1
|
Camerino M, Chang W, Cvekl A. Analysis of long-range chromatin contacts, compartments and looping between mouse embryonic stem cells, lens epithelium and lens fibers. Epigenetics Chromatin 2024; 17:10. [PMID: 38643244 PMCID: PMC11031936 DOI: 10.1186/s13072-024-00533-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/08/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Nuclear organization of interphase chromosomes involves individual chromosome territories, "open" and "closed" chromatin compartments, topologically associated domains (TADs) and chromatin loops. The DNA- and RNA-binding transcription factor CTCF together with the cohesin complex serve as major organizers of chromatin architecture. Cellular differentiation is driven by temporally and spatially coordinated gene expression that requires chromatin changes of individual loci of various complexities. Lens differentiation represents an advantageous system to probe transcriptional mechanisms underlying tissue-specific gene expression including high transcriptional outputs of individual crystallin genes until the mature lens fiber cells degrade their nuclei. RESULTS Chromatin organization between mouse embryonic stem (ES) cells, newborn (P0.5) lens epithelium and fiber cells were analyzed using Hi-C. Localization of CTCF in both lens chromatins was determined by ChIP-seq and compared with ES cells. Quantitative analyses show major differences between number and size of TADs and chromatin loop size between these three cell types. In depth analyses show similarities between lens samples exemplified by overlaps between compartments A and B. Lens epithelium-specific CTCF peaks are found in mostly methylated genomic regions while lens fiber-specific and shared peaks occur mostly within unmethylated DNA regions. Major differences in TADs and loops are illustrated at the ~ 500 kb Pax6 locus, encoding the critical lens regulatory transcription factor and within a larger ~ 15 Mb WAGR locus, containing Pax6 and other loci linked to human congenital diseases. Lens and ES cell Hi-C data (TADs and loops) together with ATAC-seq, CTCF, H3K27ac, H3K27me3 and ENCODE cis-regulatory sites are shown in detail for the Pax6, Sox1 and Hif1a loci, multiple crystallin genes and other important loci required for lens morphogenesis. The majority of crystallin loci are marked by unexpectedly high CTCF-binding across their transcribed regions. CONCLUSIONS Our study has generated the first data on 3-dimensional (3D) nuclear organization in lens epithelium and lens fibers and directly compared these data with ES cells. These findings generate novel insights into lens-specific transcriptional gene control, open new research avenues to study transcriptional condensates in lens fiber cells, and enable studies of non-coding genetic variants linked to cataract and other lens and ocular abnormalities.
Collapse
Affiliation(s)
- Michael Camerino
- The Departments Genetics, Albert Einstein College of Medicine, NY10461, Bronx, USA
| | - William Chang
- Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, NY10461, Bronx, USA
| | - Ales Cvekl
- The Departments Genetics, Albert Einstein College of Medicine, NY10461, Bronx, USA.
- Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, NY10461, Bronx, USA.
| |
Collapse
|
2
|
Denes V, Lukats A, Szarka G, Subicz R, Mester A, Kovacs-Valasek A, Geck P, Berta G, Herczeg R, Postyeni E, Gyenesei A, Gabriel R. Long-term Effects of the pituitary-adenylate cyclase-activating Polypeptide (PACAP38) in the Adult Mouse Retina: Microglial Activation and Induction of Neural Proliferation. Neurochem Res 2023; 48:3430-3446. [PMID: 37466802 PMCID: PMC10514177 DOI: 10.1007/s11064-023-03989-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023]
Abstract
The degenerative retinal disorders characterized by progressive cell death and exacerbating inflammation lead ultimately to blindness. The ubiquitous neuropeptide, PACAP38 is a promising therapeutic agent as its proliferative potential and suppressive effect on microglia might enable cell replacement and attenuate inflammation, respectively. Our previous finding that PACAP38 caused a marked increase of the amacrine cells in the adult (1-year-old) mouse retina, served as a rationale of the current study. We aimed to determine the proliferating elements and the inflammatory status of the PACAP38-treated retina. Three months old mice were intravitreally injected with 100 pmol PACAP38 at 3 months intervals (3X). Retinas of 1-year-old animals were dissected and effects on cell proliferation, and expression of inflammatory regulators were analyzed. Interestingly, both mitogenic and anti-mitogenic actions were detected after PACAP38-treatment. Further analysis of the mitogenic effect revealed that proliferating cells include microglia, endothelial cells, and neurons of the ganglion cell layer but not amacrine cells. Furthermore, PACAP38 stimulated retinal microglia to polarize dominantly into M2-phenotype but also might cause subsequent angiogenesis. According to our results, PACAP38 might dampen pro-inflammatory responses and help tissue repair by reprogramming microglia into an M2 phenotype, nonetheless, with angiogenesis as a warning side effect.
Collapse
Affiliation(s)
- Viktoria Denes
- Department of Neurobiology, University of Pécs, 6 Ifjúság str, Pécs, H-7624, Hungary.
| | - Akos Lukats
- Institute of Translational Medicine, Translational Retina Research Group, Semmelweis University, Budapest, Hungary
| | - Gergely Szarka
- Department of Neurobiology, University of Pécs, 6 Ifjúság str, Pécs, H-7624, Hungary
| | - Rovena Subicz
- Department of Neurobiology, University of Pécs, 6 Ifjúság str, Pécs, H-7624, Hungary
| | - Adrienn Mester
- Department of Neurobiology, University of Pécs, 6 Ifjúság str, Pécs, H-7624, Hungary
| | - Andrea Kovacs-Valasek
- Department of Neurobiology, University of Pécs, 6 Ifjúság str, Pécs, H-7624, Hungary
| | - Peter Geck
- Department of Medical Education, School of Medicine, Tufts University, 136 Harrison Ave, Boston, MA, 02111, USA
| | - Gergely Berta
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, University of Pécs, Pécs, Hungary
| | - Robert Herczeg
- János Szentágothai Research Centre, Bioinformatics Research Group, University of Pécs, 20 Ifjúság str, Pécs, H-7624, Hungary
| | - Etelka Postyeni
- Department of Neurobiology, University of Pécs, 6 Ifjúság str, Pécs, H-7624, Hungary
| | - Attila Gyenesei
- János Szentágothai Research Centre, Bioinformatics Research Group, University of Pécs, 20 Ifjúság str, Pécs, H-7624, Hungary
| | - Robert Gabriel
- Department of Neurobiology, University of Pécs, 6 Ifjúság str, Pécs, H-7624, Hungary
| |
Collapse
|
3
|
Zhang J, Li P, Sun L, Jiang N, Guo W, Wang J, Gao F, Li J, Li H, Zhang J, Mu H, Hu Y, Cui X. Knockout of miR-184 in zebrafish leads to ocular abnormalities by elevating p21 levels. FASEB J 2023; 37:e22927. [PMID: 37086087 DOI: 10.1096/fj.202300067r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/20/2023] [Accepted: 04/04/2023] [Indexed: 04/23/2023]
Abstract
miR-184 is one of the most abundant miRNAs expressed in the lens and corneal tissue. Mutations in the seed region of miR-184 are responsible for inherited anterior segment dysgenesis. Animal models recapitulating miR-184-related anterior segment dysgenesis are still lacking, and the molecular basis of ocular abnormalities caused by miR-184 dysfunction has not been well elucidated in vivo. In the present study, we constructed a miR-184-/- zebrafish line by destroying both two dre-mir-184 paralogs with CRISPR-Cas9 technology. Although there were no gross developmental defects, the miR-184-/- zebrafish displayed microphthalmia and cataract phenotypes. Cytoskeletal abnormalities, aggregation of γ-crystallin, and lens fibrosis were induced in miR-184-/- lenses. However, no obvious corneal abnormalities were observed in miR-184-/- zebrafish. Instead of apoptosis, deficiency of miR-184 led to aberrant cell proliferation and a robust increase in p21 levels in zebrafish eyes. Inhibition of p21 by UC2288 compromised the elevation of lens fibrosis markers in miR-184-/- lenses. RNA-seq demonstrated that levels of four transcriptional factors HSF4, Sox9a, CTCF, and Smad6a, all of which could suppress p21 expression, were reduced in miR-184-/- eyes. The predicted zebrafish miR-184 direct target genes (e.g., atp1a3a and nck2a) were identified and verified in miR-184-/- eye tissues. The miR-184-/- zebrafish is the first animal model mimicking miR-184-related anterior segment dysgenesis and could broaden our understanding of the roles of miR-184 in eye development.
Collapse
Affiliation(s)
- Jing Zhang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Ping Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Luqian Sun
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Ning Jiang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Wenya Guo
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Jungai Wang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Fen Gao
- Kaifeng Key Lab of Myopia and Cataract, Kaifeng Central Hospital, Kaifeng, China
| | - Jing Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Hui Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Jun Zhang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Hongmei Mu
- Kaifeng Key Lab of Myopia and Cataract, Kaifeng Central Hospital, Kaifeng, China
| | - Yanzhong Hu
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiukun Cui
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| |
Collapse
|
4
|
Cvekl A, Camerino MJ. Generation of Lens Progenitor Cells and Lentoid Bodies from Pluripotent Stem Cells: Novel Tools for Human Lens Development and Ocular Disease Etiology. Cells 2022; 11:3516. [PMID: 36359912 PMCID: PMC9658148 DOI: 10.3390/cells11213516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
In vitro differentiation of human pluripotent stem cells (hPSCs) into specialized tissues and organs represents a powerful approach to gain insight into those cellular and molecular mechanisms regulating human development. Although normal embryonic eye development is a complex process, generation of ocular organoids and specific ocular tissues from pluripotent stem cells has provided invaluable insights into the formation of lineage-committed progenitor cell populations, signal transduction pathways, and self-organization principles. This review provides a comprehensive summary of recent advances in generation of adenohypophyseal, olfactory, and lens placodes, lens progenitor cells and three-dimensional (3D) primitive lenses, "lentoid bodies", and "micro-lenses". These cells are produced alone or "community-grown" with other ocular tissues. Lentoid bodies/micro-lenses generated from human patients carrying mutations in crystallin genes demonstrate proof-of-principle that these cells are suitable for mechanistic studies of cataractogenesis. Taken together, current and emerging advanced in vitro differentiation methods pave the road to understand molecular mechanisms of cataract formation caused by the entire spectrum of mutations in DNA-binding regulatory genes, such as PAX6, SOX2, FOXE3, MAF, PITX3, and HSF4, individual crystallins, and other genes such as BFSP1, BFSP2, EPHA2, GJA3, GJA8, LIM2, MIP, and TDRD7 represented in human cataract patients.
Collapse
Affiliation(s)
- Aleš Cvekl
- Departments Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michael John Camerino
- Departments Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
5
|
Feng Y, Zhang Y, Lin Z, Ye X, Lin X, Lv L, Lin Y, Sun S, Qi Y, Lin X. Chromatin remodeler Dmp18 regulates apoptosis by controlling H2Av incorporation in Drosophila imaginal disc development. PLoS Genet 2022; 18:e1010395. [PMID: 36166470 PMCID: PMC9514664 DOI: 10.1371/journal.pgen.1010395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
Programmed Cell Death (PCD) or apoptosis is a highly conserved biological process and plays essential roles both in the development and stress context. In Drosophila, expression of pro-apoptotic genes, including reaper (rpr), head involution defective (hid), grim, and sickle (skl), is sufficient to induce cell death. Here, we demonstrate that the chromatin remodeler Dmp18, the homolog of mammalian Znhit1, plays a crucial role in regulating apoptosis in eye and wing development. We showed that loss of Dmp18 disrupted eye and wing development, up-regulated transcription of pro-apoptotic genes, and induced apoptosis. Inhibition of apoptosis suppressed the eye defects caused by Dmp18 deletion. Furthermore, loss of Dmp18 disrupted H2Av incorporation into chromatin, promoted H3K4me3, but reduced H3K27me3 modifications on the TSS regions of pro-apoptotic genes. These results indicate that Dmp18 negatively regulates apoptosis by mediating H2Av incorporation and histone H3 modifications at pro-apoptotic gene loci for transcriptional regulation. Our study uncovers the role of Dmp18 in regulating apoptosis in Drosophila eye and wing development and provides insights into chromatin remodeling regulating apoptosis at the epigenetic levels.
Collapse
Affiliation(s)
- Ying Feng
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- * E-mail: (YF); (YQ); (XL)
| | - Yan Zhang
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiqing Lin
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaolei Ye
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xue Lin
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lixiu Lv
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Lin
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shenfei Sun
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Qi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- * E-mail: (YF); (YQ); (XL)
| | - Xinhua Lin
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
- * E-mail: (YF); (YQ); (XL)
| |
Collapse
|