaotong Lou
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meng Ye
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong Zhang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
4
|
Wu F, Zhao Y, Zhang H. Ocular Autonomic Nervous System: An Update from Anatomy to Physiological Functions. Vision (Basel) 2022; 6:vision6010006. [PMID: 35076641 PMCID: PMC8788436 DOI: 10.3390/vision6010006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
The autonomic nervous system (ANS) confers neural control of the entire body, mainly through the sympathetic and parasympathetic nerves. Several studies have observed that the physiological functions of the eye (pupil size, lens accommodation, ocular circulation, and intraocular pressure regulation) are precisely regulated by the ANS. Almost all parts of the eye have autonomic innervation for the regulation of local homeostasis through synergy and antagonism. With the advent of new research methods, novel anatomical characteristics and numerous physiological processes have been elucidated. Herein, we summarize the anatomical and physiological functions of the ANS in the eye within the context of its intrinsic connections. This review provides novel insights into ocular studies.
Collapse
|
5
|
Cui YK, Pan L, Lam T, Wen CY, Do CW. Mechanistic links between systemic hypertension and open angle glaucoma. Clin Exp Optom 2021; 105:362-371. [PMID: 34402761 DOI: 10.1080/08164622.2021.1964332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Systemic hypertension or hypertension is a very common chronic age-related disease worldwide. It is typically characterised by a sustained elevation of blood pressure, particularly when the systolic blood pressure and/or diastolic blood pressure are of more than 140 mmHg and 90 mmHg, respectively. If hypertension is not well controlled, it may lead to an increased risk of stroke and heart attack. It has been shown that hypertension is linked to various ocular diseases, including cataract, diabetic retinopathy, age-related macular degeneration, and glaucoma. Glaucoma is the leading cause of irreversible blindness worldwide. Primary open angle glaucoma is the most common form of the disease and is usually characterised by an increase in intraocular pressure. This condition, together with normal tension glaucoma, constitutes open angle glaucoma. Systemic hypertension has been identified as a risk factor for open angle glaucoma. It is speculated that blood pressure is involved in the pathogenesis of open angle glaucoma by altering intraocular pressure or ocular blood flow, or both. Recent evidence has shown that both extremely high and low blood pressure are associated with increased risk of open angle glaucoma. Additional pathogenic mechanisms, including increased inflammation likely to be involved in the development and progression of these two diseases, are discussed.
Collapse
Affiliation(s)
- Ying-Kun Cui
- School of Optometry, The Hong Kong Polytechnic University, Shenzhen, Hong Kong SAR
| | - Li Pan
- School of Optometry, The Hong Kong Polytechnic University, Shenzhen, Hong Kong SAR
| | - Tim Lam
- School of Optometry, The Hong Kong Polytechnic University, Shenzhen, Hong Kong SAR
| | - Chun-Yi Wen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Shenzhen, Hong Kong SAR
| | - Chi-Wai Do
- School of Optometry, The Hong Kong Polytechnic University, Shenzhen, Hong Kong SAR.,Centre For Eye and Vision Research, Shenzhen, Hong Kong SAR
| |
Collapse
|