1
|
Li X. lncRNA MALAT1 promotes diabetic retinopathy by upregulating PDE6G via miR-378a-3p. Arch Physiol Biochem 2024; 130:119-127. [PMID: 34674599 DOI: 10.1080/13813455.2021.1985144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/06/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
Diabetic retinopathy (DR) is the main cause of adult insomnia, which causes certain social and economic pressure. This research was to investigate the role and regulatory mechanisms of MALAT1, miR-378a-3p and PDE6g in retinal microvascular endothelial cells (RMECs) under high glucose (HG). MALAT1, Mir-378a-3p and PDE6G expressions level were detected by qRT-PCR and Western blot. The proliferation, Bax and Bcl-2 protein expression of RMECs were detected by CCK-8 and western blot. The target relationships of MALAT1, miR-378a-3p and PDE6G were determined by bioinformatics analysis, dual-luciferase reporter gene, RIP and RNA pull-down assay. HG enhanced the expression of MALAT1 and PDE6G, and inhibited the expression of miR-378a-3p. Overexpression of MALAT1 promotes the proliferation of RMECs and inhibits apoptosis under HG condition. MALAT1 competitively adsorbed miR-378a-3p, which targeted PDE6G. Data reveal that MALAT1/miR-378a-3p/PDE6G signal axis restrain the apoptosis of RMECs under HG. This finding may help to delay the development of DR.
Collapse
Affiliation(s)
- Xiaoxia Li
- Department of Ophthalmology, Wuhan Third Hospital, Wuhan, Hubei, China
| |
Collapse
|
2
|
Wu L, Huang G, Hong H, Xu X, Lu X, Li J. MiR-452-5p facilitates retinoblastoma cell growth and invasion via the SOCS3/JAK2/STAT3 pathway. J Biochem Mol Toxicol 2023; 37:e23501. [PMID: 37632310 DOI: 10.1002/jbt.23501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023]
Abstract
Retinoblastoma (RB) is an intraocular tumor in children. Accumulated evidence confirms that microRNAs (miRNAs) exert critical functions in RB. This research aimed to investigate the miR-452-5p function in RB. MiR-452-5p expressions in RB were tested with quantitative real-time polymerase chain reaction (PCR). MiR-452-5p functions in RB were evaluated via Cell Counting Kit-8, 5-Ethynyl-2'-deoxyuridine assay, flow cytometry, Western blot, and Transwell. MiR-452-5p mechanism in RB was assessed using bioinformatics software Starbase and dual-luciferase reporter gene assay. Meanwhile, miR-452-5p function in RB in vivo was examined by constructing tumor xenografts in nude mice, immunohistochemistry, and Western blot assays. MiR-452-5p was overexpressed in RB tissues and cells, and miR-452-5p expression was positively correlated with RB clinicopathology including the Largest tumor base (mm) and Differentiation. Functionally, miR-452-5p knockdown restrained RB cell proliferation, invasion, epithelial-mesenchymal transition (EMT), and facilitated cell apoptosis. Mechanistically, suppressors of cytokine signaling (SOCS3) knockdown restored the inhibitory effects of miR-452-5p knockdown on RB cells. Meanwhile, in vivo studies further corroborated that miR-452-5p knockdown reduced RB tumor growth, EMT, and accelerated apoptosis in vivo. Also, miR-452-5p knockdown increased SOCS3 protein levels, and decreased phosphorylated Janus kinase 2/Janus kinase 2 (JAK2), phosphorylated signal transducer and activator of transcription 3/signal transducer and activator of transcription 3 (STAT3) in vivo. MiR-452-5p accelerated RB cell growth and invasion by SOCS3/JAK2/STAT3.
Collapse
Affiliation(s)
- Laiwei Wu
- Department of Ophthalmology, Huizhou Central People's Hospital, Huizhou, People's Republic of China
| | - Guoqiang Huang
- Department of Ophthalmology, Meizhou people's Hospital, Meizhou, People's Republic of China
| | - Huifeng Hong
- Department of Ophthalmology, Huizhou Central People's Hospital, Huizhou, People's Republic of China
| | - Xiangzhou Xu
- Department of Ophthalmology, Huizhou first Hospital, Huizhou, People's Republic of China
| | - Xiaohe Lu
- Department of Ophthalmology, Zhujiang Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Jing Li
- Department of Ophthalmology, Huizhou Central People's Hospital, Huizhou, People's Republic of China
| |
Collapse
|
3
|
Ahangar Davoodi N, Najafi S, Naderi Ghale-Noie Z, Piranviseh A, Mollazadeh S, Ahmadi Asouri S, Asemi Z, Morshedi M, Tamehri Zadeh SS, Hamblin MR, Sheida A, Mirzaei H. Role of non-coding RNAs and exosomal non-coding RNAs in retinoblastoma progression. Front Cell Dev Biol 2022; 10:1065837. [PMID: 36619866 PMCID: PMC9816416 DOI: 10.3389/fcell.2022.1065837] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Retinoblastoma (RB) is a rare aggressive intraocular malignancy of childhood that has the potential to affect vision, and can even be fatal in some children. While the tumor can be controlled efficiently at early stages, metastatic tumors lead to high mortality. Non-coding RNAs (ncRNAs) are implicated in a number of physiological cellular process, including differentiation, proliferation, migration, and invasion, The deregulation of ncRNAs is correlated with several diseases, particularly cancer. ncRNAs are categorized into two main groups based on their length, i.e. short and long ncRNAs. Moreover, ncRNA deregulation has been demonstrated to play a role in the pathogenesis and development of RB. Several ncRNAs, such as miR-491-3p, miR-613,and SUSD2 have been found to act as tumor suppressor genes in RB, but other ncRNAs, such as circ-E2F3, NEAT1, and TUG1 act as tumor promoter genes. Understanding the regulatory mechanisms of ncRNAs can provide new opportunities for RB therapy. In the present review, we discuss the functional roles of the most important ncRNAs in RB, their interaction with the genes responsible for RB initiation and progression, and possible future clinical applications as diagnostic and prognostic tools or as therapeutic targets.
Collapse
Affiliation(s)
- Nasrin Ahangar Davoodi
- Eye Research Center, Rassoul Akram Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zari Naderi Ghale-Noie
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ashkan Piranviseh
- Brain and Spinal Cord Injury Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammadamin Morshedi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran,*Correspondence: Amirhossein Sheida, ; Hamed Mirzaei, ,
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran,*Correspondence: Amirhossein Sheida, ; Hamed Mirzaei, ,
| |
Collapse
|
4
|
Xu X, Li Y, Liu G, Li K, Chen P, Gao Y, Liang W, Xi H, Wang X, Wei B, Li H, Chen L. MiR-378a-3p acts as a tumor suppressor in gastric cancer via directly targeting RAB31 and inhibiting the Hedgehog pathway proteins GLI1/2. Cancer Biol Med 2022; 19:j.issn.2095-3941.2022.0337. [PMID: 36245214 PMCID: PMC9755959 DOI: 10.20892/j.issn.2095-3941.2022.0337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVE To improve the prognosis of patients with gastric cancer (GC), more effective therapeutic targets are urgently needed. Increasing evidence indicates that miRNAs are involved in the progression of various tumors, and RAS-associated protein in the brain 31 (RAB31) is upregulated and promotes the progression of multiple malignant tumors. Here, we focused on identifying RAB31-targeted miRNAs and elucidating their potential mechanism in the progression of GC. METHODS RAB31 and miR-378a-3p expression levels were detected in paired fresh GC tissues and GC cell lines. Bioinformatics analysis was used to predict the miRNAs targeting RAB31 and the relationships between RAB31 and other genes. Dual-luciferase reporter assays were applied to verify the targeted interaction relationship. CCK-8, colony formation, flow cytometry, wound healing, and Transwell assays were performed to assess the proliferation, apoptosis, migration, and invasion of GC cells. Tumorsphere formation assays were performed to assess the stemness of gastric cancer stem cells. Related proteins were detected by Western blot. Xenograft assays in nude mice were performed to explore the effect of miR-378a-3p in vivo. RESULTS We report the first evidence that miR-378a-3p is downregulated in GC, whereas its overexpression inhibits proliferation, invasion, and migration as well as promotes apoptosis in GC cells. Mechanistically, miR-378a-3p inhibits the progression of GC by directly targeting RAB31. Restoring RAB31 expression partially offsets the inhibitory effect of miR-378a-3p. Further research revealed that miR-378a-3p inhibits GLI1/2 in the Hedgehog signaling pathway and attenuates the stemness of gastric cancer stem cells. Finally, xenograft assays showed that miR-378a-3p inhibits GC tumorigenesis in vivo. CONCLUSIONS MiR-378a-3p inhibits GC progression by directly targeting RAB31 and inhibiting the Hedgehog signaling pathway proteins GLI1/2.
Collapse
Affiliation(s)
- Xinxin Xu
- Medical School of Chinese PLA, Beijing 100853, China,Senior Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yang Li
- Medical School of Chinese PLA, Beijing 100853, China,Senior Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Guoxiao Liu
- Medical School of Chinese PLA, Beijing 100853, China,Senior Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Kai Li
- Medical School of Chinese PLA, Beijing 100853, China,Senior Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Peng Chen
- Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of People’s Liberation Army, Lanzhou 730050, China
| | - Yunhe Gao
- Senior Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Wenquan Liang
- Senior Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Hongqing Xi
- Senior Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Xinxin Wang
- Senior Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Bo Wei
- Senior Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Hongtao Li
- Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of People’s Liberation Army, Lanzhou 730050, China,Correspondence to: Hongtao Li and Lin Chen, E-mail: and
| | - Lin Chen
- Senior Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China,Correspondence to: Hongtao Li and Lin Chen, E-mail: and
| |
Collapse
|
5
|
Qin Y, Liang R, Lu P, Lai L, Zhu X. Depicting the Implication of miR-378a in Cancers. Technol Cancer Res Treat 2022; 21:15330338221134385. [PMID: 36285472 PMCID: PMC9608056 DOI: 10.1177/15330338221134385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
MicroRNA-378a (miR-378a), including miR-378a-3p and miR-378a-5p, are encoded in PPARGC1B gene. miR-378a is essential for tumorigenesis and is an independent prognostic biomarker for various malignant tumors. Aberrant expression of miR-378a affects several physiological and pathological processes, including proliferation, apoptosis, tumorigenesis, cancer invasion, metastasis, and therapeutic resistance. Interestingly, miR-378a has a dual functional role in either promoting or inhibiting tumorigenesis, independent of the cancer type. In this review, we comprehensively summarized the role and regulatory mechanisms of miR-378a in cancer development, hoping to provide a direction for its potential use in cancer therapy.
Collapse
Affiliation(s)
- Yuelan Qin
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Renba Liang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Pingan Lu
- Faculty of Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lin Lai
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Xiaodong Zhu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China,Affiliated Wuming Hospital of Guangxi Medical University, Nanning, People's Republic of China,Key Laboratory of Early Prevention and Treatment for Regional High-Incidence-Tumor, Guangxi Medical University, Ministry of Education, Nanning, People's Republic of China,Xiaodong Zhu, Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, 22 Shuang Yong Road, Nanning 530021, People's Republic of China.
| |
Collapse
|
6
|
An D, Yang J, Ma L. circRNF20 aggravates the malignancy of retinoblastoma depending on the regulation of miR-132-3p/PAX6 axis. Open Med (Wars) 2022; 17:955-968. [PMID: 35663593 PMCID: PMC9135067 DOI: 10.1515/med-2022-0483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 11/27/2022] Open
Abstract
Circular RNAs (circRNAs) serve as essential players in diverse human cancers, including retinoblastoma (RB). In this study, the function of circRNA Ring Finger Protein 20 (circRNF20) in RB progression was investigated. Quantitative real-time polymerase chain reaction, western blot assay or immunohistochemistry assay was performed to determine the expression of circRNF20, miR-132-3p and Paired Box 6 (PAX6). Dual-luciferase reporter assay, RNA immunoprecipitation assay and RNA pull-down assay were utilized to verify the relationships among circRNF20, miR-132-3p and PAX6. In vivo experiment was done for circRNF20 function in tumor formation. It was found that ircRNF20 level was increased in RB tissues and linked to advanced tumor, nodes, metastases (TNM) stage and poor overall survival rate. Deficiency of circRNF20 suppressed cell proliferation, migration and invasion and induced apoptosis in vitro, as well as blocked tumor growth in vivo. circRNF20 directly targeted miR-132-3p and miR-132-3p overexpression inhibited RB cell progression. PAX6 was the target gene of miR-132-3p. Moreover, miR-132-3p inhibition or PAX6 overexpression reversed circRNF20 deficiency-mediated effects on RB cell malignant behaviors. In addition, exosomal circRNF20 was able to promote RB cell progression. Thus, we concluded that circRNF20 served as an oncogene in RB progression through the circRNF20/miR-132-3p/PAX6 pathway.
Collapse
Affiliation(s)
- Dexiang An
- Department of Ophthalmology, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu Province, People's Republic of China
| | - Jing Yang
- Department of Pharmacy, Lianyungang Maternal and Child Health Hospital, Lianyungang, People's Republic of China
| | - Linli Ma
- Department of Ophthalmology, The Second People's Hospital of Lianyungang, No. 41 Hailian Dong Road, Haizhou District, Lianyungang 222000, People's Republic of China.,Department of Ophthalmology, The Oncology Hospital of Lianyungang, No. 41 Hailian Dong Road, Haizhou District, Lianyungang 222000, Jiangsu Province, People's Republic of China
| |
Collapse
|
7
|
Wu Z, Pan J, Yang J, Zhang D. LncRNA136131 suppresses apoptosis of renal tubular epithelial cells in acute kidney injury by targeting the miR-378a-3p/Rab10 axis. Aging (Albany NY) 2022; 14:3666-3686. [PMID: 35482482 PMCID: PMC9085219 DOI: 10.18632/aging.204036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/28/2022] [Indexed: 11/25/2022]
Abstract
The pathogenesis of acute kidney injury (AKI) is not fully understood. To date, the exact role and regulatory mechanism of long non-coding RNA (lncRNA)136131 in AKI remains unclear. Here, we demonstrate that lncRNA136131 in BUMPT cells is induced by antimycin A. Furthermore, after incubating BUMPT cells in antimycin for two hours, lncRNA136131 prevented BUMPT cell apoptosis and cleaved caspase-3 expression. Mechanistically, lncRNA136131 sponged miR-378a-3p and then increased the expression of Rab10 to suppress apoptosis. Finally, I/R-induced decline of renal function, tubular damage, renal tubular cells apoptosis, and the upregulation of cleaved caspase-3 were aggravated by lncRNA136131 siRNA. In contrast, this effect was attenuated by the overexpression of lncRNA136131. In conclusion, lncRNA136131 protected against I/R-induced AKI progression by targeting miR-378a-3p/Rab10 and may be utilized as a novel target for AKI therapeutics.
Collapse
Affiliation(s)
- Zhifen Wu
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Jian Pan
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Jurong Yang
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Dongshan Zhang
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
8
|
Cui X, Liang T, Ji X, Shao Y, Zhao P, Li X. LINC00488 Induces Tumorigenicity in Retinoblastoma by Regulating microRNA-30a-5p/EPHB2 Axis. Ocul Immunol Inflamm 2022; 31:506-514. [PMID: 35404750 DOI: 10.1080/09273948.2022.2037659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE LINC00488 confers oncogenic activity in the progression of some tumors. Hence, the target of the study was about to specify LINC00488-mediated network in retinoblastoma (RB). METHODS LINC00488 expression was tested in RB clinical tissues. siRNA targeting LINC00488 or miR-30a-5p mimic was introduced into RB cell line (Y79) to observe cellular biological functions. The relationship between LINC00488, miR-30a-5p and EPHB2 was verified. Afterward, the role of miR-30a-5p involved in RB through targeted regulation of EPHB2 was probed in vitro and in vivo. RESULTS LINC00488 was induced in RB tissue and cells. LINC00488 knockdown or miR-30a-5p upregulation depressed the malignant activities of Y79 cells. LINC00488 could sponge miR-30a-5p that targeted EPHB2. EPHB2, and EPHB2 overexpression counteracted miR-30a-5p restoration-induced inhibition of Y79 cell development in vitro and in vivo. CONCLUSION LINC00488 induces tumorigenicity in RB by binding to miR-30a-5p to target EPHB2, which may offer a new clue of RB treatment from an lncRNA-miRNA-mRNA network.
Collapse
Affiliation(s)
- Xuehao Cui
- Department of Ophthalmology, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision ScienceEye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjing, China
| | - Tingyi Liang
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xunda Ji
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Shao
- Department of Ophthalmology, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision ScienceEye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjing, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaorong Li
- Department of Ophthalmology, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision ScienceEye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjing, China
| |
Collapse
|
9
|
Jang H, Kim SH, Koh Y, Yoon KJ. Engineering Brain Organoids: Toward Mature Neural Circuitry with an Intact Cytoarchitecture. Int J Stem Cells 2022; 15:41-59. [PMID: 35220291 PMCID: PMC8889333 DOI: 10.15283/ijsc22004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/19/2022] [Indexed: 11/23/2022] Open
Abstract
The emergence of brain organoids as a model system has been a tremendously exciting development in the field of neuroscience. Brain organoids are a gateway to exploring the intricacies of human-specific neurogenesis that have so far eluded the neuroscience community. Regardless, current culture methods have a long way to go in terms of accuracy and reproducibility. To perfectly mimic the human brain, we need to recapitulate the complex in vivo context of the human fetal brain and achieve mature neural circuitry with an intact cytoarchitecture. In this review, we explore the major challenges facing the current brain organoid systems, potential technical breakthroughs to advance brain organoid techniques up to levels similar to an in vivo human developing brain, and the future prospects of this technology.
Collapse
Affiliation(s)
- Hyunsoo Jang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Seo Hyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Youmin Koh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Ki-Jun Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
- KAIST-Wonjin Cell Therapy Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| |
Collapse
|
10
|
Dong Z, Gu H, Guo Q, Liang S, Xue J, Yao F, Liu X, Li F, Liu H, Sun L, Zhao K. Profiling of Serum Exosome MiRNA Reveals the Potential of a MiRNA Panel as Diagnostic Biomarker for Alzheimer's Disease. Mol Neurobiol 2021; 58:3084-3094. [PMID: 33629272 DOI: 10.1007/s12035-021-02323-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 02/05/2021] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease in the older adults. Although much effort has been made in the analyses of diagnostic biomarkers, such as amyloid-β, tau, and neurofilament light chain, identifying peripheral blood-based biomarkers is in extremely urgent need for their minimal invasiveness and more convenience. Here we characterized the miRNA profile by RNA sequencing in human serum exosomes from AD patients and healthy controls (HC) to investigate its potential for AD diagnosis. Subsequently, Gene Ontology analysis and pathway analysis were performed for the targeted genes from the differentially expressed miRNAs. These basic functions were differentially enriched, including cell adhesion, regulation of transcription, and the ubiquitin system. Functional network analysis highlighted the pathways of proteoglycans in cancer, viral carcinogenesis, signaling pathways regulating pluripotency of stem cells, and cellular senescence in AD. A total of 24 miRNAs showed significantly differential expression between AD and HC with more than ± 2.0-fold change at p value < 0.05 and at least 50 reads for each sample. Logistic regression analysis established a model for AD prediction by serum exosomal miR-30b-5p, miR-22-3p, and miR-378a-3p. Sequencing results were validated using quantitative reverse transcription PCR. The data showed that miR-30b-5p, miR-22-3p, and miR-378a-3p were significantly deregulated in AD, with area under the curve (AUC) of 0.668, 0.637, and 0.718, respectively. The combination of the three miRs gained a better diagnostic capability with AUC of 0.880. This finding revealed a miR panel as potential biomarker in the peripheral blood to distinguish AD from HC.
Collapse
Affiliation(s)
- Zhiwu Dong
- Department of Laboratory Medicine, Jinshan Branch of Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 147 Jiankang Road, Jinshan District, Shanghai, 201599, People's Republic of China.
| | - Hongjun Gu
- Shanghai Jinshan Zhongren Aged Care Hospital, Shanghai, 201501, China
| | - Qiang Guo
- Department of Ultrasound Medicine, Jinshan Branch of Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, 201599, China
| | - Shuang Liang
- Department of Laboratory Medicine, Jinshan Branch of Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 147 Jiankang Road, Jinshan District, Shanghai, 201599, People's Republic of China
| | - Jian Xue
- Shanghai Jinshan Zhongren Aged Care Hospital, Shanghai, 201501, China
| | - Feng Yao
- Shanghai Jinshan Zhongren Aged Care Hospital, Shanghai, 201501, China
| | - Xianglu Liu
- Department of Laboratory Medicine, Jinshan Branch of Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 147 Jiankang Road, Jinshan District, Shanghai, 201599, People's Republic of China
| | - Feifei Li
- Department of Laboratory Medicine, Jinshan Branch of Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 147 Jiankang Road, Jinshan District, Shanghai, 201599, People's Republic of China
| | - Huiling Liu
- Department of Laboratory Medicine, Jinshan Branch of Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 147 Jiankang Road, Jinshan District, Shanghai, 201599, People's Republic of China
| | - Li Sun
- Department of Laboratory Medicine, Jinshan Branch of Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 147 Jiankang Road, Jinshan District, Shanghai, 201599, People's Republic of China
| | - Kewen Zhao
- Department of Pathophysiology, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, People's Republic of China
| |
Collapse
|
11
|
Fu C, Wang S, Jin L, Zhang M, Li M. CircTET1 Inhibits Retinoblastoma Progression via Targeting miR-492 and miR-494-3p through Wnt/β-catenin Signaling Pathway. Curr Eye Res 2021; 46:978-987. [PMID: 33108919 DOI: 10.1080/02713683.2020.1843685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose: Retinoblastoma (RB) is a frequent intraocular malignancy in children. Circular RNA (circRNA) plays an essential role in regulating the occurrence and development of tumors. This study aimed at investigating the function and molecular basis of hsa_circ_0093996 (circTET1) in RB.Methods: The expression of circTET1, miR-492 and miR-494-3p was examined using quantitative real-time polymerase chain reaction. Cell proliferation, cycle arrest, apoptosis, migration and invasion of RB cells were detected using Cell Counting Kit-8 (CCK-8), colony formation assay, flow cytometry, scratch assay and transwell analysis, respectively. The levels of matrix metalloproteinase (MMP) 2, MMP9 and Wnt/β-catenin pathway-related proteins were measured via western blot assay. The association between circTET1 and miR-492/miR-494-3p was validated via dual-luciferase reporter assay and RNA pull-down assay. Xenograft assay was employed to analyze tumor growth in vivo.Results: CircTET1 level was reduced, while miR-492 and miR-494-3p levels were increased in RB tissues and cells. Overexpression of circTET1 inhibited proliferation, migration and invasion, and promoted apoptosis and cell cycle arrest in Y79 and WERI-Rb1 cells. Moreover, circTET1 impeded RB cell progression by sponging miR-492/miR-494-3p. Also, up-regulation of circTET1 restrained Wnt/β-catenin pathway via regulating miR-492 and miR-494-3p. Furthermore, circTET1 suppressed tumor growth in xenograft models.Conclusion: CircTET1 inhibited RB progression by sponging miR-492/miR-494-3p and inactivating the Wnt/β-catenin pathway, which provided new insights for RB treatment.
Collapse
Affiliation(s)
- Changbo Fu
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Ophthalmology, The Affiliated Hospital of China University of Mining and Technology, Xuzhou Eye Research Institute, Xuzhou, Jiangsu, China.,Department of Ophthalmology, Xuzhou Eye Research Institute, Xuzhou, Jiangsu, China
| | - Suchang Wang
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Ophthalmology, The Affiliated Hospital of China University of Mining and Technology, Xuzhou Eye Research Institute, Xuzhou, Jiangsu, China.,Department of Ophthalmology, Xuzhou Eye Research Institute, Xuzhou, Jiangsu, China
| | - Lei Jin
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Ophthalmology, The Affiliated Hospital of China University of Mining and Technology, Xuzhou Eye Research Institute, Xuzhou, Jiangsu, China.,Department of Ophthalmology, Xuzhou Eye Research Institute, Xuzhou, Jiangsu, China
| | - Minmin Zhang
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Ophthalmology, The Affiliated Hospital of China University of Mining and Technology, Xuzhou Eye Research Institute, Xuzhou, Jiangsu, China.,Department of Ophthalmology, Xuzhou Eye Research Institute, Xuzhou, Jiangsu, China
| | - Mengmeng Li
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Ophthalmology, The Affiliated Hospital of China University of Mining and Technology, Xuzhou Eye Research Institute, Xuzhou, Jiangsu, China.,Department of Ophthalmology, Xuzhou Eye Research Institute, Xuzhou, Jiangsu, China
| |
Collapse
|
12
|
Sun S, Wang R, Yi S, Li S, Wang L, Wang J. Roles of the microRNA‑338‑3p/NOVA1 axis in retinoblastoma. Mol Med Rep 2021; 23:394. [PMID: 33760207 PMCID: PMC8008220 DOI: 10.3892/mmr.2021.12033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Retinoblastoma (RB) is an intraocular malignancy that mainly affects young children. Previous reports have demonstrated that mutations or the inactivation of the RB1 gene were the main cause of RB; however, disruption of the intracellular signaling pathways following deficiency of RB1 requires further investigation. Based on the Gene Expression Omnibus data and bioinformatics prediction, the present study aimed to investigate the microRNA (miR)-338-3p/neuro-oncological ventral antigen 1 (NOVA1) axis in RB. Subsequently, overexpression and knockdown of miR-338-3p and NOVA1, respectively, were performed to study the role of miR-338-3p/NOVA1 in the progression of the RB cells. The results demonstrated that overexpression of miR-338-3p significantly inhibited cell proliferation, migration and invasion, and promoted apoptosis of the RB cells. Moreover, knockdown of NOVA1 showed similar results. A dual-luciferase reporter assay and rescue experiments further confirmed the direct binding between miR-338-3p and NOVA1. Taken together, the results indicated that miR-338-3p acted as tumor suppressor by targeting the oncogene of NOVA1 in RB, which may serve as potential therapeutic targets in RB.
Collapse
Affiliation(s)
- Shoubin Sun
- Department of Ophthalmology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Runze Wang
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Sisi Yi
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Sijia Li
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Lei Wang
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jianwen Wang
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
13
|
Jiang Y, Xiao F, Wang L, Wang T, Chen L. Hsa_circ_0099198 facilitates the progression of retinoblastoma by regulating miR-1287/LRP6 axis. Exp Eye Res 2021; 206:108529. [PMID: 33676964 DOI: 10.1016/j.exer.2021.108529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 11/19/2022]
Abstract
Retinoblastoma (RB) is an intraocular malignancy that occurs in children. Circular RNAs (circRNAs) have been confirmed to play an essential role in tumorigenesis and development. This study aimed to ascertain the role and potential mechanism of hsa_circ_0099198 in RB. The levels of circ_0099198, microRNA-1287 (miR-1287) and low-density lipoprotein receptor-related protein 6 (LRP6) were determined by real-time quantitative polymerase chain reaction and Western blot. Cell proliferation was assessed by colony formation assay. Cell cycle arrest and apoptosis were evaluated by flow cytometry. Cell migration and invasion were tested using transwell assay. The activity of caspase-3/caspase-9 was examined with commercial kits. The interaction among circ_0099198, miR-1287 and LRP6 were verified by dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay or RNA pull-down assay. Xenograft experiment was used to assess tumor growth in vivo. circ_0099198 and LRP6 levels were increased, while miR-1287 level was reduced in RB cells. circ_0099198 silencing suppressed proliferation and metastasis and expedited cell cycle arrest and apoptosis in Y79 and So-RB50 cells. In addition, depletion of circ_0099198 inhibited RB cell progression via regulating miR-1287/LRP6 axis. Moreover, knockdown of circ_0099198 blocked the growth of xenograft tumors. circ_0099198 contributed to RB progression by sponging miR-1287 and up-regulating LRP6, which provided novel biomarkers for RB therapy.
Collapse
Affiliation(s)
- Yanhua Jiang
- Department of Ophthalmology, The Fourth People's Hospital of Shenyang, Shenyang City, Liaoning Province, China
| | - Fan Xiao
- Department of Ophthalmology, The Fourth People's Hospital of Shenyang, Shenyang City, Liaoning Province, China
| | - Lin Wang
- Department of Ophthalmology, The Fourth People's Hospital of Shenyang, Shenyang City, Liaoning Province, China
| | - Ting Wang
- Department of Ophthalmology, The Fourth People's Hospital of Shenyang, Shenyang City, Liaoning Province, China
| | - Linlin Chen
- Department of Ophthalmology, The Fourth People's Hospital of Shenyang, Shenyang City, Liaoning Province, China.
| |
Collapse
|