1
|
Navarro VM, Boehme N, Wasserman EA, Harper MM. Enhanced attention in rats following blast-induced traumatic brain injury. Heliyon 2024; 10:e25661. [PMID: 38384534 PMCID: PMC10878867 DOI: 10.1016/j.heliyon.2024.e25661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
Purpose To evaluate visuo-cognitive sequelae following blast-induced traumatic brain injury in a rat model. Methods Rats were randomly assigned to one of four groups depending on the intensity/quantity of a blast received in a blast chamber: sham (no blast), low intensity (22 psi), medium intensity (26 psi), or three medium intensity blasts (26 psi × 3). After recovery, all subjects were given visual discrimination tasks of increasing complexity, until mastery. After behavioral training, visual function was assessed via spectral-domain optical coherence tomography and pattern electroretinogram, and the extent of retinal damage was quantified via immunohistochemistry of retinal ganglion cells. Results None of the measures assessing visual function revealed significant differences as a function of blast intensity/quantity. Behavioral training did not disclose short-term effects of blast in general motivation or the development of anticipatory responding. No differences in general learning ability and the number of perseverative errors were observed. However, behavioral training found effects of blast in attentional function; relative to controls, subjects that received blasts were faster in learning to attend to informative (over non-informative) cues in the most difficult visual discrimination task. Conclusion Blast exposure in rats resulted in increased attention following blast, with no appreciable deficits in visual function. These results are contrary to what is often reported for human clinical populations; as such, more research bridging methodological differences is necessary.
Collapse
Affiliation(s)
- Victor M. Navarro
- Cardiff University, Cardiff, Wales, United Kingdom
- The Iowa City Department of Veterans Affairs Medical Center, Center for the Prevention and Treatment of Visual Loss, Iowa City, IA, United States
| | - Nickolas Boehme
- The Iowa City Department of Veterans Affairs Medical Center, Center for the Prevention and Treatment of Visual Loss, Iowa City, IA, United States
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, United States
| | - Edward A. Wasserman
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA, United States
| | - Matthew M. Harper
- The Iowa City Department of Veterans Affairs Medical Center, Center for the Prevention and Treatment of Visual Loss, Iowa City, IA, United States
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, United States
- Department of Biology, The University of Iowa, Iowa City, IA, United States
| |
Collapse
|
2
|
Harper MM, Boehme NA, Dutca L, Navarro V. Increasing the number and intensity of shock tube generated blast waves leads to earlier retinal ganglion cell dysfunction and regional cell death. Exp Eye Res 2024; 239:109754. [PMID: 38113955 DOI: 10.1016/j.exer.2023.109754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 07/28/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
The purpose of this study was to examine the effect of a blast exposure generated from a shock tube on retinal ganglion cell (RGC) function and structure. Mice were exposed to one of three blast conditions using a shock tube; a single blast wave of 20 PSI, a single blast wave of 30 PSI, or three blast waves of 30 PSI given on three consecutive days with a one-day inter-blast interval. The structure and function of the retina were analyzed using the pattern electroretinogram (PERG), the optomotor reflex (OMR), and optical coherence tomography (OCT). The in vivo parameters were examined at baseline, and then again 1-week, 4-weeks, and 16-weeks following blast exposure. The number of surviving RGCs was quantified at the end of the study. Analysis of mice receiving a 20 PSI injury showed decreased PERG and OMR responses 16-weeks post blast, without evidence of changed retinal thickness or RGC death. Mice subjected to a 30 PSI injury showed decreased PERG responses 4 weeks and 16 weeks after injury, without changes in the retinal thickness or RGC density. Mice subjected to 30 PSI X 3 blast exposures had PERG deficits 1-week and 4-weeks post exposure. There was also significant change in retinal thickness 1-week and 16-weeks post blast exposure. Mice receiving 30 PSI X 3 blast injuries had regional loss of RGCs in the central retina, but not in the mid-peripheral or peripheral retina. Overall, this study has shown that increasing the number of blast exposures and the intensity leads to earlier functional loss of RGCs. We have also shown regional RGC loss only when using the highest blast intensity and number of blast injuries.
Collapse
Affiliation(s)
- Matthew M Harper
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, USA; Department of Biology, The University of Iowa, Iowa City, IA, USA; Veterans Administration Center for the Prevention and Treatment of Visual Loss, Iowa City VA Healthcare System, Iowa City, IA, USA.
| | - Nickolas A Boehme
- Veterans Administration Center for the Prevention and Treatment of Visual Loss, Iowa City VA Healthcare System, Iowa City, IA, USA
| | - Laura Dutca
- Veterans Administration Center for the Prevention and Treatment of Visual Loss, Iowa City VA Healthcare System, Iowa City, IA, USA
| | - Victor Navarro
- Veterans Administration Center for the Prevention and Treatment of Visual Loss, Iowa City VA Healthcare System, Iowa City, IA, USA
| |
Collapse
|
3
|
Cukier HN, Duarte CL, Laverde-Paz MJ, Simon SA, Van Booven DJ, Miyares AT, Whitehead PL, Hamilton-Nelson KL, Adams LD, Carney RM, Cuccaro ML, Vance JM, Pericak-Vance MA, Griswold AJ, Dykxhoorn DM. An Alzheimer's disease risk variant in TTC3 modifies the actin cytoskeleton organization and the PI3K-Akt signaling pathway in iPSC-derived forebrain neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542316. [PMID: 37292815 PMCID: PMC10246004 DOI: 10.1101/2023.05.25.542316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A missense variant in the tetratricopeptide repeat domain 3 ( TTC3 ) gene (rs377155188, p.S1038C, NM_003316.4:c.3113C>G) was found to segregate with disease in a multigenerational family with late onset Alzheimer's disease. This variant was introduced into induced pluripotent stem cells (iPSCs) derived from a cognitively intact individual using CRISPR genome editing and the resulting isogenic pair of iPSC lines were differentiated into cortical neurons. Transcriptome analysis showed an enrichment for genes involved in axon guidance, regulation of actin cytoskeleton, and GABAergic synapse. Functional analysis showed that the TTC3 p.S1038C iPSC-derived neuronal progenitor cells had altered 3D morphology and increased migration, while the corresponding neurons had longer neurites, increased branch points, and altered expression levels of synaptic proteins. Pharmacological treatment with small molecules that target the actin cytoskeleton could revert many of these cellular phenotypes, suggesting a central role for actin in mediating the cellular phenotypes associated with the TTC3 p.S1038C variant. Highlights The AD risk variant TTC3 p.S1038C reduces the expression levels of TTC3 The variant modifies the expression of AD specific genes BACE1 , INPP5F , and UNC5C Neurons with the variant are enriched for genes in the PI3K-Akt pathwayiPSC-derived neurons with the alteration have increased neurite length and branchingThe variant interferes with actin cytoskeleton and is ameliorated by Cytochalasin D.
Collapse
|
4
|
Hedberg-Buenz A, Meyer KJ, van der Heide CJ, Deng W, Lee K, Soukup DA, Kettelson M, Pellack D, Mercer H, Wang K, Garvin MK, Abramoff MD, Anderson MG. Biological Correlations and Confounders for Quantification of Retinal Ganglion Cells by Optical Coherence Tomography Based on Studies of Outbred Mice. Transl Vis Sci Technol 2022; 11:17. [PMID: 36135979 PMCID: PMC9513741 DOI: 10.1167/tvst.11.9.17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 08/02/2022] [Indexed: 01/28/2023] Open
Abstract
Purpose Despite popularity of optical coherence tomography (OCT) in glaucoma studies, it's unclear how well OCT-derived metrics compare to traditional measures of retinal ganglion cell (RGC) abundance. Here, Diversity Outbred (J:DO) mice are used to directly compare ganglion cell complex (GCC) thickness measured by OCT to metrics of retinal anatomy measured ex vivo with retinal wholemounts and optic nerve histology. Methods J:DO mice (n = 48) underwent fundoscopic and OCT examinations, with automated segmentation of GCC thickness. RGC axons were quantified from para-phenylenediamine-stained optic nerve cross-sections and somas from BRN3A-immunolabeled retinal wholemounts, with total inner retinal cellularity assessed by TO-PRO and subsequent hematoxylin staining. Results J:DO tissues lacked overt disease. GCC thickness, RGC abundance, and total cell abundance varied broadly across individuals. GCC thickness correlated significantly to RGC somal density (r = 0.58) and axon number (r = 0.44), but not total cell density. Retinal area and nerve cross-sectional area varied widely. No metrics were significantly influenced by sex. In bilateral comparisons, GCC thickness (r = 0.95), axon (r = 0.72), and total cell density (r = 0.47) correlated significantly within individuals. Conclusions Amongst outbred mice, OCT-derived measurements of GCC thickness correlate significantly to RGC somal and axon abundance. Factors limiting correlation are likely both biological and methodological, including differences in retinal area that distort sampling-based estimates of RGC abundance. Translational Relevance There are significant-but imperfect-correlations between GCC thickness and RGC abundance across genetic contexts in mice, highlighting valid uses and ongoing challenges for meaningful use of OCT-derived metrics.
Collapse
Affiliation(s)
- Adam Hedberg-Buenz
- VA Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Kacie J. Meyer
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Carly J. van der Heide
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Wenxiang Deng
- VA Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA, USA
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, USA
| | - Kyungmoo Lee
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, USA
| | - Dana A. Soukup
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Monica Kettelson
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Danielle Pellack
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Hannah Mercer
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Kai Wang
- Department of Biostatistics, University of Iowa, Iowa City, IA, USA
| | - Mona K. Garvin
- VA Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA, USA
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, USA
| | - Michael D. Abramoff
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, USA
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Michael G. Anderson
- VA Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
5
|
Tapia ML, Nascimento-Dos-Santos G, Park KK. Subtype-specific survival and regeneration of retinal ganglion cells in response to injury. Front Cell Dev Biol 2022; 10:956279. [PMID: 36035999 PMCID: PMC9411869 DOI: 10.3389/fcell.2022.956279] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/28/2022] [Indexed: 11/19/2022] Open
Abstract
Retinal ganglion cells (RGCs) are a heterogeneous population of neurons that function synchronously to convey visual information through the optic nerve to retinorecipient target areas in the brain. Injury or disease to the optic nerve results in RGC degeneration and loss of visual function, as few RGCs survive, and even fewer can be provoked to regenerate their axons. Despite causative insults being broadly shared, regeneration studies demonstrate that RGC types exhibit differential resilience to injury and undergo selective survival and regeneration of their axons. While most early studies have identified these RGC types based their morphological and physiological characteristics, recent advances in transgenic and gene sequencing technologies have further enabled type identification based on unique molecular features. In this review, we provide an overview of the well characterized RGC types and identify those shown to preferentially survive and regenerate in various regeneration models. Furthermore, we discuss cellular characteristics of both the resilient and susceptible RGC types including the combinatorial expression of different molecular markers that identify these specific populations. Lastly, we discuss potential molecular mechanisms and genes found to be selectively expressed by specific types that may contribute to their reparative capacity. Together, we describe the studies that lay the important groundwork for identifying factors that promote neural regeneration and help advance the development of targeted therapy for the treatment of RGC degeneration as well as neurodegenerative diseases in general.
Collapse
Affiliation(s)
- Mary L Tapia
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Gabriel Nascimento-Dos-Santos
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Kevin K Park
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|