1
|
Gao ML, Wang TY, Lin X, Tang C, Li M, Bai ZP, Liu ZC, Chen LJ, Kong QR, Pan SH, Zeng SS, Guo Y, Cai JQ, Huang XF, Zhang J. Retinal Organoid Microenvironment Enhanced Bioactivities of Microglia-Like Cells Derived From HiPSCs. Invest Ophthalmol Vis Sci 2024; 65:19. [PMID: 39392440 PMCID: PMC11472886 DOI: 10.1167/iovs.65.12.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/12/2024] [Indexed: 10/12/2024] Open
Abstract
Purpose Microglia-like cells derived from stem cells (iMG) provide a plentiful cell source for studying the functions of microglia in both normal and pathological conditions. Our goal is to establish a simplified and effective method for generating iMG in a precisely defined system. Additionally, we aim to achieve functional maturation of iMG through coculture with retinal organoids. Methods In this study, iMG were produced under precisely defined conditions. They were subjected to LPS and poly IC stimulation. Additionally, we examined distinct phenotypic and functional variances between iMG and HMC3, a commonly used human microglia cell line. To investigate how the retinal cell interaction enhances microglial properties, iMG were cocultured with retinal organoids, producing CC-iMG. We performed RNA sequencing, electrophysiological analysis, and transmission electron microscope (TEM) to examine the maturation of CC-iMG compared to iMG. Results Our results demonstrated that iMG performed immune-responsive profiles closely resembling those of primary human microglia. Compared to HMC3, iMG expressed a higher level of typical microglial markers and exhibited enhanced phagocytic activity. The transcriptomic analysis uncovered notable alterations in the ion channel profile of CC-iMG compared to iMG. Electrophysiological examination demonstrated a heightened intensity of inward- and outward-rectifying K+ currents in CC-iMG. Furthermore, CC-iMG displayed elevated numbers of lysosomes and mitochondria, coupled with increased phagocytic activity. Conclusions These findings contribute to advancing our understanding of human microglial biology, specifically in characterizing and elucidating the functions of CC-iMG, thereby offering an in vitro microglial model for future scientific research and potential clinical applications in cell therapy.
Collapse
Affiliation(s)
- Mei-Ling Gao
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Tong-Yu Wang
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Xin Lin
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Chun Tang
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Mengyao Li
- Department of Critical Care Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Zhan-Pei Bai
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhi-Cong Liu
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Li-Jun Chen
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qing-Ran Kong
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shao-Hui Pan
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China
| | - Shan-Shan Zeng
- China National Institute of Standardization, Beijing, China
| | - Ya Guo
- China National Institute of Standardization, Beijing, China
| | - Jian-Qi Cai
- China National Institute of Standardization, Beijing, China
| | - Xiu-Feng Huang
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jun Zhang
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Li Y, Lei Z, Ritzel RM, He J, Liu S, Zhang L, Wu J. Ablation of the Integrin CD11b Mac-1 Limits Deleterious Responses to Traumatic Spinal Cord Injury and Improves Functional Recovery in Mice. Cells 2024; 13:1584. [PMID: 39329765 PMCID: PMC11430243 DOI: 10.3390/cells13181584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Spinal cord injury (SCI) triggers microglial/monocytes activation with distinct pro-inflammatory or inflammation-resolving phenotypes, which potentiate tissue damage or facilitate functional repair, respectively. The major integrin Mac-1 (CD11b/CD18), a heterodimer consisting of CD11b and CD18 chains, is expressed in multiple immune cells of the myeloid lineage. Here, we examined the effects of CD11b gene ablation in neuroinflammation and functional outcomes after SCI. qPCR analysis of C57BL/6 female mice showed upregulation of CD11b mRNA starting from 1 d after injury, which persisted up to 28 d. CD11b knockout (KO) mice and their wildtype littermates were subjected to moderate SCI. At 1 d post-injury, qPCR showed increased expression of genes involved with inflammation-resolving processes in CD11b KO mice. Flow cytometry analysis of CD45intLy6C-CX3CR1+ microglia, CD45hiLy6C+Ly6G- monocytes, and CD45hiLy6C+Ly6G+ neutrophils revealed significantly reduced cell counts as well as reactive oxygen species (ROS) production in CD11b KO mice at d3 post-injury. Further examination with NanoString and RNA-seq showed upregulation of pro-inflammatory genes, but downregulation of the ROS pathway. Importantly, CD11b KO mice exhibited significantly improved locomotor function, reduced cutaneous mechanical/thermal hypersensitivity, and limited tissue damage at 8 weeks post-injury. Collectively, our data suggest an important role for CD11b in regulating tissue inflammation and functional outcome following SCI.
Collapse
Affiliation(s)
- Yun Li
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD 21201, USA; (Y.L.); (Z.L.); (R.M.R.); (J.H.); (S.L.)
| | - Zhuofan Lei
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD 21201, USA; (Y.L.); (Z.L.); (R.M.R.); (J.H.); (S.L.)
| | - Rodney M. Ritzel
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD 21201, USA; (Y.L.); (Z.L.); (R.M.R.); (J.H.); (S.L.)
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Junyun He
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD 21201, USA; (Y.L.); (Z.L.); (R.M.R.); (J.H.); (S.L.)
| | - Simon Liu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD 21201, USA; (Y.L.); (Z.L.); (R.M.R.); (J.H.); (S.L.)
| | - Li Zhang
- Department of Physiology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD 21201, USA; (Y.L.); (Z.L.); (R.M.R.); (J.H.); (S.L.)
| |
Collapse
|
3
|
Zhong J, Lin X, Zheng X, Zhou Y, Huang H, Xu L. Diminished levels of insulin-like growth factor-1 may be a risk factor for peripheral neuropathy in type 2 diabetes patients. J Diabetes Investig 2024; 15:1259-1265. [PMID: 38923403 PMCID: PMC11363116 DOI: 10.1111/jdi.14260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
AIMS/INTRODUCTION To investigate risk factors for diabetic peripheral neuropathy (DPN) and to explore the connection between insulin-like growth factor-1 (IGF-1) and DPN in individuals with type 2 diabetes. MATERIALS AND METHODS A total of 790 patients with type 2 diabetes participated in a cross-sectional study, divided into two groups: those with DPN (DPN) and those without DPN (non-DPN). Blood samples were taken to measure IGF-1 levels and other biochemical markers. Participants underwent nerve conduction studies and quantitative sensory testing. RESULTS Patients with DPN exhibited significantly lower levels of IGF-1 compared with non-DPN patients (P < 0.001). IGF-1 was positively correlated with the average amplitude of both motor (P < 0.05) and sensory nerves (P < 0.05), but negatively correlated with the vibration perception threshold (P < 0.05). No significant difference was observed between IGF-1 and nerve conduction velocity (P > 0.05), or the temperature detection threshold (P > 0.05). Multivariate regression analysis identified diabetes duration, HbA1c, and the low levels of IGF-1 as independent risk factors (P < 0.001). Receiver operating characteristic analysis determined that at 8 years duration of diabetes, 8.5% (69.4 mmol/mol) HbA1c and 120 ng/mL IGF-1, the optimal cut-off points, indicated DPN (P < 0.001). CONCLUSIONS A reduction of IGF-1 in patients with DPN suggests a potential protective role against axon injury in large fiber nerves of type 2 diabetes patients.
Collapse
Affiliation(s)
- Jingyi Zhong
- Department of Endocrinology, Shenzhen HospitalSouthern Medical UniversityShenzhenGuangdongChina
- The Third School of Clinical MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xiaopu Lin
- Department of Huiqiao Medical Centre, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xiaobin Zheng
- Department of Endocrinology, Shenzhen HospitalSouthern Medical UniversityShenzhenGuangdongChina
- The Third School of Clinical MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yanting Zhou
- Department of Endocrinology, Shenzhen HospitalSouthern Medical UniversityShenzhenGuangdongChina
- The Third School of Clinical MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Haishan Huang
- Department of Endocrinology, Shenzhen HospitalSouthern Medical UniversityShenzhenGuangdongChina
- The Third School of Clinical MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Lingling Xu
- Department of Endocrinology, Shenzhen HospitalSouthern Medical UniversityShenzhenGuangdongChina
- The Third School of Clinical MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
4
|
Wang X, Zhou J, Wang Y, Li X, Hu Q, Luo L, Liu X, Liu W, Ye J. Effect of astrocyte GPER on the optic nerve inflammatory response following optic nerve injury in mice. Heliyon 2024; 10:e29428. [PMID: 38638966 PMCID: PMC11024623 DOI: 10.1016/j.heliyon.2024.e29428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
Activated astrocytes are a primary source of inflammatory factors following traumatic optic neuropathy (TON). Accumulation of inflammatory factors in this context leads to increased axonal damage and loss of retinal ganglion cells (RGCs). Therefore, in the present study, we explored the role of the astrocyte G protein-coupled estrogen receptor (GPER) in regulating inflammatory factors following optic nerve crush (ONC), and analyzed its potential regulatory mechanisms. Overall, our results showed that GPER was abundantly expressed in the optic nerve, and co-localized with glial fibrillary acidic proteins (GFAP). Exogenous administration of G-1 led to a significant reduction in astrocyte activation and expression of inflammation-related factors (including IL-1β, TNF-α, NFκB, and p-NFκB). Additionally, it dramatically increased the survival of RGCs. In contrast, astrocytes were activated to a greater extent by exogenous G15 administration; however, RGCs survival was significantly reduced. In vitro, GPER activation significantly reduced astrocyte activation and the release of inflammation-related factors. In conclusion, activation of astrocyte GPER significantly reduced ONC inflammation levels, and should be explored as a potential target pathway for protecting the optic nerve and RGCs after TON.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Jiaxing Zhou
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Yuwen Wang
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, Xinqiao Road, Shapingba District, Chongqing, 400032, China
| | - Xue Li
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Qiumei Hu
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Linlin Luo
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Xuemei Liu
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Wei Liu
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Jian Ye
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| |
Collapse
|