1
|
Lu ZJ, Ye JG, Li JN, Liang JB, Zhou M, Hu QL, Zhang QK, Lin YH, Zheng YF. Single-Cell Multiomics Analysis of Early Wound Response Programs in the Mouse Corneal Epithelium. Invest Ophthalmol Vis Sci 2025; 66:9. [PMID: 40042873 DOI: 10.1167/iovs.66.3.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2025] Open
Abstract
Purpose Wound healing is crucial for restoring homeostasis in living organisms. Although wound response mechanisms have been studied extensively, the gene regulatory programs involved remain to be elucidated. Here, we used single-cell RNA sequencing (RNA-seq) and ATAC sequencing (ATAC-seq) analysis to profile the regulatory landscape of mouse corneal epithelium in early wound response. Methods We used our previously published single-cell data sets of homeostatic adult mouse corneal epithelium as the unwounded group. The wounded group data sets were obtained by sequencing the epithelium after an annular epithelial wound. Following the integration of the relevant data sets, the Seurat and ArchR packages were employed for single-cell RNA-seq and single-cell ATAC-seq data processing and downstream analysis, respectively. The Monocle 2 was used for pseudo-time analysis, CellChat for intercellular communication analysis, and pySCENIC for analyzing transcription factors. The expression of key genes was validated via immunofluorescence staining and quantitative real-time PCR. Results Our data show that the number of cell type-specific genes decreases and the number of common transcriptional responses increases in early wound response. Concurrently, we find that the chromatin accessibility landscape undergoes significant changes across all epithelial cell types and that the wound-induced open regions are similarly distributed across the genome. Motif enrichment analysis shows that Fosl1/AP-1 binding site is highly enriched among the opened regions. However, by assessing the correlation between changes in chromatin accessibility and gene expression, we observe that only a small subset of wound-induced genes shows a high correlation with the accessibility of nearby chromatin. Conclusions Our study provides a detailed single-cell landscape for transcriptomic and epigenetic changes in mouse corneal epithelium during early wound response, which improved our understanding of the mechanisms of wound healing.
Collapse
Affiliation(s)
- Zhao-Jing Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Jin-Guo Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jing-Ni Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jiang-Bo Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Ming Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qiu-Ling Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qi-Kai Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yu-Heng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Ying-Feng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Zhao J, Wang Y, Feng C, Yin M, Gao Y, Wei L, Song C, Ai B, Wang Q, Zhang J, Zhu J, Li C. SCInter: A comprehensive single-cell transcriptome integration database for human and mouse. Comput Struct Biotechnol J 2024; 23:77-86. [PMID: 38125297 PMCID: PMC10731004 DOI: 10.1016/j.csbj.2023.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Single-cell RNA sequencing (scRNA-seq), which profiles gene expression at the cellular level, has effectively explored cell heterogeneity and reconstructed developmental trajectories. With the increasing research on diseases and biological processes, scRNA-seq datasets are accumulating rapidly, highlighting the urgent need for collecting and processing these data to support comprehensive and effective annotation and analysis. Here, we have developed a comprehensive Single-Cell transcriptome integration database for human and mouse (SCInter, https://bio.liclab.net/SCInter/index.php), which aims to provide a manually curated database that supports the provision of gene expression profiles across various cell types at the sample level. The current version of SCInter includes 115 integrated datasets and 1016 samples, covering nearly 150 tissues/cell lines. It contains 8016,646 cell markers in 457 identified cell types. SCInter enabled comprehensive analysis of cataloged single-cell data encompassing quality control (QC), clustering, cell markers, multi-method cell type automatic annotation, predicting cell differentiation trajectories and so on. At the same time, SCInter provided a user-friendly interface to query, browse, analyze and visualize each integrated dataset and single cell sample, along with comprehensive QC reports and processing results. It will facilitate the identification of cell type in different cell subpopulations and explore developmental trajectories, enhancing the study of cell heterogeneity in the fields of immunology and oncology.
Collapse
Affiliation(s)
- Jun Zhao
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163319, China
| | - Yuezhu Wang
- School of Artificial Intelligence, Jilin University, Changchun 130012, China
| | - Chenchen Feng
- School of Computer, University of South China, Hengyang, Hunan 421001, China
| | - Mingxue Yin
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yu Gao
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163319, China
| | - Ling Wei
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Cancer Center, Peking University Third Hospital, Beijing 100191, China
| | - Chao Song
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- School of Computer, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
| | - Bo Ai
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163319, China
| | - Qiuyu Wang
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- School of Computer, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jian Zhang
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163319, China
| | - Jiang Zhu
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163319, China
| | - Chunquan Li
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- School of Computer, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|