1
|
Bouyer LN, Schwarzkopf DS, Saurels BW, Arnold DH. Objective priming from pre-imagining inputs before binocular rivalry presentations does not predict individual differences in the subjective intensity of imagined experiences. Cognition 2025; 256:106048. [PMID: 39700603 DOI: 10.1016/j.cognition.2024.106048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Most people can imagine images that they experience within their mind's eye. However, there are marked individual differences, with some people reporting that they are unable to visualise (aphantasics), and others who report having imagined experiences that are as realistic as seeing (hyper-phantasics). The vividness of imagery is most often measured via subjective self-report. Chang and Pearson (2018), however, have suggested that a binocular rivalry (BR) protocol can be used as an objective measure. They found that pre-imagining a moving input could enhance performance on an objective probe detection task when probes are embedded in imagery consistent inputs, as opposed to imagery inconsistent inputs. To date, nobody has assessed if this type of objective imagery priming can be used to predict the vividness of different people's visualisations. Here, we report that imagery priming of objective sensitivity to probes within static BR inputs does not correlate with the ratings people use to describe the vividness of their visualisations (a between participants effect). However, objective priming of sensitivity to probes embedded in BR inputs was greater on trials when participants reported that their pre-imagined experience had been more vivid than average (a within participants effect). Overall, our data suggest that while imagery can prime objective sensitivity to probes during BR, there is currently no strong evidence that this effect can be used as a reliable objective method to predict the subjective vividness of different people's visualisations.
Collapse
Affiliation(s)
- Loren N Bouyer
- School of Psychology, The University of Queensland, Australia.
| | | | - Blake W Saurels
- School of Psychology, The University of Queensland, Australia
| | - Derek H Arnold
- School of Psychology, The University of Queensland, Australia
| |
Collapse
|
2
|
Baldwin AS, Lorenzini MC, Fan AWY, Hess RF, Reynaud A. The dichoptic contrast ordering test: A method for measuring the depth of binocular imbalance. J Vis 2024; 24:2. [PMID: 39361273 PMCID: PMC11460568 DOI: 10.1167/jov.24.11.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/24/2024] [Indexed: 10/10/2024] Open
Abstract
In binocular vision, the relative strength of the input from the two eyes can have significant functional impact. These inputs are typically balanced; however, in some conditions (e.g., amblyopia), one eye will dominate over the other. To quantify imbalances in binocular vision, we have developed the Dichoptic Contrast Ordering Test (DiCOT). Implemented on a tablet device, the program uses rankings of perceived contrast (of dichoptically presented stimuli) to find a scaling factor that balances the two eyes. We measured how physical interventions (applied to one eye) affect the DiCOT measurements, including neutral density (ND) filters, Bangerter filters, and optical blur introduced by a +3-diopter (D) lens. The DiCOT results were compared to those from the Dichoptic Letter Test (DLT). Both the DiCOT and the DLT showed excellent test-retest reliability; however, the magnitude of the imbalances introduced by the interventions was greater in the DLT. To find consistency between the methods, rescaling the DiCOT results from individual conditions gave good results. However, the adjustments required for the +3-D lens condition were quite different from those for the ND and Bangerter filters. Our results indicate that the DiCOT and DLT measures partially separate aspects of binocular imbalance. This supports the simultaneous use of both measures in future studies.
Collapse
Affiliation(s)
- Alex S Baldwin
- McGill Vision Research, Department of Ophthalmology and Visual Sciences, McGill University; McGill University Health Center, Montreal, QC, Canada
| | - Marie-Céline Lorenzini
- McGill Vision Research, Department of Ophthalmology and Visual Sciences, McGill University; McGill University Health Center, Montreal, QC, Canada
| | - Annabel Wing-Yan Fan
- McGill Vision Research, Department of Ophthalmology and Visual Sciences, McGill University; McGill University Health Center, Montreal, QC, Canada
| | - Robert F Hess
- McGill Vision Research, Department of Ophthalmology and Visual Sciences, McGill University; McGill University Health Center, Montreal, QC, Canada
| | - Alexandre Reynaud
- McGill Vision Research, Department of Ophthalmology and Visual Sciences, McGill University; McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|
3
|
Zhou S, Weng L, Zhou C, Zhou J, Min SH. Reduced Monocular Luminance Promotes Fusion But Not Mixed Perception in Amblyopia. Invest Ophthalmol Vis Sci 2024; 65:15. [PMID: 38587443 PMCID: PMC11008760 DOI: 10.1167/iovs.65.4.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Purpose The purpose of this study was to understand how monocular luminance reduction affects binocular balance and examine whether it differentially influences fusion and mixed perception in amblyopia. Methods Twenty-three normally sighted observers and 12 adults with amblyopia participated in this study. A novel binocular rivalry task was used to measure the phase duration of four perceptual responses (right- and left-tilts, fusion, and mixed perception) before and after a neutral density (ND) filter was applied at various levels to the dominant eye (DE) of controls and the fellow eye (FE) of patients with amblyopia. Phase durations were analyzed to assess whether the duration of fusion or mixed perception shifted after monocular luminance reduction. Moreover, we quantified ocular dominance and adjusted monocular contrast and luminance separately to investigate the relationship between changes in ocular dominance induced by the two manipulations. Results In line with previous studies, binocular balance shifted in favor of the brighter eye in both normal adults and patients with amblyopia. As a function of the ND filter's density, the duration of fusion and mixed perception decreased in normal controls, whereas that of fusion but not mixed perception increased significantly in patients with amblyopia. In addition, changes in binocular balance from luminance reduction were more significant in more balanced amblyopes or normal observers. Furthermore, shifts in binocular balance after contrast and luminance modulation were correlated in both normal and amblyopic observers. Conclusions The duration of fusion but not mixed perception increased in amblyopia after monocular luminance reduction in the FE. Moreover, our findings demonstrate that changes in ocular dominance from contrast-modulation and luminance-modulation are correlated in both normal and amblyopic observers.
Collapse
Affiliation(s)
- Shiqi Zhou
- School of Ophthalmology and Optometry and Eye Hospital, and State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liuqing Weng
- School of Ophthalmology and Optometry and Eye Hospital, and State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chenyan Zhou
- School of Ophthalmology and Optometry and Eye Hospital, and State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiawei Zhou
- School of Ophthalmology and Optometry and Eye Hospital, and State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Seung Hyun Min
- School of Ophthalmology and Optometry and Eye Hospital, and State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
4
|
Min SH, Wang Z, Chen MT, Hu R, Gong L, He Z, Wang X, Hess RF, Zhou J. Metaplasticity: Dark exposure boosts local excitability and visual plasticity in adult human cortex. J Physiol 2023; 601:4105-4120. [PMID: 37573529 DOI: 10.1113/jp284040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/25/2023] [Indexed: 08/15/2023] Open
Abstract
An interlude of dark exposure for about 1 week is known to shift excitatory/inhibitory (E/I) balance of the mammalian visual cortex, promoting plasticity and accelerating visual recovery in animals that have experienced cortical lesions during development. However, the translational impact of our understanding of dark exposure from animal studies to humans remains elusive. Here, we used magnetic resonance spectroscopy as a probe for E/I balance in the primary visual cortex (V1) to determine the effect of 60 min of dark exposure, and measured binocular combination as a behavioural assay to assess visual plasticity in 14 normally sighted human adults. To induce neuroplastic changes in the observers, we introduced 60 min of monocular deprivation, which is known to temporarily shift sensory eye balance in favour of the previously deprived eye. We report that prior dark exposure for 60 min strengthens local excitability in V1 and boosts visual plasticity in normal adults. However, we show that it does not promote plasticity in amblyopic adults. Nevertheless, our findings are surprising, given the fact that the interlude is very brief. Interestingly, we find that the increased concentration of the excitatory neurotransmitter is not strongly correlated with the enhanced functional plasticity. Instead, the absolute degree of change in its concentration is related to the boost, suggesting that the dichotomy of cortical excitation and inhibition might not explain the physiological basis of plasticity in humans. We present the first evidence that an environmental manipulation that shifts cortical E/I balance can also act as a metaplastic facilitator for visual plasticity in humans. KEY POINTS: A brief interlude (60 min) of dark exposure increased the local concentration of glutamine/glutamate but not that of GABA in the visual cortex of adult humans. After dark exposure, the degree of the shift in sensory eye dominance in favour of the previously deprived eye from short-term monocular deprivation was larger than that from only monocular deprivation. The neurochemical and behavioural measures were associated: the magnitude of the shift in the concentration of glutamine/glutamate was correlated with the boost in perceptual plasticity after dark exposure. Surprisingly, the increase in the concentration of glutamine/glutamate was not correlated with the perceptual boost after dark exposure, suggesting that the physiological mechanism of how E/I balance regulates plasticity is not deterministic. In other words, an increased excitation did not unilaterally promote plasticity.
Collapse
Affiliation(s)
- Seung Hyun Min
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zili Wang
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Meng Ting Chen
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Rongjie Hu
- Center for Biomedical Imaging, University of Science and Technology of China, Anhui, China
| | - Ling Gong
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhifen He
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiaoxiao Wang
- Center for Biomedical Imaging, University of Science and Technology of China, Anhui, China
| | - Robert F Hess
- McGill Vision Research, Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada
| | - Jiawei Zhou
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
Acquafredda M, Sari ID, Steinwurzel C, Lunghi C, Binda P. Measuring the reliability of binocular rivalry. J Vis 2023; 23:5. [PMID: 37676671 PMCID: PMC10501494 DOI: 10.1167/jov.23.10.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023] Open
Abstract
Binocular rivalry is a widely used tool in sensory and cognitive neuroscience to investigate different aspects of vision and cognition. The dynamics of binocular rivalry (e.g., duration of perceptual dominance phases and mixed percept proportions) differ across individuals; based on rivalry dynamics, it is also possible to calculate an index of ocular dominance (by comparing the perceptual dominance of the images in the two eyes). In this study, we investigated the reliability of binocular rivalry dynamics using different methods for dichoptic stimulation and different rivalry stimuli. For the three main indices we defined (ocular dominance, phase durations and mixed percept proportions), we found a high test-retest reliability across sessions. Moreover, the test-retest reliability of the ocular dominance index was predictable from its internal consistency, supporting its stability over time. Phase durations and mixed percept proportions, in contrast, had worse test-retest reliability than expected based on internal consistency, indicating that these parameters are susceptible to state-dependent changes. Our results support the use of the ocular dominance index and binocular rivalry in the measurement of sensory eye dominance and its plasticity, but advise caution when investigating the association between phase durations or mixed percepts and stable characteristics like psychological traits or disorders.
Collapse
Affiliation(s)
- Miriam Acquafredda
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - Izel D Sari
- Laboratoire des systèmes perceptifs, Département d'études cognitives, École normale supérieure, PSL University, CNRS, Paris, France
| | | | - Claudia Lunghi
- Laboratoire des systèmes perceptifs, Département d'études cognitives, École normale supérieure, PSL University, CNRS, Paris, France
| | - Paola Binda
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
6
|
Hess RF, Hyun Min S. Is ocular dominance plasticity a special case of contrast adaptation? Vision Res 2023; 207:108212. [PMID: 36963276 DOI: 10.1016/j.visres.2023.108212] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/15/2022] [Accepted: 12/15/2022] [Indexed: 03/26/2023]
Abstract
The visual system can regulate its sensitivity depending on the prevailing contrast conditions. This is known as contrast adaptation and reflects contrast gain changes at different stages along the visual pathway. Recently, it has been shown that depriving an eye of visual stimulation for a short period of time can lead to neuroplastic changes in ocular dominance as the result of homeostatic changes in contrast gain. Here we examine, on the basis of previously published results, whether the neuroplastic ocular dominance changes are just manifestation of the mechanism responsible for contrast adaptation. The evidence suggests that these two visual processes are separate and do not have a common neural substrate.
Collapse
Affiliation(s)
- Robert F Hess
- McGill Vision Research, Department of Vision Sciences and Ophthalmology, McGill University, Montreal, Quebec, Canada.
| | - Seung Hyun Min
- McGill Vision Research, Department of Vision Sciences and Ophthalmology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
7
|
Chen X, Hall K, Bobier WR, Thompson B, Chakraborty A. Transcranial random noise stimulation and exercise do not modulate ocular dominance plasticity in adults with normal vision. J Vis 2022; 22:14. [PMID: 36107124 PMCID: PMC9483237 DOI: 10.1167/jov.22.10.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Xiaoxin Chen
- School of Optometry & Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Kennedy Hall
- Chicago College of Optometry, Midwestern University, Downers Grove, IL, USA
| | - William R. Bobier
- School of Optometry & Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Benjamin Thompson
- School of Optometry & Vision Science, University of Waterloo, Waterloo, ON, Canada
- Centre for Eye and Vision Research, 17W Science Park, Hong Kong
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Arijit Chakraborty
- School of Optometry & Vision Science, University of Waterloo, Waterloo, ON, Canada
- Chicago College of Optometry, Midwestern University, Downers Grove, IL, USA
- College of Health Sciences, Rush University, Chicago, IL, USA
| |
Collapse
|
8
|
Min SH, Chen Y, Jiang N, He Z, Zhou J, Hess RF. Issues Revisited: Shifts in Binocular Balance Depend on the Deprivation Duration in Normal and Amblyopic Adults. Ophthalmol Ther 2022; 11:2027-2044. [PMID: 36008603 DOI: 10.1007/s40123-022-00560-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/03/2022] [Indexed: 10/15/2022] Open
Abstract
INTRODUCTION Recent studies indicate that short-term monocular deprivation increases the deprived eye's contribution to binocular fusion in both adults with normal vision and amblyopia. In this study, we investigated whether the changes in visual plasticity depended on the duration of deprivation in normal and amblyopic adults. METHODS Twelve anisometropia amblyopic observers (aged 24.8 ± 2.3 years) and 12 age-matched normal observers (aged 23.9 ± 1.2 years) participated in the study. The non-dominant eye of normal observers or amblyopic eye of amblyopic observers was deprived for 30, 120, and 300 min in a randomized order. Their eye balance was measured with a phase combination task, which is a psychophysical test, before and after the deprivation. This design enabled us to measure changes induced in binocular balance as an index visual plasticity due to monocular deprivations. RESULTS By comparing the ocular dominance changes as a result of monocular deprivation with different deprivation durations, we found evidence that the ocular dominance changes are slightly larger after longer deprivations in both normal and amblyopic observers, albeit with a statistical significance. The changes from 120-min were significantly greater than those from 30-min deprivation in both groups. The magnitude of changes in sensory eye balance was significantly larger in normal observers than that in the amblyopic observers; however, the longevity of changes in visual plasticity was found to be more long-lasting in amblyopic observers than the normal counterparts. CONCLUSIONS The duration of deprivation matters in both normal and amblyopic observers. Ocular dominance imbalance that is typically observed in amblyopia can be more ameliorated with a longer duration of deprivation.
Collapse
Affiliation(s)
- Seung Hyun Min
- School of Ophthalmology and Optometry, Affiliated Eye Hospital, State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.,McGill Vision Research, Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada
| | - Yiya Chen
- School of Ophthalmology and Optometry, Affiliated Eye Hospital, State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Nan Jiang
- School of Ophthalmology and Optometry, Affiliated Eye Hospital, State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhifen He
- School of Ophthalmology and Optometry, Affiliated Eye Hospital, State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Jiawei Zhou
- School of Ophthalmology and Optometry, Affiliated Eye Hospital, State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Robert F Hess
- McGill Vision Research, Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada
| |
Collapse
|
9
|
Zhu B, Liao M, Liu L. Measuring the impact of suppression on visual acuity in children with amblyopia using a dichoptic visual acuity chart. Front Neurosci 2022; 16:860620. [PMID: 35911993 PMCID: PMC9334724 DOI: 10.3389/fnins.2022.860620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeTo develop a novel dichoptic visual acuity chart that measures the impact of interocular suppression on the visual acuity of each eye when two eyes are open.MethodsFifty-four subjects (19 anisometropic amblyopia, 20 treated amblyopia, and 15 normal children) participated in this study. The visual acuity that was tested under dichoptic-optotypes condition (i.e., presented optotypes to the untested eye) was compared with that under monocular condition (i.e., cover the untested eye with opaque patch). Visual acuity differences between these two conditions were compared among the three groups. The correlations between visual acuity differences and the depth of interocular suppression were then computed. Some participants performed the visual acuity test under dichoptic-luminance condition (i.e., presented mean luminance to the untested eye), and the test-retest reliability was established.ResultsA reduced visual acuity of the non-dominant eye was found in the dichoptic-optotypes condition for the amblyopia group (P < 0.001) and the treated group (P = 0.001); the difference in the treated group was less than that in the amblyopia group (P < 0.001) but more than that in the normal group (P = 0.026). A significant correlation was found between the visual acuity differences and the depth of suppression, which was tested with a binocular phase combination task (P = 0.005). No change was found in the dichoptic-luminance condition.ConclusionThe amblyopic eye and the previous amblyopic eye seem to suffer from a reduced visual acuity when two eyes are open due to suppression. This was successfully captured by our novel and reliable dichoptic-optotypes visual acuity chart.
Collapse
Affiliation(s)
- Bixia Zhu
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Liao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Longqian Liu
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Longqian Liu,
| |
Collapse
|