1
|
Risner ML, Ribeiro M, McGrady NR, Kagitapalli BS, Chamling X, Zack DJ, Calkins DJ. Neutral sphingomyelinase inhibition promotes local and network degeneration in vitro and in vivo. Cell Commun Signal 2023; 21:305. [PMID: 37904133 PMCID: PMC10614343 DOI: 10.1186/s12964-023-01291-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/22/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Cell-to-cell communication is vital for tissues to respond, adapt, and thrive in the prevailing milieu. Several mechanisms mediate intercellular signaling, including tunneling nanotubes, gap junctions, and extracellular vesicles (EV). Depending on local and systemic conditions, EVs may contain cargoes that promote survival, neuroprotection, or pathology. Our understanding of pathologic intercellular signaling has been bolstered by disease models using neurons derived from human pluripotent stems cells (hPSC). METHODS Here, we used hPSC-derived retinal ganglion cells (hRGC) and the mouse visual system to investigate the influence of modulating EV generation on intercellular trafficking and cell survival. We probed the impact of EV modulation on cell survival by decreasing the catabolism of sphingomyelin into ceramide through inhibition of neutral sphingomyelinase (nSMase), using GW4869. We assayed for cell survival in vitro by probing for annexin A5, phosphatidylserine, viable mitochondria, and mitochondrial reactive oxygen species. In vivo, we performed intraocular injections of GW4869 and measured RGC and superior colliculus neuron density and RGC anterograde axon transport. RESULTS Following twenty-four hours of dosing hRGCs with GW4869, we found that inhibition of nSMase decreased ceramide and enhanced GM1 ganglioside accumulation. This inhibition also reduced the density of small EVs, increased the density of large EVs, and enriched the pro-apoptotic protein, annexin A5. Reducing nSMase activity increased hRGC apoptosis initiation due to enhanced density and uptake of apoptotic particles, as identified by the annexin A5 binding phospholipid, phosphatidylserine. We assayed intercellular trafficking of mitochondria by developing a coculture system of GW4869-treated and naïve hRGCs. In treated cells, inhibition of nSMase reduced the number of viable mitochondria, while driving mitochondrial reactive oxygen species not only in treated, but also in naive hRGCs added in coculture. In mice, 20 days following a single intravitreal injection of GW4869, we found a significant loss of RGCs and their axonal recipient neurons in the superior colliculus. This followed a more dramatic reduction in anterograde RGC axon transport to the colliculus. CONCLUSION Overall, our data suggest that perturbing the physiologic catabolism of sphingomyelin by inhibiting nSMase reorganizes plasma membrane associated sphingolipids, alters the profile of neuron-generated EVs, and promotes neurodegeneration in vitro and in vivo by shifting the balance of pro-survival versus -degenerative EVs. Video Abstract.
Collapse
Affiliation(s)
- Michael L Risner
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, AA7103 MCN/VUIIS, 1161 21st Ave S., Nashville, TN, 37232, USA.
- Department of Foundational Medical Studies, Eye Research Center, Oakland University William Beaumont School of Medicine, 369 Dodge Hall, 118 Library Dr., Rochester, MI, 48309, USA.
| | - Marcio Ribeiro
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, AA7103 MCN/VUIIS, 1161 21st Ave S., Nashville, TN, 37232, USA
| | - Nolan R McGrady
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, AA7103 MCN/VUIIS, 1161 21st Ave S., Nashville, TN, 37232, USA
| | - Bhanu S Kagitapalli
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, AA7103 MCN/VUIIS, 1161 21st Ave S., Nashville, TN, 37232, USA
| | - Xitiz Chamling
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Donald J Zack
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - David J Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, AA7103 MCN/VUIIS, 1161 21st Ave S., Nashville, TN, 37232, USA.
| |
Collapse
|
2
|
Boal AM, McGrady NR, Chamling X, Kagitapalli BS, Zack DJ, Calkins DJ, Risner ML. Microfluidic Platforms Promote Polarization of Human-Derived Retinal Ganglion Cells That Model Axonopathy. Transl Vis Sci Technol 2023; 12:1. [PMID: 37010860 PMCID: PMC10080917 DOI: 10.1167/tvst.12.4.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/09/2023] [Indexed: 04/04/2023] Open
Abstract
Purpose Axons depend on long-range transport of proteins and organelles which increases susceptibility to metabolic stress in disease. The axon initial segment (AIS) is particularly vulnerable due to the high bioenergetic demand of action potential generation. Here, we prepared retinal ganglion cells derived from human embryonic stem cells (hRGCs) to probe how axonal stress alters AIS morphology. Methods hRGCs were cultured on coverslips or microfluidic platforms. We assayed AIS specification and morphology by immunolabeling against ankyrin G (ankG), an axon-specific protein, and postsynaptic density 95 (PSD-95), a dendrite-specific protein. Using microfluidic platforms that enable fluidic isolation, we added colchicine to the axon compartment to lesion axons. We verified axonopathy by measuring the anterograde axon transport of cholera toxin subunit B and immunolabeling against cleaved caspase 3 (CC3) and phosphorylated neurofilament H (SMI-34). We determined the influence of axon injury on AIS morphology by immunolabeling samples against ankG and measuring AIS distance from soma and length. Results Based on measurements of ankG and PSD-95 immunolabeling, microfluidic platforms promote the formation and separation of distinct somatic-dendritic versus axonal compartments in hRGCs compared to coverslip cultures. Chemical lesioning of axons by colchicine reduced hRGC anterograde axon transport, increased varicosity density, and enhanced expression of CC3 and SMI-34. Interestingly, we found that colchicine selectively affected hRGCs with axon-carrying dendrites by reducing AIS distance from somas and increasing length, thus suggesting reduced capacity to maintain excitability. Conclusions Thus, microfluidic platforms promote polarized hRGCs that enable modeling of axonopathy. Translational Relevance Microfluidic platforms may be used to assay compartmentalized degeneration that occurs during glaucoma.
Collapse
Affiliation(s)
- Andrew M. Boal
- Vanderbilt Eye Institute, Department of Ophthalmology & Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nolan R. McGrady
- Vanderbilt Eye Institute, Department of Ophthalmology & Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xitiz Chamling
- Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bhanu S. Kagitapalli
- Vanderbilt Eye Institute, Department of Ophthalmology & Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Donald J. Zack
- Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David J. Calkins
- Vanderbilt Eye Institute, Department of Ophthalmology & Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael L. Risner
- Vanderbilt Eye Institute, Department of Ophthalmology & Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
3
|
Fasolino I, Carvalho ED, Raucci MG, Bonadies I, Soriente A, Pezzella A, Pêgo AP, Ambrosio L. Eumelanin decorated poly(lactic acid) electrospun substrates as a new strategy for spinal cord injury treatment. BIOMATERIALS ADVANCES 2023; 146:213312. [PMID: 36736264 DOI: 10.1016/j.bioadv.2023.213312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
Spinal cord injury (SCI) is characterized by neuroinflammatory processes that are marked by an uncontrolled activation of microglia, which directly damages neurons. Natural and synthetic melanins represent an effective tool to treat neuroinflammation because they possess immunomodulatory properties. Here, the main objective was to evaluate the effect of eumelanin-coated poly(lactic acid) (EU@PLA) aligned microfibers on in vitro model of neuroinflammation related to spinal cord injury in terms of inflammatory mediators' modulation. Aligned fibers were chosen to provide physical cues to guide axonal growth in a specific direction thus restoring the synaptic connection. Eumelanin decorated PLA electrospun substrates were produced combining electrospinning, spin coating and solid-state polymerization processes (oxidative coupling under oxygen atmosphere). Biological response in terms of antioxidant and anti-inflammatory activity was analyzed on an in vitro model of neuroinflammation [microglial cells stimulated with lipopolysaccharide (LPS)]. Cell morphology and EU@PLA mechanism of action, in terms of toll-like receptor-4 (TLR-4) involvement were assessed. The results show that EU@PLA fibers were able to decrease reactive oxygen species, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-кB) expression >50 % compared to PLA + LPS and interleukin 6 (IL-6) secretion about 20 %. Finally, the mechanism of action of EU@PLA in microglia was found to be dependent on the TLR-4 signaling. Protein expression analysis revealed a decreased in TLR-4 production induced by LPS stimulation in presence of EU@PLA. Overall, our results show that EU@PLA represents an innovative and effective strategy for the control of inflammatory response in central nervous system.
Collapse
Affiliation(s)
- Ines Fasolino
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, Italy.
| | - Eva Daniela Carvalho
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
| | - Maria Grazia Raucci
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, Italy; Bioelectronics Task Force at University of Naples "Federico II", Italy.
| | - Irene Bonadies
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, Italy
| | - Alessandra Soriente
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, Italy
| | - Alessandro Pezzella
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, Italy; University of Naples "Federico II" Department of Physics "Ettore Pancini" Complesso Universitario Monte S. Angelo, Italy; Bioelectronics Task Force at University of Naples "Federico II", Italy
| | - Ana Paula Pêgo
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; Faculdade de Engenharia da Universidade do Porto, Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, Italy
| |
Collapse
|
4
|
Huang KC, Gomes C, Meyer JS. Retinal Ganglion Cells in a Dish: Current Strategies and Recommended Best Practices for Effective In Vitro Modeling of Development and Disease. Handb Exp Pharmacol 2023; 281:83-102. [PMID: 36907969 PMCID: PMC10497719 DOI: 10.1007/164_2023_642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
The ability to derive retinal ganglion cells (RGCs) from human pluripotent stem cells (hPSCs) provides an extraordinary opportunity to study the development of RGCs as well as cellular mechanisms underlying their degeneration in optic neuropathies. In the past several years, multiple approaches have been established that allow for the generation of RGCs from hPSCs, with these methods greatly improved in more recent studies to yield mature RGCs that more faithfully recapitulate phenotypes within the eye. Nevertheless, numerous differences still remain between hPSC-RGCs and those found within the human eye, with these differences likely explained at least in part due to the environment in which hPSC-RGCs are grown. With the ultimate goal of generating hPSC-RGCs that most closely resemble those within the retina for proper studies of retinal development, disease modeling, as well as cellular replacement, we review within this manuscript the current effective approaches for the differentiation of hPSC-RGCs, as well as how they have been applied for the investigation of RGC neurodegenerative diseases such as glaucoma. Furthermore, we provide our opinions on the characteristics of RGCs necessary for their use as effective in vitro disease models and importantly, how these current systems should be improved to more accurately reflect disease states. The establishment of characteristics in differentiated hPSC-RGCs that more effectively mimic RGCs within the retina will not only enable their use as effective models of RGC development, but will also create a better disease model for the identification of mechanisms underlying the neurodegeneration of RGCs in disease states such as glaucoma, further facilitating the development of therapeutic approaches to rescue RGCs from degeneration in disease states.
Collapse
Affiliation(s)
- Kang-Chieh Huang
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cátia Gomes
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jason S Meyer
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
5
|
Croteau LP, Risner ML, Wareham LK, McGrady NR, Chamling X, Zack DJ, Calkins DJ. Ex Vivo Integration of Human Stem Retinal Ganglion Cells into the Mouse Retina. Cells 2022; 11:cells11203241. [PMID: 36291110 PMCID: PMC9600680 DOI: 10.3390/cells11203241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/04/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Cell replacement therapies may be key in achieving functional recovery in neurodegenerative optic neuropathies diseases such as glaucoma. One strategy that holds promise in this regard is the use of human embryonic stem cell and induced pluripotent stem-derived retinal ganglion cells (hRGCs). Previous hRGC transplantation studies have shown modest success. This is in part due to the low survival and integration of the transplanted cells in the host retina. The field is further challenged by mixed assays and outcome measurements that probe and determine transplantation success. Thefore, we have devised a transplantation assay involving hRGCs and mouse retina explants that bypasses physical barriers imposed by retinal membranes. We show that hRGC neurites and somas are capable of invading mouse explants with a subset of hRGC neurites being guided by mouse RGC axons. Neonatal mouse retina explants, and to a lesser extent, adult explants, promote hRGC integrity and neurite outgrowth. Using this assay, we tested whether suppmenting cultures with brain derived neurotrophic factor (BDNF) and the adenylate cyclase activator, forskolin, enhances hRGC neurite integration, neurite outgrowth, and integrity. We show that supplementing cultures with a combination BDNF and forskolin strongly favors hRGC integrity, increasing neurite outgrowth and complexity as well as the invasion of mouse explants. The transplantation assay presented here is a practical tool for investigating strategies for testing and optimizing the integration of donor cells into host tissues.
Collapse
Affiliation(s)
- Louis-Philippe Croteau
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael L. Risner
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lauren K. Wareham
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nolan R. McGrady
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Xitiz Chamling
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Donald J. Zack
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - David J. Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Correspondence:
| |
Collapse
|