1
|
Sellitto C, White TW. Combinatorial genetic manipulation of Cx50, PI3K and PTEN alters postnatal mouse lens growth and homeostasis. FRONTIERS IN OPHTHALMOLOGY 2025; 5:1502836. [PMID: 40046897 PMCID: PMC11879993 DOI: 10.3389/fopht.2025.1502836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/03/2025] [Indexed: 03/09/2025]
Abstract
Introduction Phosphoinositide 3-kinase (PI3K), Phosphatase and tensin homolog (PTEN) and connexin50 (Cx50) have individually been shown to play critical roles in the growth, development and maintenance of the lens and to functionally interact in vitro. To elucidate how gap junctional coupling mediated by Cx50 and intracellular signaling mediated by PI3K and PTEN synergistically interact to regulate lens homeostasis in vivo, we generated and characterized double knockout animal models lacking the p110α subunit of PI3K and Cx50, or PTEN and Cx50. Methods We interbred lens specific p110α and PTEN conditional knockout animals with Cx50 deficient mice to generate double knockouts. Animals and eyes were weighed, lenses were dissected, photographed, measured, fixed and sectioned for histological analysis. Lens epithelial cell proliferation was determined using 5-ethynyl-2'-deoxyuridine (EdU) labeling. Results Double knockout of p110α and Cx50 led to a significant reduction in lens and eye size, and a high rate of lens rupture. The individual cell proliferation defects of the Cx50 and p110α single knockout lenses both persisted in the double KO. Double deletion of Cx50 and PTEN produced severe lens defects, including cataract, aberrant cell migration, altered cell proliferation, vacuole formation and lens rupture. Conclusion The severe phenotypes in p110α/Cx50 and PTEN/Cx50 double deficient lenses suggest that PI3K, PTEN and Cx50 participate in both distinct and common regulatory pathways that are necessary to maintain normal lens growth and homeostasis.
Collapse
Affiliation(s)
| | - Thomas W. White
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY, United States
| |
Collapse
|
2
|
Xia CH, Lin W, Li R, Xing X, Shang GJ, Zhang H, Gong X. Altered Cell Clusters and Upregulated Aqp1 in Connexin 50 Knockout Lens Epithelium. Invest Ophthalmol Vis Sci 2024; 65:27. [PMID: 39287589 PMCID: PMC11412383 DOI: 10.1167/iovs.65.11.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Purpose To characterize the heterogeneity and cell clusters of postnatal lens epithelial cells (LECs) and to investigate the downstream targets of connexin 50 (Cx50) in the regulation of lens homeostasis and lens growth. To determine differentially expressed genes (DEGs) in the connexin 50 knockout (Cx50KO) lens epithelial cells that shed light on novel mechanism underlying the cataract and small size of the Cx50KO lenses. Methods Single-cell RNA sequencing (scRNA-seq) of lens epithelial cells isolated from one-month-old Cx50KO and wild-type (WT) mice were performed. Differentially expressed genes were identified, and selected DEGs were further studied by quantitative real-time PCR (RT-qPCR) analysis and Western blot analysis. Results The expression profiles of several thousand genes were identified by scRNA-seq data analysis. In comparison to the WT control, many DEGs were identified in the Cx50KO lens epithelial cells, including growth regulating transcriptional factors and genes encoding water channels. Significantly upregulated aquaporin 1 (Aqp1) gene expression was confirmed by RT-qPCR, and upregulated AQP1 protein expression was confirmed by Western blot analysis and immunostaining both in vivo and in vitro. Conclusions Lens epithelial cells exhibit an intrinsic heterogeneity of different cell clusters in regulating lens homeostasis and lens growth. Upregulated Aqp1 in Cx50KO lens epithelial cells suggests that both connexin 50 and AQP1 likely play important roles in regulating water homeostasis in lens epithelial cells.
Collapse
Affiliation(s)
- Chun-Hong Xia
- Herbert Wertheim School of Optometry and Vision Science Program, University of California at Berkeley, Berkeley, California, United States
| | - William Lin
- Herbert Wertheim School of Optometry and Vision Science Program, University of California at Berkeley, Berkeley, California, United States
| | - Rachel Li
- Herbert Wertheim School of Optometry and Vision Science Program, University of California at Berkeley, Berkeley, California, United States
| | - Xinfang Xing
- Herbert Wertheim School of Optometry and Vision Science Program, University of California at Berkeley, Berkeley, California, United States
| | - Guangdu Jack Shang
- Herbert Wertheim School of Optometry and Vision Science Program, University of California at Berkeley, Berkeley, California, United States
| | - Haiwei Zhang
- Herbert Wertheim School of Optometry and Vision Science Program, University of California at Berkeley, Berkeley, California, United States
| | - Xiaohua Gong
- Herbert Wertheim School of Optometry and Vision Science Program, University of California at Berkeley, Berkeley, California, United States
| |
Collapse
|
3
|
Liu Y, Du M, Li X, Zhang L, Zhao B, Wang N, Dugarjaviin M. Single-Cell Transcriptome Sequencing Reveals Molecular Expression Differences and Marker Genes in Testes during the Sexual Maturation of Mongolian Horses. Animals (Basel) 2024; 14:1258. [PMID: 38731262 PMCID: PMC11082968 DOI: 10.3390/ani14091258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
This study aimed to investigate differences in testicular tissue morphology, gene expression, and marker genes between sexually immature (1-year-old) and sexually mature (10-year-old) Mongolian horses. The purposes of our research were to provide insights into the reproductive physiology of male Mongolian horses and to identify potential markers for sexual maturity. The methods we applied included the transcriptomic profiling of testicular cells using single-cell sequencing techniques. Our results revealed significant differences in tissue morphology and gene expression patterns between the two age groups. Specifically, 25 cell clusters and 10 cell types were identified, including spermatogonial and somatic cells. Differential gene expression analysis highlighted distinct patterns related to cellular infrastructure in sexually immature horses and spermatogenesis in sexually mature horses. Marker genes specific to each stage were also identified, including APOA1, AMH, TAC3, INHA, SPARC, and SOX9 for the sexually immature stage, and PRM1, PRM2, LOC100051500, PRSS37, HMGB4, and H1-9 for the sexually mature stage. These findings contribute to a deeper understanding of testicular development and spermatogenesis in Mongolian horses and have potential applications in equine reproductive biology and breeding programs. In conclusion, this study provides valuable insights into the molecular mechanisms underlying sexual maturity in Mongolian horses.
Collapse
Affiliation(s)
- Yuanyi Liu
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (M.D.); (X.L.); (L.Z.); (B.Z.); (N.W.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ming Du
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (M.D.); (X.L.); (L.Z.); (B.Z.); (N.W.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xinyu Li
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (M.D.); (X.L.); (L.Z.); (B.Z.); (N.W.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lei Zhang
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (M.D.); (X.L.); (L.Z.); (B.Z.); (N.W.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Bilig Zhao
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (M.D.); (X.L.); (L.Z.); (B.Z.); (N.W.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Na Wang
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (M.D.); (X.L.); (L.Z.); (B.Z.); (N.W.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Manglai Dugarjaviin
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (M.D.); (X.L.); (L.Z.); (B.Z.); (N.W.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
4
|
Tangeman JA, Rebull SM, Grajales-Esquivel E, Weaver JM, Bendezu-Sayas S, Robinson ML, Lachke SA, Del Rio-Tsonis K. Integrated single-cell multiomics uncovers foundational regulatory mechanisms of lens development and pathology. Development 2024; 151:dev202249. [PMID: 38180241 PMCID: PMC10906490 DOI: 10.1242/dev.202249] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
Ocular lens development entails epithelial to fiber cell differentiation, defects in which cause congenital cataracts. We report the first single-cell multiomic atlas of lens development, leveraging snRNA-seq, snATAC-seq and CUT&RUN-seq to discover previously unreported mechanisms of cell fate determination and cataract-linked regulatory networks. A comprehensive profile of cis- and trans-regulatory interactions, including for the cataract-linked transcription factor MAF, is established across a temporal trajectory of fiber cell differentiation. Furthermore, we identify an epigenetic paradigm of cellular differentiation, defined by progressive loss of the H3K27 methylation writer Polycomb repressive complex 2 (PRC2). PRC2 localizes to heterochromatin domains across master-regulator transcription factor gene bodies, suggesting it safeguards epithelial cell fate. Moreover, we demonstrate that FGF hyper-stimulation in vivo leads to MAF network activation and the emergence of novel lens cell states. Collectively, these data depict a comprehensive portrait of lens fiber cell differentiation, while defining regulatory effectors of cell identity and cataract formation.
Collapse
Affiliation(s)
- Jared A. Tangeman
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
- Cell, Molecular, and Structural Biology Program, Miami University, Oxford, OH 45056, USA
| | - Sofia M. Rebull
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| | - Erika Grajales-Esquivel
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| | - Jacob M. Weaver
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
- Cell, Molecular, and Structural Biology Program, Miami University, Oxford, OH 45056, USA
| | - Stacy Bendezu-Sayas
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
- Cell, Molecular, and Structural Biology Program, Miami University, Oxford, OH 45056, USA
| | - Michael L. Robinson
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
- Cell, Molecular, and Structural Biology Program, Miami University, Oxford, OH 45056, USA
| | - Salil A. Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE 19713, USA
| | - Katia Del Rio-Tsonis
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
- Cell, Molecular, and Structural Biology Program, Miami University, Oxford, OH 45056, USA
| |
Collapse
|