1
|
Borroto MC, Patel H, Srivastava S, Swanson LC, Keren B, Whalen S, Mignot C, Wang X, Chen Q, Rosenfeld JA, McLean S, Littlejohn RO, Emrick L, Burrage LC, Attali R, Lesca G, Acquaviva-Bourdain C, Sarret C, Seaver LH, Platzer K, Bartolomaeus T, Wünsch C, Fischer S, Rodriguez Barreto AM, Granadillo JL, Schreiner E, Brunet T, Schatz UA, Thiffault I, Mullegama SV, Michaud JL, Hamdan FF, Rossignol E, Campeau PM. Cohort Expansion and Genotype-Phenotype Analysis of RAB11A-Associated Neurodevelopmental Disorder. Pediatr Neurol 2024; 160:45-53. [PMID: 39181022 DOI: 10.1016/j.pediatrneurol.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/07/2023] [Accepted: 07/13/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND GTPases of the Rab family are important orchestrators of membrane trafficking, and their dysregulation has been linked to a variety of neuropathologies. In 2017, we established a causal link between RAB11A variants and developmental and epileptic encephalopathy. In this study, we expand the phenotype of RAB11A-associated neurodevelopmental disorder and explore genotype-phenotype correlations. METHODS We assessed 16 patients with pathogenic or likely pathogenic RAB11A variants, generally de novo, heterozygous missense variants. One individual had a homozygous nonsense variant, although concomitant with a pathogenic LAMA2 variant, which made their respective contributions to the phenotype difficult to discriminate. RESULTS We reinforce the finding that certain RAB11A missense variants lead to intellectual disability and developmental delays. Other clinical features might include gait disturbances, hypotonia, magnetic resonance imaging abnormalities, visual anomalies, dysmorphisms, early adrenarche, and obesity. Epilepsy seems to be less common and linked to variants outside the binding sites. Individuals with variants in the binding sites seem to have a more multisystemic, nonepileptic phenotype. CONCLUSIONS Similar to other Rab-related disorders, RAB11A-associated neurodevelopmental disorder can also impact gait, tonus, brain anatomy and physiology, vision, adrenarche, and body weight and structure. Epilepsy seems to affect the minority of patients with variants outside the binding sites.
Collapse
Affiliation(s)
| | - Heena Patel
- Centre de recherche Azrieli du CHU Sainte-Justine, Montreal, Québec, Canada
| | - Siddharth Srivastava
- Department of Neurology, Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lindsay C Swanson
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Boris Keren
- Département de génétique, APHP-Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Sandra Whalen
- UF de Génétique Clinique et Centre de Reference Anomalies du Développement et Syndromes Malformatifs, APHP, Sorbonne Université, Hôpital Trousseau, Paris, France
| | - Cyril Mignot
- Département de Génétique, Centre de Référence Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié-Salpêtrière and Hôpital Trousseau, APHP, Sorbonne Université, Paris, France
| | | | - Qian Chen
- Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Scott McLean
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Baylor College of Medicine, San Antonio, Texas
| | - Rebecca O Littlejohn
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Baylor College of Medicine, San Antonio, Texas
| | - Lisa Emrick
- Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Ruben Attali
- Genomic Research Department, Emedgene, an Illumina Company, Tel Aviv, Israel
| | - Gaetan Lesca
- Department of Medical Genetics, Lyon University Hospital, University Claude Bernard Lyon 1, Lyon, France
| | - Cecile Acquaviva-Bourdain
- Hospices civils de Lyon, service biochimie et biologie moléculaire, UF maladies héréditaires du métabolisme, Bron, France
| | - Catherine Sarret
- CHU Estaing, Pôle Pédiatrie, Service de Génétique, Clermont-Ferrand, France
| | - Laurie H Seaver
- Corewell Health Helen DeVos Children's Hospital, Grand Rapids, Michigan; Department of Pediatrics and Human Development, Michigan State University College of Human Medicine, Grand Rapids, Michigan
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Tobias Bartolomaeus
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Cornelia Wünsch
- Sozialpädiatrisches Zentrum Leipzig - Frühe Hilfe Leipzig e.V., Leipzig, Germany
| | - Susann Fischer
- Sozialpädiatrisches Zentrum Leipzig - Frühe Hilfe Leipzig e.V., Leipzig, Germany
| | | | - Jorge L Granadillo
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Elisabeth Schreiner
- Diagnostic and Research Institute of Human Genetics, Medical University of Graz, Graz, Austria
| | - Theresa Brunet
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany; Department of Pediatric Neurology and Developmental Medicine, Dr. v. Hauner Children's Hospital, LMU - University of Munich, Munich, Germany
| | - Ulrich A Schatz
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Isabelle Thiffault
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, Missouri; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, Missouri
| | | | - Jacques L Michaud
- Centre de recherche Azrieli du CHU Sainte-Justine, Montreal, Québec, Canada; Departments of Pediatrics and Neurosciences, Université de Montréal, Montreal, Québec, Canada
| | - Fadi F Hamdan
- Centre de recherche Azrieli du CHU Sainte-Justine, Montreal, Québec, Canada; Department of Pediatrics, University of Montreal, Montreal, Québec, Canada
| | - Elsa Rossignol
- Centre de recherche Azrieli du CHU Sainte-Justine, Montreal, Québec, Canada
| | - Philippe M Campeau
- Centre de recherche Azrieli du CHU Sainte-Justine, Montreal, Québec, Canada; Department of Pediatrics, University of Montreal, Montreal, Québec, Canada.
| |
Collapse
|
2
|
Fonseca AF, Coelho R, da-Silva ML, Lemos L, Hall MJ, Oliveira D, Falcão AS, Tenreiro S, Seabra MC, Antas P. Modeling Choroideremia Disease with Isogenic Induced Pluripotent Stem Cells. Stem Cells Dev 2024; 33:528-539. [PMID: 39078329 DOI: 10.1089/scd.2024.0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
Choroideremia (CHM) is a rare X-linked chorioretinal dystrophy causing progressive vision loss due to mutations in the CHM gene, leading to Rab escort protein 1 loss of function. CHM disease is characterized by a progressive degeneration of the choroid, the retinal pigment epithelium (RPE), and the retina. The RPE is a monolayer of polarized cells that supports photoreceptors, providing nutrients, growth factors, and ions, and removes retinal metabolism waste products, having a central role in CHM pathogenesis. Commonly used models such as ARPE-19 cells do not reproduce accurately the nature of RPE cells. Human induced pluripotent stem cells (hiPSCs) can be differentiated into RPE cells (hiPSC-RPE), which mimic key features of native RPE, being more suited to study retinal diseases. Therefore, we took advantage of hiPSCs to generate new human-based CHM models. Two isogenic hiPSC lines were generated through CRISPR/Cas9: a CHM knock-out line from a healthy donor and a corrected CHM patient line using a knock-in approach. The differentiated hiPSC-RPE lines exhibited critical morphological and physiological characteristics of native RPE, including the presence of the tight junction markers Claudin-19 and Zonula Occludens-1, phagocytosis of photoreceptor outer segments, pigmentation, a postmitotic state, and the characteristic polygonal shape. In addition, all the studied cells were able to form retinal organoids. This work resulted in the establishment of isogenic hiPSC lines, representing a new and important CHM cellular model. To our knowledge, this is the first time that isogenic cell lines have been developed to model CHM disease, providing a valuable tool for studying the mechanisms at the onset of RPE degeneration.
Collapse
Affiliation(s)
- Ana Fragoso Fonseca
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS | FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Rita Coelho
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS | FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Mafalda Lopes- da-Silva
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS | FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Luísa Lemos
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Michael J Hall
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS | FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Daniela Oliveira
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS | FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Ana Sofia Falcão
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS | FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Sandra Tenreiro
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS | FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Miguel C Seabra
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS | FCM, Universidade Nova de Lisboa, Lisboa, Portugal
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Pedro Antas
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS | FCM, Universidade Nova de Lisboa, Lisboa, Portugal
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| |
Collapse
|
3
|
Waldock WJ, Taylor LJ, Sperring S, Staurenghi F, Martinez-Fernandez de la Camara C, Whitfield J, Clouston P, Yusuf IH, MacLaren RE. A hypomorphic variant of choroideremia is associated with a novel intronic mutation that leads to exon skipping. Ophthalmic Genet 2024; 45:210-217. [PMID: 38273808 DOI: 10.1080/13816810.2023.2270554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/09/2023] [Indexed: 01/27/2024]
Abstract
INTRODUCTION Molecular confirmation of pathogenic sequence variants in the CHM gene is required prior to enrolment in retinal gene therapy clinical trials for choroideremia. Individuals with mild choroideremia have been reported. The molecular basis of genotype-phenotype associations is of clinical relevance since it may impact on selection for retinal gene therapy. METHODS AND MATERIALS Genetic testing and RNA analysis were undertaken in a patient with mild choroideremia to confirm the pathogenicity of a novel intronic variant in CHM and to explore the mechanism underlying the mild clinical phenotype. RESULTS A 42-year-old male presented with visual field loss. Fundoscopy and autofluorescence imaging demonstrated mild choroideremia for his age. Genetic analysis revealed a variant at a splice acceptor site in the CHM gene (c.1350-3C > G). RNA analysis demonstrated two out-of-frame transcripts, suggesting pathogenicity, without any detectable wildtype transcripts. One of the two out-of-frame transcripts is present in very low levels in healthy controls. DISCUSSION Mild choroideremia may result from +3 or -3 splice site variants in CHM. It is presumed that the resulting mRNA transcripts may be partly functional, thereby preventing the development of the null phenotype. Choroideremia patients with such variants may present challenges for gene therapy since there may be residual transcript activity which could result in long-lasting visual function which is atypical for this disease.
Collapse
Affiliation(s)
| | - Laura J Taylor
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Sian Sperring
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Federica Staurenghi
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Cristina Martinez-Fernandez de la Camara
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Penny Clouston
- Oxford Regional Genetics Laboratories, Churchill Hospital, Oxford, UK
| | - Imran H Yusuf
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Robert E MacLaren
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Abdalla Elsayed MEA, Taylor LJ, Josan AS, Fischer MD, MacLaren RE. Choroideremia: The Endpoint Endgame. Int J Mol Sci 2023; 24:14354. [PMID: 37762657 PMCID: PMC10532430 DOI: 10.3390/ijms241814354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/25/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Choroideremia is an X-linked retinal degeneration resulting from the progressive, centripetal loss of photoreceptors and choriocapillaris, secondary to the degeneration of the retinal pigment epithelium. Affected individuals present in late childhood or early teenage years with nyctalopia and progressive peripheral visual loss. Typically, by the fourth decade, the macula and fovea also degenerate, resulting in advanced sight loss. Currently, there are no approved treatments for this condition. Gene therapy offers the most promising therapeutic modality for halting or regressing functional loss. The aims of the current review are to highlight the lessons learnt from clinical trials in choroideremia, review endpoints, and propose a future strategy for clinical trials.
Collapse
Affiliation(s)
- Maram E. A. Abdalla Elsayed
- Oxford Eye Hospital, Oxford University Hospitals National Health Service Foundation Trust, Oxford OX3 9DU, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Laura J. Taylor
- Oxford Eye Hospital, Oxford University Hospitals National Health Service Foundation Trust, Oxford OX3 9DU, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Amandeep S. Josan
- Oxford Eye Hospital, Oxford University Hospitals National Health Service Foundation Trust, Oxford OX3 9DU, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - M. Dominik Fischer
- Oxford Eye Hospital, Oxford University Hospitals National Health Service Foundation Trust, Oxford OX3 9DU, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Robert E. MacLaren
- Oxford Eye Hospital, Oxford University Hospitals National Health Service Foundation Trust, Oxford OX3 9DU, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
5
|
Yusuf IH, MacLaren RE. Choroideremia: Toward Regulatory Approval of Retinal Gene Therapy. Cold Spring Harb Perspect Med 2023; 13:a041279. [PMID: 37277205 PMCID: PMC10691480 DOI: 10.1101/cshperspect.a041279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Choroideremia is an X-linked inherited retinal degeneration characterized by primary centripetal degeneration of the retinal pigment epithelium (RPE), with secondary degeneration of the choroid and retina. Affected individuals experience reduced night vision in early adulthood with blindness in late middle age. The underlying CHM gene encodes REP1, a protein involved in the prenylation of Rab GTPases essential for intracellular vesicle trafficking. Adeno-associated viral gene therapy has demonstrated some benefit in clinical trials for choroideremia. However, challenges remain in gaining regulatory approval. Choroideremia is slowly progressive, which presents difficulties in demonstrating benefit over short pivotal clinical trials that usually run for 1-2 years. Improvements in visual acuity are particularly challenging due to the initial negative effects of surgical detachment of the fovea. Despite these challenges, great progress toward a treatment has been made since choroideremia was first described in 1872.
Collapse
Affiliation(s)
- Imran H Yusuf
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, United Kingdom
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
6
|
Gao T, Huo J, Xin C, Yang J, Liu Q, Dong H, Li R, Liu Y. Protective effects of intrathecal injection of AAV9-RabGGTB-GFP+ in SOD1G93A mice. Front Aging Neurosci 2023; 15:1092607. [PMID: 36967828 PMCID: PMC10036913 DOI: 10.3389/fnagi.2023.1092607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/24/2023] [Indexed: 03/12/2023] Open
Abstract
IntroductionAmyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that widely affects motor neurons of the CNS. About 20% of patients with ALS have familial ALS (fALS). One of the classic models of ALS are SOD1G93A mice. Misfolded SOD1 protein can be overexpressed in motor neurons, which results in progressive paralysis of the limbs of mice. There is still no effective treatment for ALS. In recent years, the treatment of ALS by regulating autophagy has become a research hotspot. Autophagy obstacles have been confirmed to be one of the early pathological events of ALS. Rab7 is a member of the Ras superfamily and plays a key role in the late stage of autophagy. In our previous studies, we found that prenoylation of Rab7 was inhibited in the ALS model. Prenylation is a post-translational modification in which farnesyl or geranylgeranyl groups are covalently linked to target proteins. Based on these findings, we proposed the novel idea that the regulation of RabGGTB (the β-subunit of RabGGTase) mediated prenylation modification of Rab7, and that this can be used as a prevention and treatment of ALS associated with abnormal protein accumulation.MethodsIn the present study, RabGGTB was overexpressed in mouse spinal cord motoneurons by using adeno-associated virus as vector. Then immunofluorescence quantitative analysis was used for pathological study. The body weight, footprint analysis, the accelerating rotarod test, and neurological deficits score were used to evaluate animal behavior.ResultsOur results show that the protein level of RabGGTB was significantly increased in the lumbar and thoracic regions of spinal cord motoneurons of injected mice. Furthermore, the onset time and survival time of SOD1G93A mice injected with AAV9-RabGGTB-GFP+ were delayed compared with those of mice without overexpression. At the same time, we also observed a decrease in SOD1 misfolded and glial overactivation in the lumbar spinal cord of these SOD1G93A mice.ConclusionThe findings reported here show that RabGGTB plays a significant role in the pathogenesis of SOD1G93A mice and with great therapeutic potential for reducing abnormal aggregation of SOD1 in ALS.
Collapse
Affiliation(s)
- Tianchu Gao
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Jia Huo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Cheng Xin
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Jing Yang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Qi Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Hui Dong
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Rui Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
- *Correspondence: Rui Li, ; Yaling Liu,
| | - Yaling Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
- *Correspondence: Rui Li, ; Yaling Liu,
| |
Collapse
|