1
|
Wei X, Wang D, Xu Z, Liu J, Zhu Q, Chen Q, Tang H, Xu W. Research progress on the regulatory and pharmacological mechanism of chemical components of Dendrobium. Heliyon 2024; 10:e37541. [PMID: 39328574 PMCID: PMC11425140 DOI: 10.1016/j.heliyon.2024.e37541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Dendrobium is a precious Chinese herbal medicine, which belongs to the genus Orchidaceae. Ancient records and modern pharmacological research show that Dendrobium has pharmacological effects such as anti-tumor, antioxidant regulating immunity and blood glucose, and anti-aging. Dendrobium contains polysaccharides, alkaloids, bibenzyl, sesquiterpenes, phenanthrene, polyphenols and other types of chemicals. Its pharmacological activity is closely related to these chemical components. For example, dendrobium extracts can achieve anti-tumor effects by inhibiting tumor cell proliferation and metastasis, promoting cell apoptosis and ferroptosis, or increasing cell sensitivity to chemotherapy drugs. It enhances immunity by regulating immune cell activity or cytokine release. In addition, it can alleviate neurodegenerative diseases by protecting nerve cells from apoptotic damage. In recent years, research reports on biologically active compounds in Dendrobium have shown a blowout growth, which makes us realize that it is meaningful to continuously update the research progress on the components and pharmacological regulatory mechanism of this traditional Chinese medicine. By classifying the collected chemical components according to different chemical structures and summarizing their pharmacological mechanisms, we investigated the current research progress of Dendrobium and provide a more comprehensive scientific foundation for the further development and clinical transformation of Dendrobium in the future.
Collapse
Affiliation(s)
- Xin Wei
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
| | - Dan Wang
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
| | - Ziming Xu
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Ophthalmology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, PR China
| | - Jiajia Liu
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
| | - Qizhi Zhu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
| | - Qi Chen
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
| | - Heng Tang
- Wanbei Coal Electric Group General Hospital, Anhui Province, Suzhou, 234011, PR China
| | - Weiping Xu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001, PR China
| |
Collapse
|
2
|
Alsalloum A, Mosin I, Shefer K, Mingaleva N, Kim A, Feoktistova S, Malyugin B, Boiko E, Sultanov S, Mityaeva O, Volchkov P. Novel and Previously Known Mutations of the KCNV2 Gene Cause Various Variants of the Clinical Course of Cone Dystrophy with Supernormal Rod Response in Children. J Clin Med 2024; 13:4592. [PMID: 39200733 PMCID: PMC11354624 DOI: 10.3390/jcm13164592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 09/02/2024] Open
Abstract
Background/Objectives: Cone dystrophy with supernormal rod response (CDSRR) is a rare autosomal recessive retinal disorder characterized by a delayed and markedly decreased photoreceptor response. In this article, we aim to describe the clinical course and associated molecular findings in children with cone dystrophy with supernormal rod response associated with recessive mutations in the KCNV2 gene, which encodes a subunit (Kv8.2) of the voltage-gated potassium channel. Methods: The genetic testing of two patients included the next-generation sequencing of a retinal dystrophy panel and direct Sanger sequencing to confirm KCNV2 gene variants, in addition to an electroretinogram (ERG) and spectral domain optical coherence tomography (SD-OCT). Results: Cone dystrophy with supernormal rod response is associated with identified variants in the KCNV2 gene. The genetic analysis of the first case identified a compound heterozygous mutation in the KCNV2 gene, including a de novo nonsense duplication at cDNA position 1109, which led to the premature termination of the p.Lys371Ter codon in the second extracellular domain of the protein. Two patients showed changes in the full-field electroretinogram, especially in the first case, which demonstrated a close to supernormal total electroretinogram amplitude. This study increased the range of the KCNV2 mutation database, added an unreported de novo substitution pattern to KCNV2 gene variants, and linked it to the evaluated clinical studies. Conclusions: The initial clinical manifestations were varied, but both patients presented with hypermetropia and slight exotropia. The ERG findings are characteristic of KCNV2 mutations, and patients exhibited an increased b-wave latency in DA3.0 ERG (combined rod-cone response).
Collapse
Affiliation(s)
- Almaqdad Alsalloum
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.V.)
| | - Ilya Mosin
- Pediatric City Clinical Hospital Named for Z.A. Bashlyaevoy, 129272 Moscow, Russia
| | - Kristina Shefer
- S. Fyodorov “Eye Microsurgery” Federal State Institution St. Petersburg Branch, 192283 St. Petersburg, Russia
| | - Natalia Mingaleva
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.V.)
| | - Alexander Kim
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.V.)
| | - Sofya Feoktistova
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.V.)
| | - Boris Malyugin
- S.N. Fedorov National Ophthalmology Medical Research Center “Eye Microsurgery”, 127486 Moscow, Russia
| | - Ernest Boiko
- S. Fyodorov “Eye Microsurgery” Federal State Institution St. Petersburg Branch, 192283 St. Petersburg, Russia
- North-Western State Medical University Named after I.I. Mechnikov, 191015 St. Petersburg, Russia
| | | | - Olga Mityaeva
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.V.)
- Department of Fundamental Medicine, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Pavel Volchkov
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.V.)
- Department of Fundamental Medicine, Lomonosov Moscow State University, 119992 Moscow, Russia
- Moscow Clinical Scientific Center N.A. A.S. Loginov, 111123 Moscow, Russia
| |
Collapse
|
3
|
Xu M, Zhang D, Yan J. Targeting ferroptosis using Chinese herbal compounds to treat respiratory diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155738. [PMID: 38824825 DOI: 10.1016/j.phymed.2024.155738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/27/2024] [Accepted: 05/14/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND Respiratory diseases pose a grave threat to human life. Therefore, understanding their pathogenesis and therapeutic strategy is important. Ferroptosis is a novel type of iron-dependent programmed cell death, distinct from apoptosis, necroptosis, and autophagy, characterised by iron, reactive oxygen species, and lipid peroxide accumulation, as well as glutathione (GSH) depletion and GSH peroxidase 4 (GPX4) inactivation. A close association between ferroptosis and the onset and progression of respiratory diseases, including chronic obstructive pulmonary disease, acute lung injury, bronchial asthma, pulmonary fibrosis, and lung cancer, has been reported. Recent studies have shown that traditional Chinese medicine (TCM) compounds exhibit unique advantages in the treatment of respiratory diseases owing to their natural properties and potential efficacy. These compounds can effectively regulate ferroptosis by modulating several key signalling pathways such as system Xc- -GSH-GPX4, NCOA4-mediated ferritinophagy, Nrf2-GPX4, and Nrf2/HO-1, thus playing a positive role in improving respiratory diseases. PURPOSE This comprehensive review systematically outlines the regulatory role of ferroptosis in the onset and progression of respiratory diseases and provides evidence for treating respiratory diseases by targeting ferroptosis with TCM compounds. These insights aim to offer potential remedies for the clinical prevention and treatment of respiratory diseases. STUDY DESIGN AND METHODS We searched scientific databases PubMed, Web of Science, Scopus, and CNKI using keywords such as "ferroptosis","respiratory diseases","chronic obstructive pulmonary disease","bronchial asthma","acute lung injury","pulmonary fibrosis","lung cancer","traditional Chinese medicine","traditional Chinese medicine compound","monomer", and "natural product" to retrieve studies on the therapeutic potential of TCM compounds in ameliorating respiratory diseases by targeting ferroptosis. The retrieved data followed PRISMA criteria (preferred reporting items for systematic review). RESULTS TCM compounds possess unique advantages in treating respiratory diseases, stemming from their natural origins and proven clinical effectiveness. TCM compounds can exert therapeutic effects on respiratory diseases by regulating ferroptosis, which mainly involves modulation of pathways such as system Xc- -GSH-GPX4,NCOA4-mediated ferritinophagy, Nrf2-GPX4, and Nrf2/HO-1. CONCLUSION TCM compounds have demonstrated promising potential in improving respiratory diseases through the regulation of ferroptosis. The identification of specific TCM-related inducers and inhibitors of ferroptosis holds great significance in developing more effective strategies. However, current research remains confined to animal and cellular studies, emphasizing the imperative for further verifications through high-quality clinical data.
Collapse
Affiliation(s)
- Mengjiao Xu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Di Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jun Yan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China.
| |
Collapse
|
4
|
Liu C, Wang J, Tan Y, Liu C, Qu X, Liu H, Tan M, Deng C, Qin X, Xiang Y. CTNNAL1 promotes the structural integrity of bronchial epithelial cells through the RhoA/ROCK1 pathway. Acta Biochim Biophys Sin (Shanghai) 2024; 56:753-762. [PMID: 38602002 PMCID: PMC11177105 DOI: 10.3724/abbs.2024026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/04/2024] [Indexed: 04/12/2024] Open
Abstract
Adhesion molecules play critical roles in maintaining the structural integrity of the airway epithelium in airways under stress. Previously, we reported that catenin alpha-like 1 (CTNNAL1) is downregulated in an asthma animal model and upregulated at the edge of human bronchial epithelial cells (HBECs) after ozone stress. In this work, we explore the potential role of CTNNAL1 in the structural adhesion of HBECs and its possible mechanism. We construct a CTNNAL1 ‒/‒ mouse model with CTNNAL1-RNAi recombinant adeno-associated virus (AAV) in the lung and a CTNNAL1-silencing cell line stably transfected with CTNNAL1-siRNA recombinant plasmids. Hematoxylin and eosin (HE) staining reveals that CTNNAL1 ‒/‒ mice have denuded epithelial cells and structural damage to the airway. Silencing of CTNNAL1 in HBECs inhibits cell proliferation and weakens extracellular matrix adhesion and intercellular adhesion, possibly through the action of the cytoskeleton. We also find that the expressions of the structural adhesion-related molecules E-cadherin, integrin β1, and integrin β4 are significantly decreased in ozone-treated cells than in vector control cells. In addition, our results show that the expression levels of RhoA/ROCK1 are decreased after CTNNAL1 silencing. Treatment with Y27632, a ROCK inhibitor, abolished the expressions of adhesion molecules induced by ozone in CTNNAL1-overexpressing HBECs. Overall, the findings of the present study suggest that CTNNAL1 plays a critical role in maintaining the structural integrity of the airway epithelium under ozone challenge, and is associated with epithelial cytoskeleton dynamics and the expressions of adhesion-related molecules via the RhoA/ROCK1 pathway.
Collapse
Affiliation(s)
- Caixia Liu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral DiseasesHunan University of Chinese MedicineChangsha410208China
- School of Basic MedicineCentral South UniversityChangsha410078China
| | - Jinmei Wang
- School of Basic MedicineCentral South UniversityChangsha410078China
| | - Yurong Tan
- School of Basic MedicineCentral South UniversityChangsha410078China
| | - Chi Liu
- School of Basic MedicineCentral South UniversityChangsha410078China
| | - Xiangping Qu
- School of Basic MedicineCentral South UniversityChangsha410078China
| | - Huijun Liu
- School of Basic MedicineCentral South UniversityChangsha410078China
| | - Meiling Tan
- School of Basic MedicineCentral South UniversityChangsha410078China
| | - Changqing Deng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral DiseasesHunan University of Chinese MedicineChangsha410208China
| | - Xiaoqun Qin
- School of Basic MedicineCentral South UniversityChangsha410078China
| | - Yang Xiang
- School of Basic MedicineCentral South UniversityChangsha410078China
| |
Collapse
|
5
|
Wei X, Liu J, Xu Z, Wang D, Zhu Q, Chen Q, Xu W. Research progress on the pharmacological mechanism, in vivo metabolism and structural modification of Erianin. Biomed Pharmacother 2024; 173:116295. [PMID: 38401517 DOI: 10.1016/j.biopha.2024.116295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/31/2024] [Accepted: 02/17/2024] [Indexed: 02/26/2024] Open
Abstract
Erianin is an important bibenzyl compound in dendrobium and has a wide spectrum of pharmacological properties. Since Erianin was discovered, abundant results have been achieved in the in vitro synthesis, structural modification, and pharmacological mechanism research. Researchers have developed a series of simple and efficient in vitro synthesis methods to improve the shortcomings of poor water solubility by replacing the chemical structure or coating it in nanomaterials. Erianin has a broad anti-tumor spectrum and significant anti-tumor effects. In addition, Erianin also has pharmacological actions like immune regulation, anti-inflammatory, and anti-angiogenesis. A comprehensive understanding of the synthesis, metabolism, structural modification, and pharmacological action pathways of Erianin is of great value for the utilization of Erianin. Therefore, this review conducts a relatively systematic look back at Erianin from the above four aspects, to give a reference for the evolvement and further appliance of Erianin.
Collapse
Affiliation(s)
- Xin Wei
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Jiajia Liu
- University of Science and Technology of China, Hefei 230026, PR China; Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, PR China
| | - Ziming Xu
- University of Science and Technology of China, Hefei 230026, PR China; Department of Ophthalmology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, PR China
| | - Dan Wang
- University of Science and Technology of China, Hefei 230026, PR China; Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, PR China
| | - Qizhi Zhu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Qi Chen
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Weiping Xu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China; Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, PR China; Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei 230001, PR China.
| |
Collapse
|
6
|
Patel AS, Ludwinski FE, Mondragon A, Nuthall K, Saha P, Lyons O, Squadrito ML, Siow R, De Palma M, Smith A, Modarai B. HTATIP2 regulates arteriogenic activity in monocytes from patients with limb ischemia. JCI Insight 2023; 8:e131419. [PMID: 37847559 PMCID: PMC10807724 DOI: 10.1172/jci.insight.131419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/12/2023] [Indexed: 10/18/2023] Open
Abstract
Use of autologous cells isolated from elderly patients with multiple comorbidities may account for the modest efficacy of cell therapy in patients with chronic limb threatening ischemia (CLTI). We aimed to determine whether proarteriogenic monocyte/macrophages (Mo/MΦs) from patients with CLTI were functionally impaired and to demonstrate the mechanisms related to any impairment. Proarteriogenic Mo/MΦs isolated from patients with CLTI were found to have an impaired capacity to promote neovascularization in vitro and in vivo compared with those isolated from healthy controls. This was associated with increased expression of human HIV-1 TAT interactive protein-2 (HTATIP2), a transcription factor known to suppress angiogenesis/arteriogenesis. Silencing HTATIP2 restored the functional capacity of CLTI Mo/MΦs, which was associated with increased expression of arteriogenic regulators Neuropilin-1 and Angiopoietin-1, and their ability to enhance angiogenic (endothelial tubule formation) and arteriogenic (smooth muscle proliferation) processes in vitro. In support of the translational relevance of our findings, silencing HTATIP2 in proarteriogenic Mo/MΦs isolated from patients with CLTI rescued their capacity to enhance limb perfusion in the ischemic hindlimb by effecting greater angiogenesis and arteriogenesis. Ex vivo modulation of HTATIP2 may offer a strategy for rescuing the functional impairment of pro-angio/arteriogenic Mo/MΦs prior to autologous delivery and increase the likelihood of clinical efficacy.
Collapse
Affiliation(s)
- Ashish S. Patel
- Academic Department of Vascular Surgery, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, King’s BHF Centre of Research Excellence, King’s College London, United Kingdom
| | - Francesca E. Ludwinski
- Academic Department of Vascular Surgery, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, King’s BHF Centre of Research Excellence, King’s College London, United Kingdom
| | - Angeles Mondragon
- Academic Department of Vascular Surgery, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, King’s BHF Centre of Research Excellence, King’s College London, United Kingdom
| | - Katherine Nuthall
- Academic Department of Vascular Surgery, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, King’s BHF Centre of Research Excellence, King’s College London, United Kingdom
| | - Prakash Saha
- Academic Department of Vascular Surgery, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, King’s BHF Centre of Research Excellence, King’s College London, United Kingdom
| | - Oliver Lyons
- Academic Department of Vascular Surgery, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, King’s BHF Centre of Research Excellence, King’s College London, United Kingdom
| | - Mario Leonardo Squadrito
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Richard Siow
- Department of Vascular Biology and Inflammation, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, King’s BHF Centre of Research Excellence, King’s College London, United Kingdom
| | - Michele De Palma
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alberto Smith
- Academic Department of Vascular Surgery, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, King’s BHF Centre of Research Excellence, King’s College London, United Kingdom
| | - Bijan Modarai
- Academic Department of Vascular Surgery, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, King’s BHF Centre of Research Excellence, King’s College London, United Kingdom
| |
Collapse
|
7
|
Zhao J, Le M, Li J, Huang Q, Chen H, Zhang W, Mao H, Sun Q, Li A, Zhao Y, Yu L, Yi M, Wang J, Li X, Zhang G, Ma J, Dong X. LINC00938 alleviates hypoxia ischemia encephalopathy induced neonatal brain injury by regulating oxidative stress and inhibiting JNK/p38 MAPK signaling pathway. Exp Neurol 2023; 367:114449. [PMID: 37257715 DOI: 10.1016/j.expneurol.2023.114449] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is an important factor leading to permanent damage of central nervous system (CNS) and even neonatal death. Long non-coding RNAs (lncRNAs) has been shown to get involved in the pathogenesis of nervous system diseases. LINC00938 is an intergenic lncRNA which is reported to be involved in neurodegenerative disease. However, the potential role of LINC00938 in nerve injury of neonatal HIE is undetermined. Here, we found that the expression of LINC00938 in the whole blood of neonates with HIE was downregulated compared with the non-HIE group. Functional study revealed that the expression of LINC00938 was significantly decreased in oxygen-glucose deprivation (OGD)-induced SH-SY5Y. Knockdown of LINC00938 induced the neural cell apoptosis by increased the protein level of Bax, Cleaved-Caspase3 and decreased the expression of Bcl-2. In addition, overexpression of LINC00938 prevented the apoptosis of SH-SY5Y from OGD injury. RNA-seq analysis showed that MAPK signaling was involved in the anti-apoptosis function of LINC00938. LINC00938 knockdown induced the activation of c-Jun-N-terminal kinase (JNK), p38 mitogen-activated protein kinase, and inhibited the activation of ERK signaling. However, LINC00938 play neuroprotective role in OGD-induced SH-SY5Y by suppression the phosphorylation of JNK and p38 MAPK rather than regulation of ERK signaling pathway. Further analyses illustrated that the cell apoptosis of neuronal cell was dependent on the elevation of reactive oxygen species (ROS) and result in mitochondria dysfunction in LINC00938 knockdown SH-SY5Y. Pretreated with ROS inhibitor N-acetylcysteine amide (NACA) dramatically suppressed LINC00938 knockdown induced oxidative stress and mitochondria dysfunction which induced cell apoptosis. In addition, NACA treatment significantly reduced the expression of p-JNK and p-p38 in OGD-induced SH-SY5Y. Furthermore, overexpression of LINC00938 displayed a notably neuroprotective effect by suppress central nervous system cell apoptosis via alleviating oxidative stress in CoCl2-induced hypoxic HIE model of zebrafish. Taken together, these results suggested that LINC00938 can act as a neuroprotective factor to inhibit oxidative stress and apoptosis of CNS under HIE conditions.
Collapse
Affiliation(s)
- Jing Zhao
- Department of General Practitioners, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China; Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China
| | - Meini Le
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China
| | - Jie Li
- Department of Neurosurgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 20033, China
| | - Qiong Huang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China
| | - Haocong Chen
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China
| | - Wenyi Zhang
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China
| | - Huiwen Mao
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China
| | - Qing Sun
- Department of Pediatrics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 20033, China
| | - Aiguo Li
- Department of Pediatrics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 20033, China
| | - Yingmin Zhao
- Department of Pediatric, Jingjiang People's Hospital Affiliated to Yangzhou University, Jingjiang 214500, China
| | - Lingling Yu
- Department of Pediatric, Jingjiang People's Hospital Affiliated to Yangzhou University, Jingjiang 214500, China
| | - Mingjiang Yi
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China
| | - Jie Wang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China
| | - Xinyuan Li
- Department of Neurosurgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 20033, China.
| | - Guangming Zhang
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China.
| | - Jun Ma
- Department of General Practitioners, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China.
| | - Xiaohua Dong
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China; Department of Neurosurgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 20033, China; Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China.
| |
Collapse
|
8
|
Yang Z, Liu R, Qiu M, Mei H, Hao J, Song T, Zhao K, Zou D, Wang H, Gao M. The roles of ERIANIN in tumor and innate immunity and its' perspectives in immunotherapy. Front Immunol 2023; 14:1170754. [PMID: 37187758 PMCID: PMC10175588 DOI: 10.3389/fimmu.2023.1170754] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Traditional Chinese medicine has been used in China for thousands of years. In 2022, the 14th Five-Year Plan for the Development of Traditional Chinese Medicine was released, aiming to enhance traditional Chinese medicine health services and improve policies and systems for high-quality traditional Chinese medicinal development by 2025. ERIANIN, the main component of the traditional Chinese medicine Dendrobium, plays an important role in anti-inflammatory, antiviral, antitumor, antiangiogenic, and other pharmacological effects. ERIANIN has broad-spectrum antitumor effects, and its tumor-suppressive effects have been confirmed in the study of various diseases, such as precancerous lesions of the stomach, gastric cancer, liver cancer, lung cancer, prostate cancer, bladder cancer, breast cancer, cervical cancer, osteosarcoma, colorectal cancer, leukaemia, nasopharyngeal cancer and melanoma through the multiple signaling pathways. Thus, the aim of this review was to systematically summarise the research on ERIANIN with the aim of serving as a reference for future research on this compound and briefly discuss some future perspectives development of ERIANIN in combined immunotherapy.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Ruxue Liu
- College of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Minghan Qiu
- Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Hanwei Mei
- College of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jie Hao
- Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, China
| | - Teng Song
- Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Ke Zhao
- Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Dandan Zou
- Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Huaqing Wang
- Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
- College of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Huaqing Wang, ; Ming Gao,
| | - Ming Gao
- Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, China
- *Correspondence: Huaqing Wang, ; Ming Gao,
| |
Collapse
|