1
|
Ding H, Jiang L, Lin X, Ye C, Chun B. Association of physical activity, sedentary behaviour, sleep and myopia in children and adolescents: a systematic review and dose-response meta-analysis. BMC Public Health 2025; 25:1231. [PMID: 40170130 PMCID: PMC11959732 DOI: 10.1186/s12889-025-22434-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/21/2025] [Indexed: 04/03/2025] Open
Abstract
PURPOSE This study aimed to systematically evaluate the dose-response relationships between physical activity (PA), sedentary behavior(SB) (including near work [NW] and screen time [ST]), sleep duration (SD), and myopia risk among children and adolescents. DESIGN Systematic review and dose-response meta-analysis. METHODS We systematically searched PubMed, EMBASE, Cochrane Library, and Web of Science up to November 19, 2024. Methodological quality was assessed using Joanna Briggs Institute (JBI) and ROBINS-I tools. Random-effects meta-analyses were used to estimate categorical and continuous dose-response relationships. Subgroup analyses and sensitivity analyses were performed to explore heterogeneity sources and test robustness. RESULTS A total of 45 observational studies (766,848 participants aged 5-19 years) were included. Categorical analyses showed that, compared with the lowest exposure categories, higher PA levels (highest: OR = 0.77, 95% CI: 0.63-0.96; intermediate: OR = 0.76, 95% CI: 0.63-0.93) and longer SD (highest: OR = 0.67, 95% CI: 0.48-0.92; intermediate: OR = 0.82, 95% CI: 0.73-0.92) significantly reduced myopia risk. Conversely, higher levels of NW (highest: OR = 1.71, 95% CI: 1.28-2.27; intermediate: OR = 1.34, 95% CI: 1.19-1.50) and ST (highest: OR = 1.59, 95% CI: 1.14-2.22; intermediate: OR = 1.29, 95% CI: 1.12-1.49) were associated with significantly increased risk. In the continuous dose-response meta-analysis, a linear association was observed between PA, ST, and myopia. Each additional hour of PA per day reduced the risk of myopia by 12%, while each additional hour of ST increased the risk by 31%. Nonlinear associations were found between NW, SD, and myopia. Among children and adolescents, 1.5 and 2.5 h/day of NW increased the risk of myopia by 25% and 29%, respectively. Although longer SD was associated with a reduced risk of myopia, this effect did not reach statistical significance at any exposure level.Subgroup analyses revealed that protective effects of PA were more evident in low- and middle-income countries, smaller sample sizes, and cross-sectional studies, while increased risks related to ST and NW were stronger in low-income settings. No subgroup significantly modified the association between SD and myopia risk. CONCLUSION Increasing PA, while limiting ST and NW, effectively reduces the risk of myopia among children and adolescents. The association between sleep duration and myopia remains inconclusive, warranting further investigation.
Collapse
Affiliation(s)
- Huimin Ding
- Graduate School of Physical Education, Myongji University, 116th, Mingzhi Road, Churen District, Yongin City, Gyeonggi Province, 17058, Republic of Korea
| | - Liqun Jiang
- Graduate School of Physical Education, Myongji University, 116th, Mingzhi Road, Churen District, Yongin City, Gyeonggi Province, 17058, Republic of Korea
| | - Xuanqiao Lin
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, People's Republic of China
| | - Chaoying Ye
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, People's Republic of China
| | - Buongo Chun
- Graduate School of Physical Education, Myongji University, 116th, Mingzhi Road, Churen District, Yongin City, Gyeonggi Province, 17058, Republic of Korea.
| |
Collapse
|
2
|
Lu Y, Ji Z, Jia J, Shi R, Liu Y, Shu Q, Lu F, Ge T, He Y. Progress in clinical characteristics of high myopia with primary open-angle glaucoma. Biotechnol Genet Eng Rev 2024; 40:4923-4942. [PMID: 37243698 DOI: 10.1080/02648725.2023.2218765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/21/2023] [Indexed: 05/29/2023]
Abstract
High myopia (HM) is a significant risk factor for the occurrence and progression of primary open-angle glaucoma (POAG). Identification with POAG in the HM population is an emergent challenge. Patients with HM have a significantly higher probability of complicating POAG than those without HM. When HM is associated with POAG, the changes to the fundus caused by both of them are confused with each other, making the diagnosis of early glaucoma difficult. This article reviews available researches on HM with POAG, summarizing the characteristics of the fundus structure such as epidemiology, intraocular pressure, optic disc, ganglion cell layer, retinal nerve fiber layer, vascular density, and visual field.
Collapse
Affiliation(s)
- Yao Lu
- The Xi'an Medical University, Xi'an, Shaanxi, China
- The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China
| | - Zhi Ji
- The Xi'an Medical University, Xi'an, Shaanxi, China
- The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China
| | - Jun Jia
- The Xi'an Medical University, Xi'an, Shaanxi, China
- The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China
| | - Rui Shi
- Department of Ophthalmology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Ying Liu
- The Xi'an Medical University, Xi'an, Shaanxi, China
- The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China
| | - Qiong Shu
- The Xi'an Medical University, Xi'an, Shaanxi, China
| | - Fulin Lu
- The Xi'an Medical University, Xi'an, Shaanxi, China
| | - Teng Ge
- The Xi'an Medical University, Xi'an, Shaanxi, China
| | - Yuan He
- The Xi'an Medical University, Xi'an, Shaanxi, China
- The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
3
|
Lin P, Xu J, Miao A, Lu Y, Jiang Y, Zheng T. Novel compound heterozygous variants in LTBP2 associated with relative anterior microphthalmos. Eur J Ophthalmol 2024; 34:1750-1760. [PMID: 38545692 DOI: 10.1177/11206721241240503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
PURPOSE Relative anterior microphthalmos (RAM) is a rare congenital defect associated with severe vision impairment that is primarily caused by genetic alterations. The purpose of this study was to identify the causative genetic variants in two Chinese families with RAM with an autosomal recessive inheritance pattern. METHODS DNA samples were obtained from two probands and their family members. Targeted next-generation sequencing (NGS) was used to screen 425 genes associated with inherited eye diseases to identify possible disease-causing variants in the two patients. Sanger sequencing was subsequently used to validate the results in both families. RESULTS The targeted NGS panel identified potentially causative novel variants of the latent transforming growth factor beta binding protein 2 (LTBP2) gene in the two RAM families: a missense variant (c.2771C > T; p.Ala924Val) and an intronic variant (c.4582 + 9A > G) in Family A and a different missense variant (c.5239C > A; p.Arg1747Ser) and a synonymous variant (c.951G > A; p.Pro317Pro) in Family B. These four novel variants all cosegregated with the disease phenotype. CONCLUSION To our knowledge, this is the first study to report novel LTBP2 gene variants related to RAM. Considering the importance of LTBP2 in ocular development, we provide initial insights into the potential pathogenic mechanisms of LTBP2 in RAM.
Collapse
Affiliation(s)
- Peimin Lin
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, 83 Fenyang Rd., Shanghai 200031, China
- Eye Institute, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, China
- Department of Ophthalmology, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jie Xu
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, 83 Fenyang Rd., Shanghai 200031, China
- Eye Institute, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, China
- Department of Ophthalmology, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Ao Miao
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, 83 Fenyang Rd., Shanghai 200031, China
- Eye Institute, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, China
- Department of Ophthalmology, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yi Lu
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, 83 Fenyang Rd., Shanghai 200031, China
- Eye Institute, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, China
- Department of Ophthalmology, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yongxiang Jiang
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, 83 Fenyang Rd., Shanghai 200031, China
- Eye Institute, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, China
- Department of Ophthalmology, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Tianyu Zheng
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, 83 Fenyang Rd., Shanghai 200031, China
- Eye Institute, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, China
- Department of Ophthalmology, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| |
Collapse
|
4
|
Kong K, Liu X, Fang Z, Jiang J, Jiang J, Wang D, Yang Z, Zhou F, Chen EM, Liang J, Song Y, Lin F, Ohno-Matsui K, Jonas JB, Han Y, Li F, Zhang X. Axial elongation in nonpathologic high myopia: Ocular structural changes and glaucoma diagnostic challenges. Asia Pac J Ophthalmol (Phila) 2024; 13:100123. [PMID: 39674402 DOI: 10.1016/j.apjo.2024.100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/18/2024] [Accepted: 12/06/2024] [Indexed: 12/16/2024] Open
Abstract
Axial elongation continues in highly myopic adult eyes, even in the absence of pathologic changes such as posterior staphyloma or chorioretinal atrophy. This ongoing axial elongation leads to structural changes in the macular and peripapillary regions, including chorioretinal thinning, reduced vascular perfusion and optic disc tilting and rotation, among others. These alterations can affect the acquisition and interpretation of optical coherence tomography, optical coherence tomography angiography and fundus photographs, potentially introducing artifacts and diminishing the accuracy of glaucoma diagnosis in highly myopic eyes. In this review, we compared the progression patterns of axial elongation across populations with varying demographic characteristics, genetic and environmental backgrounds and ocular features. We also discussed the implications of axial elongation-induced ocular structural changes for diagnosing glaucoma in nonpathologic high myopia. Finally, we highlighted the prospects for enhancing the diagnostic efficacy of glaucoma in nonpathologic highly myopic populations.
Collapse
Affiliation(s)
- Kangjie Kong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Xiaoyi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Zige Fang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Jingwen Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Jiaxuan Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Deming Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Zefeng Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Fengqi Zhou
- Ophthalmology, Mayo Clinic Health System, Eau Claire, WI, USA
| | - Evan M Chen
- Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - Jill Liang
- University of California, Berkeley, CA, USA
| | - Yunhe Song
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Fengbin Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Kyoko Ohno-Matsui
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jost B Jonas
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland; Privatpraxis Prof. Jonas und Dr. Panda-Jonas, Heidelberg, Germany
| | - Ying Han
- Department of Ophthalmology, University of California, San Francisco, CA, USA.
| | - Fei Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China.
| | - Xiulan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China.
| |
Collapse
|
5
|
Kong K, Jiang J, Wang P, Song Y, Lin F, Li F, Gao X, Liu X, Jin L, Wang Z, Liu Y, Chen M, Ohno-Matsui K, Jonas JB, Chen S, Zhang X. Progression Patterns and Risk Factors of Axial Elongation in Young Adults With Nonpathologic High Myopia: Three-Year Large Longitudinal Cohort Follow-Up. Am J Ophthalmol 2024; 267:293-303. [PMID: 39128551 DOI: 10.1016/j.ajo.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
PURPOSE To investigate the progression patterns and risk factors of axial elongation in young adults with nonpathologic high myopia. DESIGN Prospective, clinical observational cohort study with 2- to 4-year follow-up. METHODS A total of 1043 eyes of 563 participants (3515 medical records) aged 18 to 50 years with nonpathologic high myopia (axial length [AL] ≥ 26 mm; myopic maculopathy < diffuse chorioretinal atrophy; without posterior staphyloma) were included from 1546 participants (6318 medical records). Annual axial elongation was calculated via linear mixed-effect models. The associated risk factors of axial elongation were determined by ordinal logistic regression analysis, with generalized estimate equations for eliminating an interocular correlation bias. RESULTS Based on 5359 times of AL measurements, the annual axial elongation of participants (mean [SD] age 31.39 [9.22] years) was 0.03 mm/year (95% confidence interval [CI], 0.03-0.04; P < .001) during a 30.23 (6.06) months' follow-up. Severe (>0.1 mm/year), moderate (0.05-0.09 mm/year), mild (0-0.049 mm/year), and nil (≤0 mm/year) elongation was observed in 122 (11.7%), 211 (20.2%), 417 (40.0%), and 293 (28.1%) eyes. The following risk factors were significantly associated with axial elongation: baseline AL ≥ 28 mm (odds ratio [OR], 4.23; 95% CI, 2.95-6.06; P < .001); age < 40 years (OR, 1.64; 95% CI, 1.18-2.28; P = .003); axial asymmetry (OR, 2.04; 95% CI, 1.26-3.29; P = .003), and women (OR, 1.52; 95% CI, 1.13-2.2.05; P = .006). Using antiglaucoma medications was a protective factor (OR, 0.46; 95% CI, 0.27-0.79; P = .005), which slowed 75% of axial elongation from 0.04 (0.06) to 0.01 (0.06) mm/y (P < .001). CONCLUSIONS Axial elongation continued in young adults with nonpathologic myopia. Risk factors included longer baseline AL and axial asymmetry, younger age, and woman. Topical use of antiglaucoma medications may be useful to reduce ongoing axial elongation.
Collapse
Affiliation(s)
- Kangjie Kong
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases (K.K., J.J., P.W., Y.S., F.L., F.L., X.G., X.L., L.J., Z.W., Y.L., M.C., S.C., and X.Z.), Guangzhou, China
| | - Jingwen Jiang
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases (K.K., J.J., P.W., Y.S., F.L., F.L., X.G., X.L., L.J., Z.W., Y.L., M.C., S.C., and X.Z.), Guangzhou, China
| | - Peiyuan Wang
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases (K.K., J.J., P.W., Y.S., F.L., F.L., X.G., X.L., L.J., Z.W., Y.L., M.C., S.C., and X.Z.), Guangzhou, China
| | - Yunhe Song
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases (K.K., J.J., P.W., Y.S., F.L., F.L., X.G., X.L., L.J., Z.W., Y.L., M.C., S.C., and X.Z.), Guangzhou, China
| | - Fengbin Lin
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases (K.K., J.J., P.W., Y.S., F.L., F.L., X.G., X.L., L.J., Z.W., Y.L., M.C., S.C., and X.Z.), Guangzhou, China
| | - Fei Li
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases (K.K., J.J., P.W., Y.S., F.L., F.L., X.G., X.L., L.J., Z.W., Y.L., M.C., S.C., and X.Z.), Guangzhou, China
| | - Xinbo Gao
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases (K.K., J.J., P.W., Y.S., F.L., F.L., X.G., X.L., L.J., Z.W., Y.L., M.C., S.C., and X.Z.), Guangzhou, China
| | - Xiaoyi Liu
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases (K.K., J.J., P.W., Y.S., F.L., F.L., X.G., X.L., L.J., Z.W., Y.L., M.C., S.C., and X.Z.), Guangzhou, China
| | - Ling Jin
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases (K.K., J.J., P.W., Y.S., F.L., F.L., X.G., X.L., L.J., Z.W., Y.L., M.C., S.C., and X.Z.), Guangzhou, China
| | - Zhenyu Wang
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases (K.K., J.J., P.W., Y.S., F.L., F.L., X.G., X.L., L.J., Z.W., Y.L., M.C., S.C., and X.Z.), Guangzhou, China
| | - Yuhong Liu
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases (K.K., J.J., P.W., Y.S., F.L., F.L., X.G., X.L., L.J., Z.W., Y.L., M.C., S.C., and X.Z.), Guangzhou, China
| | - Meiling Chen
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases (K.K., J.J., P.W., Y.S., F.L., F.L., X.G., X.L., L.J., Z.W., Y.L., M.C., S.C., and X.Z.), Guangzhou, China
| | - Kyoko Ohno-Matsui
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University (K.O.-M.), Bunkyo-ku, Japan
| | - Jost B Jonas
- Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University (J.B.J.), Mannheim, Germany; Institute of Molecular and Clinical Ophthalmology Basel (J.B.J.), Basel, Switzerland
| | - Shida Chen
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases (K.K., J.J., P.W., Y.S., F.L., F.L., X.G., X.L., L.J., Z.W., Y.L., M.C., S.C., and X.Z.), Guangzhou, China.
| | - Xiulan Zhang
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases (K.K., J.J., P.W., Y.S., F.L., F.L., X.G., X.L., L.J., Z.W., Y.L., M.C., S.C., and X.Z.), Guangzhou, China.
| |
Collapse
|
6
|
Deng B, Zhou M, Kong X, Cao Y, Tian M, Zhou Q, Luo L, Liu S, Cheng Z, Lv H. The lack of causal link between myopia and intraocular pressure: Insights from cross-sectional analysis and Mendelian randomization study. Photodiagnosis Photodyn Ther 2024; 49:104334. [PMID: 39284400 DOI: 10.1016/j.pdpdt.2024.104334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/31/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024]
Abstract
OBJECTIVE This study aimed to explore the potential causal relationship between intraocular pressure (IOP) and myopia. METHODS The study included 3,459 patients who underwent corneal refractive surgery at our institution between 2021 and 2023. Preoperative data on IOP, spherical equivalent (SE), axial length (AL), and corneal thickness (CCT) were collected. The association between IOP and myopia was investigated through rank correlation analysis, and causal inference was examined using Mendelian randomization (MR) methods, including MR-Egger, weighted median, mode-based estimation, simple mode, and inverse variance weighted (IVW) approaches. Utilizing summary statistics from genome-wide association studies (GWAS), IOP was considered as the exposure, with myopia as the outcome variable. IVW method was employed for the primary analysis, supplemented by sensitivity analyses. RESULTS Cross-sectional analysis revealed a non-significant association between corrected IOP (cIOP) and myopia (r = -0.019, P = 0.12). MR analysis indicated a non-significant genetic causal relationship between cIOP and myopia under the IVW method (OR = 1.001; 95 % CI [0.999-1.003], P = 0.22), a finding corroborated in replication samples (OR = 0.98; 95 % CI [0.96-1.00], P = 0.099). CONCLUSION This study did not find a direct causal link between IOP and the development of myopia. These findings challenge the traditional role attributed to IOP in the progression of myopia and highlight the complex, multifactorial process of myopia development. This provides a new perspective on understanding the intricate mechanisms behind myopia progression.
Collapse
Affiliation(s)
- Bo Deng
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, PR China
| | - Mo Zhou
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, PR China
| | - Xiangmei Kong
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, PR China
| | - Yang Cao
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, PR China
| | - Min Tian
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, PR China
| | - Qi Zhou
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, PR China
| | - Linbi Luo
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, PR China
| | - Siyan Liu
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, PR China
| | - Zixuan Cheng
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, PR China
| | - Hongbin Lv
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, PR China.
| |
Collapse
|
7
|
Hashemi H, Khabazkhoob M, Heydarian S, Emamian MH, Fotouhi A. Intraocular pressure and its association with ocular biometrics in Iranian children. JOURNAL OF OPTOMETRY 2024; 17:100523. [PMID: 39306986 PMCID: PMC11440304 DOI: 10.1016/j.optom.2024.100523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024]
Abstract
PURPOSE To determine the mean value and normative distribution of intraocular pressure (IOP) in children and their association with demographic and ocular biometrics. METHODS Cluster sampling was done to select the students in urban areas of Shahroud, northeast Iran, while all students living in rural areas were selected. IOP was measured in mmHg using a non-contact tonometer, along with corneal and retinal imaging and ocular biometric measurement. RESULTS After applying the exclusion criteria, 9154 eyes of 4580 students were analyzed, of whom 2377 (51.9 %) were boys. The mean age of the participants was 12.35±1.73 years (range: 9-15 years). The mean IOP was 15.58±2.83 (15.47-15.69) in total, 15.31±2.77 (15.17-15.46) in boys, and 15.88±2.86 (15.73-16.03) in girls (p < 0.001). The mean IOP was 15.07 and 15.49 in students aged 9 and 15 years, respectively. The mean IOP was 15.7 ± 2.64 (15.58-15.81) in urban and 14.52±4.05 (14.27-14.77) in rural students (p < 0.001). In the multiple generalized estimating equation model, IOP had a positive association with female sex (β=0.84, P < 0.001), systolic blood pressure (β=0.02, P < 0.001), cup volume (β=0.99, P < 0.001), corneal thickness (β=0.04, P < 0.001) and anterior chamber volume (β=0.007, P < 0.001) and a negative association with living in the rural area (β=-0.65, P < 0.001), rim area (β=-0.39, P < 0.001), and corneal diameter (β=-0.18, P = 0.045). Furthermore, individuals with myopia exhibited a significantly higher IOP (β=0.35, P < 0.001) compared to those with emmetropia. CONCLUSION This study showed the normative distribution of IOP and its associated factors in children. The results can be used in diagnosis and management of glaucoma.
Collapse
Affiliation(s)
- Hassan Hashemi
- Noor Research Center for Ophthalmic Epidemiology, Noor Eye Hospital, Tehran, Iran
| | - Mehdi Khabazkhoob
- Department of Medical Surgical Nursing, School of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Heydarian
- Department of Rehabilitation Science, School of Allied Medical Sciences, Mazandaran University of Medical Sciences, Sari, Iran; Ophthalmic Epidemiology Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohammad Hassan Emamian
- Ophthalmic Epidemiology Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Akbar Fotouhi
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Potop V, Dragosloveanu CDM, Ciocâlteu AM, Burcel MG, Marinescu MC, Dăscălescu DMC. The Mirror Theory: Parallels between Open Angle and Angle Closure Glaucoma. Life (Basel) 2024; 14:1154. [PMID: 39337937 PMCID: PMC11433309 DOI: 10.3390/life14091154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/19/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Glaucoma is a widespread ophthalmological disease, with a high impact and frequent visual morbidity. While the physiopathology of the two types of primary glaucoma (open angle and angle closure) has been studied, there seems to be little relationship between the two. In this study, we gather clinical and preclinical data to support the idea that the two primary glaucomas are "mirrored" in terms of morphological parameters and disease physiopathology. In short, primary angle closure glaucoma (PACG) is associated with hyperopia and low axial length, and primary open angle glaucoma (POAG) is associated with myopia and high axial length. Moreover, in PACG and in primary angle closure or primary angle closure suspect cases, while there is extensive iridotrabecular contact, the intraocular pressure (IOP) is still maintained in the lower half of the normal range throughout the evolution of the disease, which suggests a baseline trabecular hyperfiltration in PACG. In the opposite case, myopic eyes with open angles and a higher risk of developing POAG often have a baseline IOP in the upper half of the normal range, suggesting a baseline trabecular hypofiltration. As we explore clinical, genetic and animal model data regarding these opposing aspects, we hypothesize the existence of a mirroring relationship between PACG and POAG. Defining the relationship between the two potentially blinding diseases, with a high prevalence worldwide, may aid in understanding the mechanisms better and refining diagnosis and treatment. Thus, our theory has been named the Mirror Theory of Primary Glaucomas.
Collapse
Affiliation(s)
- Vasile Potop
- Ophthalmology Discipline, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Clinical Hospital for Ophthalmological Emergencies, 010464 Bucharest, Romania
| | - Christiana Diana Maria Dragosloveanu
- Ophthalmology Discipline, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Clinical Hospital for Ophthalmological Emergencies, 010464 Bucharest, Romania
| | - Alina Mihaela Ciocâlteu
- Ophthalmology Discipline, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Clinical Hospital for Ophthalmological Emergencies, 010464 Bucharest, Romania
| | | | - Maria Cristina Marinescu
- Discipline Physiology III, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Dana Margareta Cornelia Dăscălescu
- Ophthalmology Discipline, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Clinical Hospital for Ophthalmological Emergencies, 010464 Bucharest, Romania
| |
Collapse
|
9
|
Majumdar A, Panigrahi A, Singh A, Dada T, Gupta V, Gupta S. Progression to bilaterality in unilateral primary congenital glaucoma. J AAPOS 2024; 28:103967. [PMID: 38971397 DOI: 10.1016/j.jaapos.2024.103967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 07/08/2024]
Abstract
PURPOSE To evaluate the incidence of rise in intraocular pressure (IOP) in fellow eyes of patients with unilateral primary congenital glaucoma (PCG) and to identify risk factors for IOP increase over long-term follow-up. METHODS The medical records of unilateral PCG patients who had completed at least 5 years of follow-up were reviewed retrospectively. The incidence of developing ocular hypertension / glaucoma in fellow eyes was analyzed. Fellow eye progressors were those which showed an increase in optic nerve cupping by at least 0.2 since the first presentation or had IOP of >21 mm Hg on two occasions. The risk factors for progression that were analyzed included IOP, visual acuity, axial length, central corneal thickness (CCT), corneal diameters (CD), presence or absence of angle dysgenesis on high-resolution anterior segment optical coherence tomography (AS-OCT), and morphology of aqueous outflow pathways. RESULTS After a median follow-up of 8.2 years (range, 5-25.5) progression to bilateral disease was found in 17 of 54 patients (32%), of whom 8 (15%) developed ocular hypertension and 9 (17%) developed glaucoma in the fellow eye. Among the unaffected fellow eyes, those with a larger CD (>12 mm), measured after at least 5 years' follow-up, were ten times more likely to progress (P = 0.01; OR = 9.5 [95% CI, 1.7-54.3]). The presence of a patent supraciliary channel was significantly more frequently associated in fellow eyes compared with affected eyes on AS-OCT (OR = 1.4 [95% CI, 0.46-4.68]). CONCLUSIONS One-third of unaffected fellow eyes of unilateral PCG eventually progress over time, most often after 5 years. Larger CD at follow-up in the fellow eye is strongly predictive for progression.
Collapse
Affiliation(s)
- Aayush Majumdar
- Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Arnav Panigrahi
- Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Abhishek Singh
- Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Tanuj Dada
- Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Viney Gupta
- Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Shikha Gupta
- Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
10
|
Shin YI, Kim YK, Jeoung JW, Park KH. Intraocular pressure reduction and progression of highly myopic glaucoma: a 12-year follow-up cohort study. Br J Ophthalmol 2024; 108:1124-1129. [PMID: 38164537 DOI: 10.1136/bjo-2022-323069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 11/05/2023] [Indexed: 01/03/2024]
Abstract
AIMS To investigate any association between intraocular pressure (IOP) reduction amount and open-angle glaucoma (OAG) progression in highly myopic eyes and to determine the associated risk factors. METHODS One hundred and thirty-one (131) eyes of 131 patients with highly myopic OAG, all of whom had received topical medications and been followed for 5 years or longer, were enrolled. Based on the IOP reduction percentage, patients were categorised into tertile groups, and subsequently, the upper-tertile and lower-tertile groups were compared for the cumulative probability of glaucoma progression. Kaplan-Meier survival analysis and log-rank testing were applied in the comparison, and multivariate analysis with Cox's proportional hazard model, additionally, was performed to identify progression risk factors. RESULTS Throughout the average 11.6±4.4 year follow-up on the 131 eyes (mean age, 41.2 years at initial visit; baseline IOP, 16.4 mm Hg), 72 eyes (55.0%) showed glaucoma progression. The upper-tertile group (IOP reduction percentage>23.7%) showed a high cumulative probability of non-progression relative to the lower-tertile group (IOP reduction percentage<11.0%; p=0.034), according to the Kaplan-Meier analysis. Presence of disc haemorrhage (DH; HR=2.189; p=0.032) was determined by the multivariate Cox's proportional hazard model to be significantly associated with glaucoma progression. For progressors, the average rate of retinal nerve fibre layer thickness thinning was -0.88±0.74 µm/year, while the MD change was -0.42±0.36 dB/year. CONCLUSIONS Glaucoma progression is associated with amount of IOP reduction by topical medications in highly myopic eyes, and DH occurrence is a glaucoma progression risk factor.
Collapse
Affiliation(s)
- Young In Shin
- Department of Ophthalmology, Seoul National University Hospital, Jongno-gu, South Korea
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, South Korea
| | - Young Kook Kim
- Department of Ophthalmology, Seoul National University Hospital, Jongno-gu, South Korea
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, South Korea
| | - Jin Wook Jeoung
- Department of Ophthalmology, Seoul National University Hospital, Jongno-gu, South Korea
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, South Korea
| | - Ki Ho Park
- Department of Ophthalmology, Seoul National University Hospital, Jongno-gu, South Korea
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
11
|
Moghadas Sharif N, Hoseini-Yazdi H, Daneshvar R, Radhakrishnan H, Shoeibi N, Ehsaei A, Collins MJ. Seasonal variations in anterior segment angle parameters in myopes and emmetropes. Clin Exp Optom 2024; 107:530-536. [PMID: 37751623 DOI: 10.1080/08164622.2023.2251478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 04/17/2023] [Indexed: 09/28/2023] Open
Abstract
CLINICAL RELEVANCE Seasonal variations are known to occur in a range of ocular parameters and in conditions including refractive error and glaucoma. It is of clinical importance to know if seasonal changes also occur in anterior segment angle parameters, given that they can influence these conditions. BACKGROUND The study aimed to examine the seasonal variations in anterior segment angle parameters in healthy young adults. METHODS Twenty-three emmetropic participants with a mean age of 26.17 ± 4.43 years and 22 myopic participants with a mean age of 27.27 ± 4.47 years completed four seasons of data collection. Anterior segment angle parameters were measured using swept-source anterior segment optical coherence tomography. Intraocular pressure (IOP) and objective refraction were also measured. Repeated-measures analysis of variance was used to determine the effect of season and refractive error on the various ocular parameters. RESULTS A significant main effect of season was found for the majority of anterior segment angle parameters, including the angle opening distance at 500 and 750 µm from the scleral spur (p = 0.02, p = 0.006, respectively), angle recess area at 500 and 750 µm from the scleral spur (both p = 0.002), and trabecular iris space area at 500 and 750 µm from the scleral (p = 0.02, p = 0.008, respectively). However, measures of anterior chamber depth and trabecular iris angle did not exhibit statistically significant seasonal variations (all p > 0.05). A significant main effect of season was also found for the changes in IOP (p = 0.004) and objective refraction (p < 0.001). There was no season by refractive group interaction for any anterior segment angle parameter or IOP (all p > 0.05). CONCLUSION There is a small but significant seasonal changes in the anterior segment angle parameters, refractive error, and IOP in healthy young adult males, in which the anterior segment angle dimensions are narrower, the IOP is higher, and the refraction is more myopic during winter.
Collapse
Affiliation(s)
- Nasrin Moghadas Sharif
- Department of Optometry, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Optometry and Visual Science, University of London, London, UK
| | - Hosein Hoseini-Yazdi
- Contact Lens and Visual Optics Laboratory, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Ramin Daneshvar
- Eye Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | | | - Nasser Shoeibi
- Eye Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asieh Ehsaei
- Department of Optometry, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Optometry and Visual Science, University of London, London, UK
| | - Michael J Collins
- Contact Lens and Visual Optics Laboratory, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
12
|
Yii F, Nguyen L, Strang N, Bernabeu MO, Tatham AJ, MacGillivray T, Dhillon B. Factors associated with pathologic myopia onset and progression: A systematic review and meta-analysis. Ophthalmic Physiol Opt 2024; 44:963-976. [PMID: 38563652 DOI: 10.1111/opo.13312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
PURPOSE To synthesise evidence across studies on factors associated with pathologic myopia (PM) onset and progression based on the META-analysis for Pathologic Myopia (META-PM) classification framework. METHODS Findings from six longitudinal studies (5-18 years) were narratively synthesised and meta-analysed, using odds ratio (OR) as the common measure of association. All studies adjusted for baseline myopia, age and sex at a minimum. The quality of evidence was rated using the Grades of Recommendation, Assessment, Development and Evaluation framework. RESULTS Five out of six studies were conducted in Asia. There was inconclusive evidence of an independent effect (or lack thereof) of ethnicity and sex on PM onset/progression. The odds of PM onset increased with greater axial length (pooled OR: 2.03; 95% CI: 1.71-2.40; p < 0.001), older age (pooled OR: 1.07; 1.05-1.09; p < 0.001) and more negative spherical equivalent refraction, SER (OR: 0.77; 0.68-0.87; p < 0.001), all of which were supported by an acceptable level of evidence. Fundus tessellation was found to independently increase the odds of PM onset in a population-based study (OR: 3.02; 2.58-3.53; p < 0.001), although this was only supported by weak evidence. There was acceptable evidence that greater axial length (pooled OR: 1.23; 1.09-1.39; p < 0.001), more negative SER (pooled OR: 0.87; 0.83-0.92; p < 0.001) and higher education level (pooled OR: 3.17; 1.36-7.35; p < 0.01) increased the odds of PM progression. Other baseline factors found to be associated with PM progression but currently supported by weak evidence included age (pooled OR: 1.01), severity of myopic maculopathy (OR: 3.61), intraocular pressure (OR: 1.62) and hypertension (OR: 0.21). CONCLUSIONS Most PM risk/prognostic factors are not supported by an adequate evidence base at present (an indication that PM remains understudied). Current factors for which an acceptable level of evidence exists (limited in number) are unmodifiable in adults and lack personalised information. More longitudinal studies focusing on uncovering modifiable factors and imaging biomarkers are warranted.
Collapse
Affiliation(s)
- Fabian Yii
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Curle Ophthalmology Laboratory, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Linda Nguyen
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Niall Strang
- Department of Vision Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Miguel O Bernabeu
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh, UK
- The Bayes Centre, The University of Edinburgh, Edinburgh, UK
| | - Andrew J Tatham
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Princess Alexandra Eye Pavilion, NHS Lothian, Edinburgh, UK
| | - Tom MacGillivray
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Curle Ophthalmology Laboratory, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Baljean Dhillon
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Curle Ophthalmology Laboratory, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
- Princess Alexandra Eye Pavilion, NHS Lothian, Edinburgh, UK
| |
Collapse
|
13
|
Jiang J, Lin T, Lin F, Kong K, Wang P, Song Y, Zhou F, Wang Z, Jin L, Liu Y, Gao X, Chen J, Chen M, Lam DSC, Jonas JB, Chen S, Zhang X. Effect of intraocular pressure reduction on progressive high myopia (PHM study): study protocol of a randomised controlled trial. BMJ Open 2024; 14:e084068. [PMID: 38839388 PMCID: PMC11163624 DOI: 10.1136/bmjopen-2024-084068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/11/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND In adult patients with high myopia (HM), progressive axial elongation poses a significant risk for the development of subsequent ocular complications that may lead to visual impairment. Effective strategies to reduce or prevent further axial elongation in highly myopic adult patients have not been available so far. Recent studies suggested that medically lowering intraocular pressure (IOP) may reduce axial elongation. OBJECTIVE This clinical randomised controlled trial (RCT) aims to evaluate the efficacy of medical IOP reduction in adult patients with progressive HM (PHM). TRIAL DESIGN Single-centre, open-label, prospective RCT. METHODS This RCT will recruit 152 participants with PHM at the Zhongshan Ophthalmic Center (ZOC). Randomised in a ratio of 1:1, participants will receive IOP-lowering eyedrops (intervention group) or will be followed without treatment (control group) for 12 months. Follow-up visits will be conducted at 1, 6 and 12 months after baseline. Only one eye per eligible participant will be included for analysis. The primary outcome is the change in axial length (AL) within the study period of 12 months. Secondary outcomes include the incidence and progression of visual field (VF) defects, changes in optic disc morphology and incidence and progression of myopic maculopathy. Difference in AL changes between the two groups will be analysed using linear regression analysis. For the secondary outcomes, a multifactor Poisson regression within a generalised linear model will be used to estimate the relative risk of progression in VF defects and myopic maculopathy, and the rate of thinning in retinal nerve fibre layer and ganglion cell-inner plexiform will be assessed through Kaplan-Meier curves and log-rank tests. ETHICS AND DISSEMINATION Full ethics approval for this trial has been obtained from the Ethics Committee of ZOC, Sun Yat-sen University, China (ID: 2023KYPJ110). Results of this trial will be disseminated through peer-reviewed journals and conference presentations. TRIAL REGISTRATION NUMBER NCT05850936.
Collapse
Affiliation(s)
- Jingwen Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Tingting Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
- Ophthalmology department of Daqing Oilfield General Hospital, Daqing, China
| | - Fengbin Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Kangjie Kong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Peiyuan Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Yunhe Song
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Fengqi Zhou
- Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Zhenyu Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Ling Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Yuhong Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Xinbo Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Jinmei Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Meiling Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Dennis S C Lam
- The International Eye Research Institute, the Chinese University of Hong Kong (Shenzhen), Shenzhen, China
| | - Jost B Jonas
- Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
| | - Shida Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Xiulan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| |
Collapse
|
14
|
Xiang Y, Cheng H, Sun K, Zheng S, Du M, Gao N, Zhang T, Yang X, Xia J, Huang R, Wan W, Hu K. Myopia prevalence and ocular biometry in children and adolescents at different altitudes: a cross-sectional study in Chongqing and Tibet, China. BMJ Open 2024; 14:e078018. [PMID: 38692719 PMCID: PMC11086200 DOI: 10.1136/bmjopen-2023-078018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 03/11/2024] [Indexed: 05/03/2024] Open
Abstract
OBJECTIVE To investigate the differences in myopia prevalence and ocular biometry in children and adolescents in Chongqing and Tibet, China. DESIGN Cross-sectional study. SETTING The study included children and adolescents aged 6-18 years in Chongqing, a low-altitude region, and in Qamdo, a high-altitude region of Tibet. PARTICIPANTS A total of 448 participants in Qamdo, Tibet, and 748 participants in Chongqing were enrolled in this study. METHODS All participants underwent uncorrected visual acuity assessment, non-cycloplegic refraction, axial length (AL) measurement, intraocular pressure (IOP) measurement and corneal tomography. And the participants were grouped according to age (6-8, 9-11, 12-14 and 15-18 years group), and altitude of location (primary school students: group A (average altitude: 325 m), group B (average altitude: 2300 m), group C (average altitude: 3250 and 3170 m) and group D (average altitude: 3870 m)). RESULTS There was no statistical difference in mean age (12.09±3.15 vs 12.2±3.10, p=0.549) and sex distribution (males, 50.4% vs 47.6%, p=0.339) between the two groups. The Tibet group presented greater spherical equivalent (SE, -0.63 (-2.00, 0.13) vs -0.88 (-2.88, -0.13), p<0.001), shorter AL (23.45±1.02 vs 23.92±1.19, p<0.001), lower prevalence of myopia (39.7% vs 47.6%, p=0.008) and flatter mean curvature power of the cornea (Km, 43.06±1.4 vs 43.26±1.36, p=0.014) than the Chongqing group. Further analysis based on age subgroups revealed that the Tibet group had a lower prevalence of myopia and higher SE in the 12-14, and 15-18 years old groups, shorter AL in the 9-11, 12-14 and 15-18 years old groups, and lower AL to corneal radius of curvature ratio (AL/CR) in all age subgroups compared with the Chongqing group, while Km was similar between the two groups in each age subgroup. Simple linear regression analysis showed that SE decreased with age in both the Tibet and Chongqing groups, with the Tibet group exhibiting a slower rate of decrease (p<0.001). AL and AL/CR increased with age in both the Tibet and Chongqing groups, but the rate of increase was slower in the Tibet group (p<0.001 of both). Multiple linear regression analysis revealed that AL had the greatest effect on SE in both groups, followed by Km. In addition, the children and adolescents in Tibet presented thinner corneal thickness (CCT, p<0.001), smaller white to white distance (WTW, p<0.001), lower IOP (p<0.001) and deeper anterior chamber depth (ACD, p=0.015) than in Chongqing. Comparison of altitude subgroups showed that the prevalence of myopia (p=0.002), SE (p=0.031), AL (p=0.001) and AL/CR (p<0.001) of children at different altitudes was statistically different but the Km (p=0.189) were similar. The highest altitude, Tengchen County, exhibited the lowest prevalence of myopia and greatest SE among children, and the mean AL also decreased with increasing altitude. CONCLUSIONS Myopia prevalence in Tibet was comparable with that in Chongqing for students aged 6-8 and 9-11 years but was lower and myopia progressed more slowly for students aged 12-14 and 15-18 years than in Chongqing, and AL was the main contributor for this difference, which may be related to higher ultraviolet radiation exposure and lower IOP in children and adolescents at high altitude in Tibet. Differences in AL and AL/CR between Tibet and Chongqing children and adolescents manifested earlier than in SE, underscoring the importance of AL measurement in myopia screening.
Collapse
Affiliation(s)
- Yongguo Xiang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
- Chongqing Medical University, Chongqing, People's Republic of China
| | - Hong Cheng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
- Chongqing Medical University, Chongqing, People's Republic of China
| | - Kexin Sun
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
- Chongqing Medical University, Chongqing, People's Republic of China
| | - Shijie Zheng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
- Chongqing Medical University, Chongqing, People's Republic of China
| | - Miaomiao Du
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
- Chongqing Medical University, Chongqing, People's Republic of China
| | - Ning Gao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
- Chongqing Medical University, Chongqing, People's Republic of China
| | - Tong Zhang
- Chongqing Medical University, Chongqing, People's Republic of China
| | - Xin Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Jiuyi Xia
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Rongxi Huang
- Chongqing General Hospital, Chongqing, People's Republic of China
| | - Wenjuan Wan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
- Chongqing Medical University, Chongqing, People's Republic of China
| | - Ke Hu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
- Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
15
|
Peng Z, Xiang A, He H, Luo Y, Wu S, Luo Y, Yang J, Nie K, Zhong X. Brimonidine as a possible treatment for myopia. BMC Ophthalmol 2024; 24:161. [PMID: 38605375 PMCID: PMC11007938 DOI: 10.1186/s12886-024-03433-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Myopia is becoming a huge burden on the world's public health systems. The purpose of this study was to explore the effect of brimonidine in the treatment of form-deprivation myopia (FDM) and the relationship between intraocular pressure (IOP) and myopia development. METHODS Monocular form deprivation myopia (FDM) was induced in three-week-old pigmented male guinea pigs. They were treated with 3 different methods of brimonidine administration (eye drops, and subconjunctival or intravitreal injections). Four different concentrations of brimonidine were tested for each method (2µg/µL, 4µg/µL, 20µg/µL, and 40µg/µL). All treatments continued for a period of 21 days. Tonometry, retinoscopy, and A-scan ultrasonography were used to monitor intraocular pressure, refractive error and axial length (AL), respectively. RESULTS Treatment with subconjunctival brimonidine at 40µg/µL, and intravitreal brimonidine at 2µg/µL and 4µg/µL, inhibited the development of FDM. The myopic refraction, excessive axial length, and elevation of IOP were significantly decreased. Brimonidine in eye drops was ineffective. CONCLUSION Brimonidine at appropriate doses significantly reduced the development of FD myopia in guinea pigs. The IOP may change with FD myopia.
Collapse
Affiliation(s)
- Zixuan Peng
- Hainan Provincial Key Laboratory of Ophthalmology, Hainan Eye Hospital, Zhongshan Ophthalmic Center, Sun Yat-sen University, No. 19 Xiuhua Road, Xiuying District, 570300, Haikou, Hainan, China
- Hainan Medical University, Haikou, Hainan, China
| | - Aiqun Xiang
- Hainan Provincial Key Laboratory of Ophthalmology, Hainan Eye Hospital, Zhongshan Ophthalmic Center, Sun Yat-sen University, No. 19 Xiuhua Road, Xiuying District, 570300, Haikou, Hainan, China
| | - Hong He
- Hainan Provincial Key Laboratory of Ophthalmology, Hainan Eye Hospital, Zhongshan Ophthalmic Center, Sun Yat-sen University, No. 19 Xiuhua Road, Xiuying District, 570300, Haikou, Hainan, China.
| | - Yaqi Luo
- Hainan Provincial Key Laboratory of Ophthalmology, Hainan Eye Hospital, Zhongshan Ophthalmic Center, Sun Yat-sen University, No. 19 Xiuhua Road, Xiuying District, 570300, Haikou, Hainan, China
- Hainan Medical University, Haikou, Hainan, China
| | - Shunliang Wu
- Hainan Provincial Key Laboratory of Ophthalmology, Hainan Eye Hospital, Zhongshan Ophthalmic Center, Sun Yat-sen University, No. 19 Xiuhua Road, Xiuying District, 570300, Haikou, Hainan, China
- Hainan Medical University, Haikou, Hainan, China
| | - Yanting Luo
- Hainan Provincial Key Laboratory of Ophthalmology, Hainan Eye Hospital, Zhongshan Ophthalmic Center, Sun Yat-sen University, No. 19 Xiuhua Road, Xiuying District, 570300, Haikou, Hainan, China
- Hainan Medical University, Haikou, Hainan, China
| | - Junming Yang
- Hainan Provincial Key Laboratory of Ophthalmology, Hainan Eye Hospital, Zhongshan Ophthalmic Center, Sun Yat-sen University, No. 19 Xiuhua Road, Xiuying District, 570300, Haikou, Hainan, China
- Hainan Medical University, Haikou, Hainan, China
| | - Ke Nie
- Hainan Provincial Key Laboratory of Ophthalmology, Hainan Eye Hospital, Zhongshan Ophthalmic Center, Sun Yat-sen University, No. 19 Xiuhua Road, Xiuying District, 570300, Haikou, Hainan, China
- Hainan Medical University, Haikou, Hainan, China
| | - Xingwu Zhong
- Hainan Provincial Key Laboratory of Ophthalmology, Hainan Eye Hospital, Zhongshan Ophthalmic Center, Sun Yat-sen University, No. 19 Xiuhua Road, Xiuying District, 570300, Haikou, Hainan, China.
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
- Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
16
|
Yii FS, He M, Chappell F, Bernabeu MO, MacGillivray T, Dhillon B, Tatham A, Strang N. Higher intraocular pressure is associated with slower axial growth in children with non-pathological high myopia. Eye (Lond) 2024; 38:1208-1214. [PMID: 38081936 PMCID: PMC11009290 DOI: 10.1038/s41433-023-02872-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 04/13/2024] Open
Abstract
OBJECTIVES To investigate the association between intraocular pressure (IOP) and axial elongation rate in highly myopic children from the ZOC-BHVI High Myopia Cohort Study. METHODS 162 eyes of 81 healthy children (baseline spherical equivalent: -6.25 D to -15.50 D) aged 7-12 years with non-pathological high myopia were studied over five biennial visits. The mean (SD) follow-up duration was 5.2 (3.3) years. A linear mixed-effects model (LMM) was used to assess the association between IOP (at time point t-1) and axial elongation rate (annual rate of change in AL from t-1 to t), controlling for a pre-defined set of covariates including sex, age, central corneal thickness, anterior chamber depth and lens thickness (at t-1). LMM was also used to assess the contemporaneous association between IOP and axial length (AL) at t, controlling for the same set of covariates (at t) as before. RESULTS Higher IOP was associated with slower axial growth (β = -0.01, 95% CI -0.02 to -0.005, p = 0.001). There was a positive contemporaneous association between IOP and AL (β = 0.03, 95% CI 0.01-0.05, p = 0.004), but this association became progressively less positive with increasing age, as indicated by a negative interaction effect between IOP and age on AL (β = -0.01, 95% CI -0.01 to -0.003, p = 0.001). CONCLUSIONS Higher IOP is associated with slower rather than faster axial growth in children with non-pathological high myopia, an association plausibly confounded by the increased influence of ocular compliance on IOP.
Collapse
Affiliation(s)
- Fabian Sl Yii
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK.
- Curle Ophthalmology Laboratory, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK.
| | - Mingguang He
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
- Centre for Eye Research Australia, The University of Melbourne, Melbourne, Australia
| | - Francesca Chappell
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Miguel O Bernabeu
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh, UK
- The Bayes Centre, The University of Edinburgh, Edinburgh, UK
| | - Tom MacGillivray
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Curle Ophthalmology Laboratory, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Baljean Dhillon
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Curle Ophthalmology Laboratory, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
- Princess Alexandra Eye Pavilion, NHS Lothian, Edinburgh, UK
| | - Andrew Tatham
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Princess Alexandra Eye Pavilion, NHS Lothian, Edinburgh, UK
| | - Niall Strang
- Department of Vision Sciences, Glasgow Caledonian University, Glasgow, UK
| |
Collapse
|
17
|
Perera DC, Libre PE. Reversal of severe myopia by 24 years of hypotony with subsequent stable refraction after 2 years of normal intraocular pressure. Am J Ophthalmol Case Rep 2024; 33:101989. [PMID: 38292884 PMCID: PMC10824682 DOI: 10.1016/j.ajoc.2023.101989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 02/01/2024] Open
Abstract
Purpose To report sustained axial length shortening and hyperopic shift (refraction changed from -8 to -2 diopters) induced by 24 years of profound IOP (intraocular pressure) reduction with subsequent refractive stability 2 years after IOP rose to 11-17 mm Hg. Observations A 25-year-old woman with elevated episcleral venous pressure glaucoma underwent non-penetrating trabeculectomy and subsequent laser goniopuncture in her left eye. She had chronically low IOP (1-12 mm Hg) for the next 24 years. Hypotony maculopathy was present in postoperative years 13-14 and 18-24 but resolved at age 49 when emesis-induced iris prolapse obstructed the filtering passage and transiently raised IOP to 40. Medical management and iridectomy with flap suturing stabilized IOP between 11 and 17 mm Hg.Refraction before OS trabeculectomy was OD -7.50/OS -9.00. In postoperative year 24 spherical equivalent phakic refraction was OD -9.00/OS -1.50. Biometry 1 year after resolution of hypotony showed axial lengths OD 24.8, OS 22.6 mm. Cataract surgery was performed in postoperative years 24/26 (OD/OS) with Tecnis DCBOO intraocular lenses of powers 14.0/21.5 diopters; postoperative refractions, 2 years after OS IOP rose to 11-17 mm Hg, were OD +0.25-0.50 x 015/OS -0.75-1.25 x 160 with 20/25 corrected acuity in each eye.Cardiovascular symptoms 24 years after the onset of her glaucoma led to a diagnosis of severe pulmonary hypertension. Conclusions and importance This case demonstrates that 2 decades of chronic IOP reduction can reverse myopia (by > 2 mm reduction in axial length) with subsequent refractive stability 2 years after IOP normalization. In addition, the case shows that ocular signs of pulmonary hypertension may precede cardiovascular signs by 2 decades.
Collapse
Affiliation(s)
| | - Peter E. Libre
- Robert Larner College of Medicine, University of Vermont, Burlington, VT, USA
| |
Collapse
|
18
|
Zhang X, Jiang J, Kong K, Li F, Chen S, Wang P, Song Y, Lin F, Lin TPH, Zangwill LM, Ohno-Matsui K, Jonas JB, Weinreb RN, Lam DSC. Optic neuropathy in high myopia: Glaucoma or high myopia or both? Prog Retin Eye Res 2024; 99:101246. [PMID: 38262557 DOI: 10.1016/j.preteyeres.2024.101246] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
Due to the increasing prevalence of high myopia around the world, structural and functional damages to the optic nerve in high myopia has recently attracted much attention. Evidence has shown that high myopia is related to the development of glaucomatous or glaucoma-like optic neuropathy, and that both have many common features. These similarities often pose a diagnostic challenge that will affect the future management of glaucoma suspects in high myopia. In this review, we summarize similarities and differences in optic neuropathy arising from non-pathologic high myopia and glaucoma by considering their respective structural and functional characteristics on fundus photography, optical coherence tomography scanning, and visual field tests. These features may also help to distinguish the underlying mechanisms of the optic neuropathies and to determine management strategies for patients with high myopia and glaucoma.
Collapse
Affiliation(s)
- Xiulan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China.
| | - Jingwen Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China.
| | - Kangjie Kong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China.
| | - Fei Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China.
| | - Shida Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China.
| | - Peiyuan Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China.
| | - Yunhe Song
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China.
| | - Fengbin Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China.
| | - Timothy P H Lin
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Linda M Zangwill
- Hamilton Glaucoma Center, Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA.
| | - Kyoko Ohno-Matsui
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Jost B Jonas
- Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland.
| | - Robert N Weinreb
- Hamilton Glaucoma Center, Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA.
| | - Dennis S C Lam
- The International Eye Research Institute of the Chinese University of Hong Kong (Shenzhen), Shenzhen, China; The C-MER Dennis Lam & Partners Eye Center, C-MER International Eye Care Group, Hong Kong, China.
| |
Collapse
|
19
|
Xue C, Chen K, Gao Z, Bao T, Dong L, Zhao L, Tong X, Li X. Common mechanisms underlying diabetic vascular complications: focus on the interaction of metabolic disorders, immuno-inflammation, and endothelial dysfunction. Cell Commun Signal 2023; 21:298. [PMID: 37904236 PMCID: PMC10614351 DOI: 10.1186/s12964-022-01016-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/11/2022] [Indexed: 11/01/2023] Open
Abstract
Diabetic vascular complications (DVCs), including macro- and micro- angiopathy, account for a high percentage of mortality in patients with diabetes mellitus (DM). Endothelial dysfunction is the initial and role step for the pathogenesis of DVCs. Hyperglycemia and lipid metabolism disorders contribute to endothelial dysfunction via direct injury of metabolism products, crosstalk between immunity and inflammation, as well as related interaction network. Although physiological and phenotypic differences support their specified changes in different targeted organs, there are still several common mechanisms underlying DVCs. Also, inhibitors of these common mechanisms may decrease the incidence of DVCs effectively. Thus, this review may provide new insights into the possible measures for the secondary prevention of DM. And we discussed the current limitations of those present preventive measures in DVCs research. Video Abstract.
Collapse
Affiliation(s)
- Chongxiang Xue
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Keyu Chen
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zezheng Gao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing, 100053, China
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Tingting Bao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - LiShuo Dong
- Changchun University of Traditional Chinese Medicine, Changchun, 130117, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing, 100053, China.
| | - Xiaolin Tong
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing, 100053, China.
| | - Xiuyang Li
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing, 100053, China.
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
20
|
Li HG, Chen YH, Lin F, Li SY, Liu QH, Yin CG, Chen XY, Zhang XJ, Qu Y, Hui YN. Agreement of intraocular pressure measurement with Corvis ST, non-contact tonometer, and Goldmann applanation tonometer in children with ocular hypertension and related factors. Int J Ophthalmol 2023; 16:1601-1607. [PMID: 37854370 PMCID: PMC10559031 DOI: 10.18240/ijo.2023.10.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/01/2023] [Indexed: 10/20/2023] Open
Abstract
AIM To access the agreement of intraocular pressure (IOP) values obtained from biomechanically corrected tonometer [Corvis ST (CST)], non-contact tonometer (NCT), and Goldmann applanation tonometer (GAT) in children with NCT measured-IOP (NCT-IOP) values of 22 mm Hg or more, and related factors. METHODS A total of 51 eyes with NCT-IOP≥22 mm Hg in children aged 7 to 14y were examined and IOP was measured by CST, NCT, and GAT. Based on GAT measured IOP (GAT-IOP), ocular hypertension (OHT) group (≥22 mm Hg, 24 eyes) and the non-OHT group (<22 mm Hg, 27 eyes) were defined. We compared the agreement of the three measurements, i.e., CST measured IOP (CST-IOP), GAT-IOP, and NCT-IOP, and further analyzed the correlation between the differences in tonometry readings, central corneal thickness (CCT), axial length (AL), optic disc rim volume, and age. RESULTS Compared with the OHT group, thicker CCT, larger rim volume, and higher differences between NCT-IOP and GAT-IOP, were found in the non-OHT group. The differences between CST-IOP and GAT-IOP were lower than the differences between NCT-IOP and GAT-IOP in both groups. The mean differences in CST-IOP and GAT-IOP were 1.26 mm Hg (95% limit of agreement ranged from 0.1 to 2.41 mm Hg, OHT group) and 1.20 mm Hg (95% limit of agreement ranged from -0.5 to 3.00 mm Hg, non-OHT group), and the mean differences in NCT and GAT were 3.90 mm Hg (95% limit of agreement ranged from -0.19 to 9.70 mm Hg, OHT group) and 6.00 mm Hg (95% limit of agreement ranged from 1.50 to 10.50 mm Hg, non-OHT group). The differences between CST-IOP and GAT-IOP were not related to CCT, age, and AL in both groups; while the differences between NCT-IOP and GAT-IOP were related to CCT in the OHT group (r=0.93, P<0.001) and to CCT and AL in the non-OHT group (r=0.66, P<0.001, r=-0.81, P<0.001). CONCLUSION The accuracy of NCT in the diagnosis of pediatric OHT is low. The agreement of CST-IOP and GAT-IOP was significantly higher in children with and without OHT than in those with NCT-IOP and GAT-IOP. Therefore, CST can be used as a good alternative for IOP measurement in children. The impacts of CCT and AL on NCT measurement need to be fully considered when managing childhood IOP.
Collapse
Affiliation(s)
- Hou-Gang Li
- Ophthalmic Hospital of Tangshan, Tangshan 063000, Hebei Province, China
| | - Yan-Hui Chen
- Ophthalmic Hospital of Tangshan, Tangshan 063000, Hebei Province, China
| | - Fang Lin
- Tianjin Jizhou District Tianyi Vision Hospital, Tianjin 300070, China
| | - Si-Yu Li
- Ophthalmic Hospital of Tangshan, Tangshan 063000, Hebei Province, China
| | - Qing-Hua Liu
- Ophthalmic Hospital of Tangshan, Tangshan 063000, Hebei Province, China
| | - Chun-Ge Yin
- Ophthalmic Hospital of Tangshan, Tangshan 063000, Hebei Province, China
| | - Xi-Yue Chen
- Ophthalmic Hospital of Tangshan, Tangshan 063000, Hebei Province, China
| | - Xin-Jie Zhang
- Ophthalmic Hospital of Tangshan, Tangshan 063000, Hebei Province, China
| | - Yue Qu
- Ophthalmic Hospital of Tangshan, Tangshan 063000, Hebei Province, China
| | - Yan-Nian Hui
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an 710023, Shaanxi Province, China
| |
Collapse
|
21
|
Beach KM, Hung LF, Lou L, Ostrin LA. Diurnal Variation and Effects of Dilation and Sedation on Intraocular Pressure in Infant Rhesus Monkeys. Curr Eye Res 2023; 48:289-296. [PMID: 36357337 PMCID: PMC10006333 DOI: 10.1080/02713683.2022.2141782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/26/2022] [Indexed: 11/12/2022]
Abstract
PURPOSE Intraocular pressure (IOP) is an important factor in numerous ocular conditions and research areas, including eye growth and myopia. In infant monkeys, IOP is typically measured under anesthesia. This study aimed to establish a method for awake IOP measurement in infant rhesus monkeys, determine diurnal variation, and assess the effects of dilation and sedation. METHODS Awake IOP (iCare TonoVet) was measured every 2 h from 7:30 am to 5:30 pm to assess potential diurnal variations in infant rhesus monkeys (age 3 weeks, n = 11). The following day, and every 2 weeks to age 15 weeks, IOP was measured under three conditions: (1) awake, (2) awake and dilated (tropicamide 0.5%), and (3) sedated (ketamine and acepromazine) and dilated. Intraclass correlation coefficient (ICC) was used to determine intersession repeatability, and repeated measures. ANOVA was used to determine effects of age and condition. RESULTS At age 3 weeks, mean (±SEM) awake IOP was 15.4 ± 0.6 and 15.2 ± 0.7 mmHg for right and left eyes, respectively (p=.59). The ICC between sessions was 0.63[-0.5 to 0.9], with a mean difference of 2.2 ± 0.3 mmHg. Diurnal IOP from 7:30 am to 5:30 pm showed no significant variation (p=.65). From 3 to 15 weeks of age, there was a significant effect of age (p=.01) and condition (p<.001). Across ages, IOP was 17.8 ± 0.7 mmHg while awake and undilated, 18.4 ± 0.2 mmHg awake and dilated, and 11.0 ± 0.3 mmHg after sedation and dilation. CONCLUSIONS Awake IOP measurement was feasible in young rhesus monkeys. No significant diurnal variations in IOP were observed between 7:30 am and 5:30 pm at age 3 weeks. In awake monkeys, IOP was slightly higher after mydriasis and considerably lower after sedation. Findings show that IOP under ketamine/acepromazine anesthesia is significantly different than awake IOP in young rhesus monkeys.
Collapse
Affiliation(s)
- Krista M Beach
- University of Houston College of Optometry, Houston, TX, United States
| | - Li-Fang Hung
- University of Houston College of Optometry, Houston, TX, United States
| | - Linjiang Lou
- University of Houston College of Optometry, Houston, TX, United States
| | - Lisa A Ostrin
- University of Houston College of Optometry, Houston, TX, United States
| |
Collapse
|
22
|
B. Sreenivas S, C. M. R, K. R. V, M. R. S, Gopi A. A cross-sectional study of association between ocular pressures and different grades of myopia in young adults. Biomedicine (Taipei) 2022. [DOI: 10.51248/.v42i5.1803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction and Aim: Myopia is one of the most common refractive errors causing visual disability worldwide. Uncorrected refractive error poses a public health challenge especially in young adults who have to spend most of their time in literary works. Intra ocular pressure (IOP) is one of the crucial factors intertwined in the pathophysiology of myopia. Ocular perfusion pressure (OPP) determines ocular blood flow. Studies done on association between IOP and refractive errors are contradictory. There is paucity of literature on relationship between OPP and myopia. Hence this original article aimed to assess the association of IOP and OPP changes with myopia and to analyze the relationship between ocular pressures with severity of myopia.
Materials and Methods: Hundred normal adults in the age group of 18-24 years of either gender were recruited for the present study. Voluntary written and informed consent was sought from all participants and the refractive power of their eyes was noted. They were categorised into three groups based on the severity of myopia. Controls were the emmetropes. All participants were asked to relax for 5-10 minutes and the resting BP and IOP were recorded using sphygmomanometer and rebound tonometer respectively. OPP was calculated.
Results: IOP values were comparatively higher in myopes than emmetropes. A significant reduction in OPP values were observed in moderate myopes.
Conclusion: Myopes have a higher IOP suggesting myopia is one of the major risk factor for ocular hypertension. Low OPP values in moderate myopes indicate reduced ocular perfusion, making the progressive myopes highly susceptible to glaucoma.
Collapse
|
23
|
Sun W, Chao G, Shang M, Wu Q, Xia Y, Wei Q, Zhou J, Liao L. Optic nerve injury models under varying forces. Int Ophthalmol 2022; 43:757-769. [PMID: 36038691 PMCID: PMC10042766 DOI: 10.1007/s10792-022-02476-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/20/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE To explore the pathological changes in optic nerve injury models under varying forces. METHODS The rats were classified into 4 groups: sham operation (SH), 0.1, 0.3, and 0.5 N. Modeling was performed using the lateral optic nerve pulling method. Seven days after modeling, Brn3a immunofluorescence was used to detect retinal ganglion cell (RGC) number, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was used to detect RGC apoptosis, and flash visual evoked potential (FVEP) was used to detect the optic nerve function on days 1, 3, and 7 after modeling. In addition, LC3 II and P62 expression levels in retinal tissues were detected by western blotting to observe the changes in autophagy levels. RESULTS RGC number decreased 7 d after modeling, and it showed a downward trend with increasing damaging force. The number of apoptotic RGCs in ganglion cell layer in the 0.3 and 0.5 N groups was increased and was higher than that in the 0.1 N group. The difference in FVEP of rats in each group was mainly reflected in the P2 peak latency. LC3 II and P62 expression levels in retinal tissue of 0.3 and 0.5 N groups were higher than those of the SH and 0.1 groups; however, the difference between the 0.1 N and SH groups was not statistically significant. CONCLUSION Precisely controlling the force of the optic nerve clamping injury model is necessary because different forces acting on the optic nerve will lead to differences in the loss of optic neurons, the conduction function of the optic nerve, and autophagy level in retinal tissues.
Collapse
Affiliation(s)
- Wu Sun
- Beijing University of Chinese Medicine, Beijing, China
| | - Guojun Chao
- Eye Hospital Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Mengqiu Shang
- Beijing University of Chinese Medicine, Beijing, China
| | - Qiong Wu
- Beijing Tongren Hospital, Beijing, China
| | - Yanting Xia
- Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Qiping Wei
- Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Jian Zhou
- Beijing University of Chinese Medicine, Beijing, China.
- Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China.
- Department of Ophthalmology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China.
- , No. 6, District 1, Fangxing Garden, Fangzhuang, Fengtai District, Beijing, 100078, China.
| | - Liang Liao
- Beijing University of Chinese Medicine, Beijing, China.
- Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China.
- Department of Ophthalmology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China.
- , No. 6, District 1, Fangxing Garden, Fangzhuang, Fengtai District, Beijing, 100078, China.
| |
Collapse
|
24
|
Shinojima A, Negishi K, Tsubota K, Kurihara T. Multiple Factors Causing Myopia and the Possible Treatments: A Mini Review. Front Public Health 2022; 10:897600. [PMID: 35619815 PMCID: PMC9127355 DOI: 10.3389/fpubh.2022.897600] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
The myopia epidemic has become a global public health problem. Although myopia is progressing worldwide, the recent coronavirus infections 2019 (COVID-19) outbreak has spurred myopia progression. The current evidence-based treatments for humans are atropine eye drops, optical treatment with defocus, use of orthokeratology, extending proximity working distance, pausing from near work every half hour and increased time outside the home. Studies on myopia using animal models have been conducted for more than 40 years. In recent years, new mechanisms of myopia suppression have been revealed from animal experiments such as inflammation control, intraocular pressure control, light control, and the activity of early growth response protein 1 control. This mini-review provides a summary of the scientific evidence currently available on the control of myopia, and the possible treatments mitigating myopia.
Collapse
Affiliation(s)
- Ari Shinojima
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | | | - Toshihide Kurihara
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
25
|
Zieliński G, Wójcicki M, Rapa M, Matysik-Woźniak A, Baszczowski M, Ginszt M, Litko-Rola M, Szkutnik J, Różyło-Kalinowska I, Rejdak R, Gawda P. Masticatory Muscle Thickness and Activity Correlates to Eyeball Length, Intraocular Pressure, Retinal and Choroidal Thickness in Healthy Women versus Women with Myopia. J Pers Med 2022; 12:jpm12040626. [PMID: 35455742 PMCID: PMC9027064 DOI: 10.3390/jpm12040626] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/04/2022] Open
Abstract
This study aims to examine the correlations between masticatory and neck muscle thickness and activity versus eyeball length, retinal thickness, choroidal thickness, and intraocular pressure in healthy women versus women with myopia. The study group consisted of 21 women aged 24 years and a control group of 19 women (mean age 23 years). For bioelectrical activity analysis within the temporalis anterior, the superficial part of the masseter muscle, the middle part of the sternocleidomastoid muscle, and the anterior belly of the digastric muscle, an eight-channel BioEMG III electromyograph were used. An M-Turbo ultrasound machine was used to analyze masticatory and neck muscle thickness. The eyeball length was examined by IOL Master 500; choroidal and retinal thickness by Optovue Angiovue; and intraocular pressure by Tono-Pen XL. Refractive errors are related to differences in muscle thickness and electromyographic activity. Bioelectrical activity within the temporalis anterior seems to be associated with ocular length, retinal thickness, and choroidal thickness in women with myopia.
Collapse
Affiliation(s)
- Grzegorz Zieliński
- Department of Sports Medicine, Medical University of Lublin, 20-093 Lublin, Poland;
- Correspondence:
| | - Marcin Wójcicki
- Independent Unit of Functional Masticatory Disorder, Medical University of Lublin, 20-093 Lublin, Poland; (M.W.); (M.L.-R.); (J.S.)
| | - Maria Rapa
- Students’ Scientific Association at the Department and Clinic of General and Pediatric Ophthalmology, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Anna Matysik-Woźniak
- Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-093 Lublin, Poland; (A.M.-W.); (R.R.)
| | - Michał Baszczowski
- Interdisciplinary Scientific Group of Sports Medicine, Department of Sports Medicine, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Michał Ginszt
- Department of Rehabilitation and Physiotherapy, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Monika Litko-Rola
- Independent Unit of Functional Masticatory Disorder, Medical University of Lublin, 20-093 Lublin, Poland; (M.W.); (M.L.-R.); (J.S.)
| | - Jacek Szkutnik
- Independent Unit of Functional Masticatory Disorder, Medical University of Lublin, 20-093 Lublin, Poland; (M.W.); (M.L.-R.); (J.S.)
| | - Ingrid Różyło-Kalinowska
- Department of Dental and Maxillofacial Radiodiagnostics with Digital Dentistry Lab, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Robert Rejdak
- Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-093 Lublin, Poland; (A.M.-W.); (R.R.)
| | - Piotr Gawda
- Department of Sports Medicine, Medical University of Lublin, 20-093 Lublin, Poland;
| |
Collapse
|